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Abstract In this two-part paper, information-theoretic capacity scaling laws
are analyzed in an underwater acoustic network with n regularly located nodes
on a square, in which both bandwidth and received signal power can be lim-
ited significantly. Parts I and II deal with an extended network of unit node
density and a dense network of unit area, respectively. A narrow-band model
is assumed where the carrier frequency is allowed to scale as a function of
n. We first characterize an attenuation parameter that depends on the fre-
quency scaling as well as the transmission distance. A Cut-set upper bound
on the throughput scaling is then derived. It is analyzed that under extended
networks, the upper bound is inversely proportional to the attenuation pa-
rameter, thus resulting in a highly power-limited network. Interestingly, it is
seen that the upper bound is intrinsically related to the attenuation parameter
but not the spreading factor. Furthermore, we describe an achievable scheme
based on the nearest-neighbor multi-hop (MH) transmission, which is suitable
due to the low propagation speed of acoustic channel. We show that the MH
scheme is order-optimal for all the operating regimes of extended networks.
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Finally, these scaling results are extended to a random network realization. As
a result, vital information for the fundamental limits of extended underwater
networks is provided by showing capacity scaling laws.
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1 Introduction

Gupta and Kumar’s pioneering work [1], characterized the connection between
the number of nodes, n, and the sum throughput in a large-scale wireless radio
network. They showed that the total throughput scales as Θ(

√
n/ log n) when

a multi-hop (MH) routing strategy is used for n source–destination (S–D) pairs
randomly distributed in a unit area.1 MH schemes are then further developed
and analyzed in [3–9], while their throughput per S–D pair scales far slower
than Θ(1). Recent results [10,11] have shown that an almost linear throughput
in the radio network, i.e. Θ(n1−ε) for an arbitrarily small ε > 0, which is the
best we can hope for, is achievable by using a hierarchical cooperation (HC)
strategy.2 Besides the schemes in [10, 11], there have been other studies to
improve the throughput of wireless radio networks up to a linear scaling in a
variety of network scenarios by using novel techniques such as networks with
node mobility [12], interference alignment [13], and infrastructure support [14].

Together with the studies in terrestrial radio networks, the interest in study
of underwater networks has been growing, due to recent advances in acous-
tic communication technology [15–18]. In underwater acoustic communication
systems, both bandwidth and received signal power are severely limited ow-
ing to the exponential (rather than polynomial) path-loss attenuation with
long propagation distance and the frequency-dependent attenuation. This is a
main feature that distinguishes underwater systems from wireless radio links.
Hence, the system throughput is affected by not only the transmission distance
but also the useful bandwidth. Based on these characteristics, network cod-
ing schemes [17,19,20] have been presented for underwater acoustic channels,
while network coding showed better performance than MH routing in terms
of reducing transmission power. MH networking has further been investigated
in other simple but realistic network conditions that take into account the
practical issues of coding and delay [21,22].

One natural question is what are the fundamental capabilities of underwa-
ter networks in supporting a multiplicity of nodes that wish to communicate

1 We use the following notation: i) f(x) = O(g(x)) means that there exist constants C and

c such that f(x) ≤ Cg(x) for all x > c. ii) f(x) = o(g(x)) means that limx→∞ f(x)
g(x)

= 0. iii)

f(x) = Ω(g(x)) if g(x) = O(f(x)). iv) f(x) = ω(g(x)) if g(x) = o(f(x)). v) f(x) = Θ(g(x))
if f(x) = O(g(x)) and g(x) = O(f(x)) [2].

2 Note that the HC scheme deals with a subtle issue around quantization, which is not
our main concern in this work.



Title Suppressed Due to Excessive Length 3

concurrently with each other, i.e., multiple S–D pairs, over an acoustic chan-
nel. To answer this question, the throughput scaling for underwater networks
was first studied [23], where n nodes were arbitrarily located in a planar disk
of unit area, as in [1], and the carrier frequency was set to a constant indepen-
dent of n. That work showed an upper bound on the throughput of each node,
based on the physical model [1], which scales as n−1/αe−W0(Θ(n−1/α)), where
α corresponds to the spreading factor of the underwater channel and W0 rep-
resents the branch zero of the Lambert W function [24].3 Since the spreading
factor typically has values in the range 1 ≤ α ≤ 2 [23], the throughput per
node decreases almost as O(n−1/α) for large enough n, which is considerably
faster than the Θ(

√
n) scaling characterized for wireless radio settings [1].

In Part I of this two-part paper, capacity scaling laws for underwater net-
works are analyzed in an extended network [4,5,10,25,26] of unit node density,
which is one of fundamentally different network models. Part II [27] shows
the analysis for a dense network [1, 6, 10] of unit area used as another ex-
treme network realization.4 Unlike the work in [23], the information-theoretic
notion of network capacity is adopted in terms of characterizing the model
for successful transmission. Especially, we are interested in the case where the
carrier frequency scales as a certain function of n in a narrow-band model.
Such an assumption leads to a significant change in the scaling behavior ow-
ing to the attenuation characteristics. Recently, the optimal capacity scaling
of wireless radio networks has been studied in [29, 30] according to operating
regimes that are determined by the relationship between the carrier frequency
and the number of nodes, n. The frequency scaling scenario of our study es-
sentially follows the same arguments as those in [29, 30]. We study both an
information-theoretic upper bound and an achievable rate scaling while al-
lowing the frequency scaling with n. To the best of our knowledge, such an
attempt has never been conducted before in underwater networks.

We explicitly characterize an attenuation parameter that depends on the
transmission distance and also on the carrier frequency. For extended net-
works with n regularly distributed nodes on a square, we then derive an upper
bound on the total throughput scaling using the cut-set bound. In extended
networks, our upper bound is based on the characteristics of power-limited
regimes shown in [10]. We show that the upper bound is inversely proportional
to the attenuation parameter. This leads to a highly power-limited network
for all the operating regimes (i.e., path-loss attenuation regimes), where power
consumption is important in determining performance. Interestingly, it is seen
that contrary to the case of wireless radio networks, our upper bound heavily
depends on the attenuation parameter but not on the spreading factor (corre-

3 The Lambert W function is defined to be the inverse of the function z = W (z)eW (z)

and the branch satisfying W (z) ≥ −1 is denoted by W0(z).
4 Since the two networks represent both extreme network realizations we will consider in

both Parts I and II, a realistic one would be in-between. In wireless radio networks, the
work in [28] generalized the results of [10] to the case where the network area can scale
polynomially with the number of nodes, n. In underwater networks, we leave this issue for
further study.
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sponding to the path-loss exponent in wireless networks). In addition, to show
constructively our achievability result, we describe the conventional nearest-
neighbor MH transmission [1], which is suitable for underwater networks due
to the very long propagation delay of acoustic signal in water [31], and analyze
its achievable throughput. We show that under extended regular networks, the
achievable rate scaling based on the MH routing exactly matches the upper
bound on the capacity scaling for all the operating regimes. Furthermore, a
random network scenario is discussed in this work. We show that under ex-
tended random networks, the conventional MH-based achievable scheme is not
order-optimal for any operating regimes.

The rest of this paper is organized as follows. Section 2 describes our system
and channel models. In Section 3, the cut-set upper bound on the throughput
is derived. In Section 4, the achievable throughput scaling is analyzed. These
results are extended to the random network case in Section 5. Finally, Section
6 summarizes the paper with some concluding remarks.

Throughout this paper, [·]ki denotes the (k, i)-th of a matrix. In is the
identity matrix of size n×n, det(·) is the determinant, C is the field of complex
numbers, and E[·] is the expectation. Unless otherwise stated, all logarithms
are assumed to be to the base 2.

2 System and Channel Models

We consider a two-dimensional underwater network that consists of n nodes
on a square such that two neighboring nodes are 1 unit of distance apart from
each other, i.e., a regular network [25, 26]. This two-dimensional network is
usually assumed to be constituted by sensor nodes that are anchored to the
bottom of the ocean. We randomly pick a matching of S–D pairs, so that
each node is the destination of exactly one source. Each node has an average
transmit power constraint P (constant), and we assume that the channel state
information (CSI) is available at all receivers, but not at the transmitters. It
is assumed that each node transmits at a rate T (n)/n, where T (n) denotes
the total throughput of the network.

Now let us turn to channel modeling. We assume frequency-flat channel
of bandwidth W Hz around carrier frequency f , which satisfies f À W , i.e.,
narrow-band model. This is a highly simplified model, but nonetheless one
that suffices to demonstrate the fundamental mechanisms that govern capacity
scaling. Assuming that all the nodes have perfectly directional transmissions,
we also disregard multipath propagation, and simply focus on a line-of-sight
channel between each pair of nodes used in [10,11,28]. An underwater acoustic
channel is characterized by an attenuation that depends on both the distance
rki between nodes i and k (i, k ∈ {1, · · · , n}) and the signal frequency f , and
is given by

A(rki, f) = c0r
α
kia(f)rki (1)

for some constant c0 > 0 independent of n, where α is the spreading factor
and a(f) > 1 is the absorption coefficient [16]. For analytical tractability, we
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assume that the spreading factor α does not change throughout the network,
i.e., that it is the same from short to long range transmissions, as in wire-
less radio networks [1, 4, 10]. The spreading factor describes the geometry of
propagation and is typically 1 ≤ α ≤ 2—its commonly used values are α = 1
for cylindrical spreading, α = 2 for spherical spreading, and α = 1.5 for the
so-called practical spreading. Note that existing models of wireless networks
typically correspond to the case for which a(f) = 1 (or a positive constant
independent of n) and α > 2.5

A common empirical model gives a(f) in dB/km for f in kHz as [16,32]:

10 log a(f) = a0 + a1f
2 + a2

f2

b1 + f2
+ a3

f2

b2 + f2
, (2)

where {a0, · · · , a3, b1, b2} are some positive constants independent of n. As
stated earlier, we will allow the carrier frequency f to scale with the number
of nodes, n. Note that this scaling technique is used to better exploit the nature
of the underwater acoustic channel. As a consequence, a wider range of both
f and n is covered, similarly as in [28–30]. In particular, we consider the case
where the frequency scales at arbitrarily increasing rates relative to n, which
enables us to really capture the dependence on the frequency in performance.6

The absorption a(f) is then an increasing function of f such that

a(f) = Θ
(
ec1f2

)
(3)

with respect to f for some constant c1 > 0 independent of n.
The noise ni at node i ∈ {1, · · · , n} in an acoustic channel can be modeled

through four basic sources: turbulence, shipping, waves, and thermal noise [16].
We assume that ni is the circularly symmetric complex additive colored Gaus-
sian noise with zero mean and power spectral density (PSD) N(f), and thus
the noise is frequency-dependent. The overall PSD of four sources decays lin-
early on the logarithmic scale in the frequency region 100 Hz – 100 kHz, which
is the operating region used by the majority of acoustic systems, and thus is
approximately given by [16,33]

log N(f) = a4 − a5 log f (4)

for some positive constants a4 and a5 independent of n.7 This means that
N(f) = O(1) since

N(f) = Θ

(
1

fa5

)
(5)

5 The counterpart of α in wireless radio channels is the path-loss exponent.
6 Otherwise, the attenuation parameter a(f) scales as Θ(1) from (2), which is not a matter

of interest in this work.
7 Note that in our operating frequencies, a5 = 1.8 is commonly used for the above ap-

proximation [16].
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in terms of f increasing with n. From (3) and (5), we may then have the
following relationship between the absorption a(f) and the noise PSD N(f):

N(f) = Θ

(
1

(log a(f))a5/2

)
. (6)

From the narrow-band assumption, the received signal yk at node k ∈
{1, · · · , n} at a given time instance is given by

yk =
∑

i∈I

hkixi + nk, (7)

where

hki =
ejθki

√
A(rki, f)

(8)

represents the complex channel between nodes i and k, xi ∈ C is the signal
transmitted by node i, and I ⊂ {1, · · · , n} is the set of simultaneously trans-
mitting nodes. The random phases θki are uniformly distributed over [0, 2π)
and independent for different i, k, and time. We thus assume a narrow-band
time-varying channel, whose gain changes to a new independent value for every
symbol. Note that this random phase model is based on a far-field assump-
tion [10, 11, 28],8 which is valid if the wavelength is sufficiently smaller than
the minimum node separation.

Based on the above channel characteristics, operating regimes of the net-
work are identified according to the following physical parameters: the ab-
sorption a(f) and the noise PSD N(f) which are exploited here by choosing
the frequency f based on the number of nodes, n. In other words, if the rela-
tionship between f and n is specified, then a(f) and N(f) can be given by a
certain scaling function of n from (3) and (5), respectively.

3 Cut-set Upper Bound

To access the fundamental limits of an extended underwater network, a new
cut-set upper bound on the total throughput scaling is analyzed from an
information-theoretic perspective [35]. Consider a given cut L dividing the
network area into two equal halves, as in [10, 28] (see Fig. 1). Under the cut
L, source nodes are on the left, while all nodes on the right are destinations.
In this case, we have an Θ(n)×Θ(n) multiple-input multiple-output (MIMO)
channel between the two sets of nodes separated by the cut. Specifically, an
upper bound based on the power transfer argument [10] is established for ex-
tended networks, where the information flow for a given cut L is proportional
to the total received signal power from source nodes. Note, however, that the

8 In [34], instead of simply taking the far-field assumption, the physical limit of wireless
radio networks has been studied under certain conditions on scattering elements. Further
investigation is also required to see whether this assumption is valid for underwater networks
of unit node density in the limit of large number of nodes, n.
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Fig. 1 The cut L in a two-dimensional extended regular network. SL and DL represent the
sets of source and destination nodes, respectively.

present problem is not equivalent to the conventional extended network frame-
work [10] due to quite different channel characteristics, and the main result
is shown here in a somewhat different way by providing a simpler derivation
than that of [10].

As illustrated in Fig. 1, let SL and DL denote the sets of sources and
destinations, respectively, for the cut L in an extended network. We then take
into account an approach based on the amount of power transferred across the
network according to different operating regimes, i.e., path-loss attenuation
regimes. As pointed out in [10], the information transfer from SL to DL is
highly power-limited since all the nodes in the set DL are ill-connected to the
left-half network in terms of power. This implies that the information transfer
is bounded by the total received power transfer, rather than the cardinality of
the set DL. For the cut L, the total throughput T (n) for sources on the left is
bounded by the (ergodic) capacity of the MIMO channel between SL and DL

under time-varying channel assumption, and thus is given by

T (n) ≤ max
QL≥0

E

[
log det

(
In/2 +

1
N(f)

HLQLHH
L

)]
, (9)

where HL is the matrix with entries [HL]ki = hki for i ∈ SL, k ∈ DL, and
QL ∈ CΘ(n)×Θ(n) is the positive semi-definite input signal covariance matrix
whose k-th diagonal element satisfies [QL]kk ≤ P for k ∈ SL.

The relationship (9) will be further specified in Theorem 1. Before that,
we first apply the techniques of [26, 36] to obtain the total power transfer of
the set DL. These techniques involve the design of the optimal input signal
covariance matrix QL in terms of maximizing the upper bound (9) on the
capacity. If the matrix HL has independent entries, each hki of which is a
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proper complex random variable [37], and has the same distribution as −hki

for i ∈ SL, k ∈ DL, then the optimal QL is diagonal, i.e., the maximum in (9)
is attained with [Q̃L]kk = P for k ∈ SL, where Q̃L is the diagonal matrix. We
start from the following lemma.

Lemma 1 Each element hki of the channel matrix HL is a proper complex
random variable, where i ∈ SL, k ∈ DL.

The proof of this lemma is presented in Appendix A.1. It is readily proved
that hki has the same distribution as −hki for all i and k since the random
phases θki are uniformly distributed over [0, 2π). Thus, using the result of
Lemma 1, we obtain the following result.

Lemma 2 The optimal input signal covariance matrix QL that maximizes
the upper bound (9) is unique and is given by the diagonal Q̃L with entries
[Q̃L]kk = P for k ∈ SL.

We refer to Section III of [36] for the detailed proof. From Lemma 2, the
expression (9) is then rewritten as

T (n) ≤ E

[
log det

(
In/2 +

1
N(f)

HLQ̃LHH
L

)]

= E

[
log det

(
In/2 +

P

N(f)
HLHH

L

)]

≤ E

[ ∑

k∈DL

log

(
1 +

P

N(f)

∑

i∈SL

∣∣hki

∣∣2
)]

=
∑

k∈DL

log

(
1 +

P

N(f)

∑

i∈SL

1
A(rki, f)

)

≤
∑

k∈DL

∑

i∈SL

P

A(rki, f)N(f)
, (10)

where the second inequality is obtained by applying generalized Hadamard’s
inequality [38] as in [10, 26]. The last two steps come from (1) and the fact
that log(1 + x) ≤ x for any x, which is only tight as x is small. Note that the
right-hand side of (10) represents the total amount of received signal-to-noise
ratio (SNR) from the set SL of sources to the set DL of destinations for a
given cut L. To further compute (10), we define the following parameter

P
(k)
L =

P

c0

∑

i∈SL

r−α
ki a(f)−rki (11)

for some constant c0 > 0 independent of n, which corresponds to the total
power received from the signal sent by all the sources i ∈ SL at node k on
the right (see (1) and (8)). For convenience, we now index the node positions
such that the source and destination nodes under the cut L are located at
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positions (−ix + 1, iy) and (kx, ky), respectively, for ix, kx = 1, · · · ,
√

n/2 and
iy, ky = 1, · · · ,

√
n. The scaling result of P

(k)
L defined in (11) can then be

derived as follows.

Lemma 3 In an extended network, the term P
(k)
L in (11) is given by

P
(k)
L = O

(
k1−α

x a(f)−kx
)
, (12)

where kx represents the horizontal coordinate of node k ∈ DL for kx =
1, · · · ,

√
n/2.

The proof of this lemma is presented in Appendix A.2. We are now ready
to show the cut-set upper bound in extended networks.

Theorem 1 For an underwater regular network of unit node density, the total
throughput T (n) is upper-bounded by

T (n) ≤ c2
√

n

a(f)N(f)
, (13)

where c2 > 0 is some constant independent of n.

Proof From (1) and (10)–(12), we obtain the following upper bound on the
total throughput T (n):

T (n) ≤ 1
N(f)

∑

k∈DL

P
(k)
L

≤ 1
N(f)

√
n/2∑

kx=1

√
n∑

ky=1

P
(k)
L

≤ c3P
√

n

N(f)

√
n/2∑

kx=1

1
kα−1

x a(f)kx

≤ c3P
√

n

N(f)

√
n/2∑

kx=1

1
a(f)kx

≤ c3P
√

n

N(f)
1

a(f)− 1

≤ c4P
√

n

a(f)N(f)
,

where c3 and c4 are some positive constants independent of n, which is equal
to (13). This completes the proof of the theorem.

We remark that this upper bound is expressed as a function of the absorp-
tion a(f) and the noise PSD N(f), whereas an upper bound for wireless radio



10 Won-Yong Shin et al.

networks depends only on the constant value α [10]. In addition, using (3),
(5), and (6) in (13) results in two other expressions on the total throughput

T (n) = O

(√
n (log a(f))a5/2

a(f)

)
(14)

and

T (n) = O

(√
nfa5

ec1f2

)

for some positive constants c1 and a5 shown in (3) and (4), respectively. Hence,
from (14), it is seen that the upper bound is inversely proportional to the at-
tenuation parameter a(f) and decays fast with increasing a(f), thereby leading
to a highly power-limited network irrespective of the parameter a(f).

4 Achievability Result

To show the order optimality of underwater networks, we analyze the achiev-
able throughput scaling with the existing transmission scheme, commonly used
in wireless radio networks. In this section, the nearest-neighbor MH routing
protocol [1] will be briefly described with a slight modification. The basic pro-
cedure of the MH protocol under our extended regular network is as follows:
– Divide the network into square routing cells, each of which has unit area.
– Draw an line connecting a S–D pair. A source transmits a packet to its

destination using the nodes in the adjacent cells passing through the line.
– Use the full transmit power at each node, i.e., the transmit power P .

The achievable rate of MH is now shown by quantifying the amount of
interference.

Lemma 4 Consider an extended regular network that uses the nearest-neighbor
MH protocol. Then, the total interference power PI from other simultaneously
transmitting nodes, corresponding to the set I ⊂ {1, · · · , n}, is upper-bounded
by Θ(1/a(f)), where a(f) denotes the absorption coefficient greater than 1.

Proof There are 8k interfering routing cells, each of which includes one node,
in the k-th layer lk of the network as illustrated in Fig. 2. Then from (1),
(7), and (8), the total interference power PI at each node from simultaneously
transmitting nodes is upper-bounded by

PI =
∞∑

k=1

(8k)
P

c0kαa(f)k

=
8P

c0

∞∑

k=1

1
kα−1a(f)k

≤ 8P

c0

∞∑

k=1

1
a(f)k

≤ c5

a(f)
,
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Fig. 2 Grouping of interference routing cells in extended networks. The first layer l1 rep-
resents the outer 8 shaded cells.

where c0 and c5 are some positive constants independent of n, which completes
the proof.

Note that the received signal power no longer decays polynomially but
rather exponentially with propagation distance in our network. This implies
that the absorption term a(f) in (1) will play an important role in determining
the performance. It is also seen that the upper bound on PI does not depend
on the spreading factor α. Using Lemma 4, it is now possible to simply obtain
a lower bound on the capacity scaling in the network, and hence the following
result presents the achievable rates under the MH protocol.

Theorem 2 In an underwater regular network of unit node density,

T (n) = Ω

(
n1/2

a(f)N(f)

)
(15)

is achievable.

Proof Suppose that the nearest-neighbor MH protocol is used. To get a lower
bound on the capacity scaling, the signal-to-interference-and-noise ratio (SINR)
seen by receiver i ∈ {1, · · · , n} is computed as a function of the absorption
a(f) and the PSD N(f) of noise ni. Since the Gaussian is the worst additive
noise [39, 40], assuming it lower-bounds the throughput. Hence, by assuming
full CSI at the receiver, from (1), (7), and (8), the achievable throughput per
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S–D pair is lower-bounded by

log(1 + SINR)

≥ log
(

1 +
P/(c0a(f))

N(f) + c5/a(f)

)

≥ log
(

1 +
c6P

a(f)N(f)

)
,

for some positive constants c0, c5, and c6 independent of n, where the second
inequality is obtained from the relationship (6) between a(f) and N(f), result-
ing in N(f) = Ω (1/a(f)). Due to the fact that log(1 + x) = (log e)x + O(x2)
for small x > 0, the rate of

Ω

(
1

a(f)N(f)

)

is thus provided for each S–D pair. Since the number of hops per S–D pair
is given by O(

√
n), there exist Ω(

√
n) source nodes that can be active simul-

taneously, and therefore the total throughput is finally given by (15), which
completes the proof of the theorem.

Now it is examined how the upper bound shown in Section 3 is close to
the achievable throughput scaling.

Remark 1 Based on Theorems 1 and 2, it is easy to see that the achievable rate
and the upper bound are of exactly the same order. MH is therefore order-
optimal in regular networks with unit node density for all the attenuation
regimes.

We also remark that applying the HC strategy [10] may not be helpful to
improve the achievable throughput due to long-range MIMO transmissions,
which severely degrade performance in highly power-limited networks.9 To be
specific, at the top level of the hierarchy, the transmissions between two clus-
ters having distance O(

√
n) become a bottleneck, and thus cause a significant

throughput degradation. It is further seen that even with the random phase
model, which may enable us to obtain enough degrees of freedom gain, the
benefit of randomness cannot be exploited because of the power limitation.

5 Extension to Random Networks

In this section, we would like to mention a random network configuration,
where n S–D pairs are uniformly and independently distributed on a square
of unit node density (i.e., an extended random network).

9 In wireless radio networks of unit node density, the HC scheme provides a near-optimal
throughput scaling for the operating regimes 2 < α < 3, where α denotes the path-loss expo-
nent that is greater than 2 [10]. Note that the analysis in [10] is valid under the assumption
that α is kept at the same value on all levels of hierarchy.
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Fig. 3 The node displacement to square vertices, indicated by arrows. The empty zone EL

with width constant c̄ is assumed for simplicity.

We first discuss an upper bound for extended random networks. A precise
upper bound can be obtained using the binning argument of [10] (refer to
Appendix V in [10] for the details). Consider the same cut L, which divides
the network area into two halves, as in the regular network case. For analytical
convenience, we can artificially assume the empty zone EL, in which there are
no nodes in the network, consisting of a rectangular slab of width 0 < c̄ <

1√
7e1/4 , independent of n, immediately to the right of the centerline (cut), as

done in [28] (see Fig. 3).10 Let us state the following lemma.

Lemma 5 Assume a two dimensional extended network where n nodes are
uniformly distributed. When the network area is divided into n squares of unit
area, there are fewer than log n nodes in each square with high probability.

Since the result in Lemma 5 depends on the node distribution but not the
channel characteristics, the proof essentially follows that presented in [4]. By
Lemma 5, we now take into account the network transformation resulting in
a regular network with at most log n and 2 log n nodes, on the left and right,
respectively, at each square vertex except for the empty zone (see Fig. 3).
Then, the nodes in each square are moved together onto one vertex of the
corresponding square. More specisely, under the cut L, the node displacement

10 Although this assumption does not hold in our random configuration, it is shown in [28]
that there exists a vertical cut such that there are no nodes located closer than 0 < c̄ <

1√
7e1/4 on both sides of this cut when we allow a cut that is not necessarily linear. Such an

existence is proved by using percolation theory [4, 41]. This result can be directly applied
to our network model since it only relies on the node distribution but not the channel
characteristics. Hence, removing the assumption does not cause any change in performance.
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is performed in the sense of decreasing the Euclidean distance between source
node i ∈ SL and the corresponding destination k ∈ DL, as shown in Fig. 3,
which will provide an upper bound on P

(k)
L in (11). It is obviously seen that

the amount of power transfer under the transformed regular network is greater
than that under another regular network with at most log n nodes at each
vertex, located at integer lattice positions in a square region of area n. Hence,
the upper bound for random networks is boosted by at least a logarithmic
factor of n compared to that of regular networks discussed in Section 3.

Now we turn our attention to showing an achievable throughput for ex-
tended random networks. In this case, the nearest-neighbor MH protocol [1]
is also utilized since our network is highly power-limited. Then, the area of
each routing cell needs to scale with 2 log n to guarantee at least one node
in a cell [1, 6].11 Each routing cell operates based on 9-time division multiple
access to avoid causing large interference to its neighboring cells [1,6]. For the
MH routing, since per-hop distance is given by Θ(

√
log n), the received signal

power from the intended transmitter and the SINR seen by any receiver are
expressed as

c7P

(log n)α/2a(f)δ
√

log n

and

Ω

(
1

(log n)α/2a(f)δ
√

log nN(f)

)
,

respectively, for some constants c7 > 0 and δ ≥ √
2 independent of n. Since the

number of hops per S–D pair is given by O(
√

n/ log n), there exist Ω(
√

n/ log n)
simultaneously active sources, and thus the total achievable throughput T (n)
is finally given by

T (n) = Ω

(
n1/2

(log n)(α+1)/2a(f)δ
√

log nN(f)

)

for some constant δ ≥ √
2 independent of n (note that this relies on the fact

that log(1+x) can be approximated by x for small x > 0). Hence, using the MH
protocol results in at least a polynomial decrease in the throughput compared
to the regular network case shown in Section 4.12 This comes from the fact
that the received signal power tends to be mainly limited due to exponential
attenuation with transmission distance Θ(

√
log n). Note that in underwater

networks, randomness on the node distribution causes a huge performance

11 When methods from percolation theory are applied to our random network [4, 41], the
routing area constructed during the highway phase is a certain positive constant that is less
than 1 and independent of n. The distance in the draining and delivery phases, corresponding
to the first and last hops of a packet transmission, respectively, is nevertheless given by some
constant times log n, thereby limiting performance, especially for the condition a(f) = ω(1).
Hence, using the routing protocol in [4] indeed does not perform better than the conventional
MH case [1] in random networks.
12 In terrestrial radio channels, there is a logarithmic gap in the achievable scaling laws

between regular and random networks [1, 25].
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degradation on the throughput scaling. Therefore, we may conclude that the
existing MH scheme does not satisfy the order optimality under extended
random networks regardless of the attenuation parameter a(f).

6 Conclusion

The attenuation parameter and the capacity scaling laws have been character-
ized in a narrow-band channel of underwater acoustic networks of unit node
density. Provided that the frequency f scales relative to the number of nodes,
n, the information-theoretic upper bound and the achievable throughput were
obtained as functions of the attenuation parameter a(f) in regular networks.
In extended networks, based on the power transfer argument, the upper bound
was shown to decrease in inverse proportion to a(f). In addition, to show the
achievability result, the nearest-neighbor MH protocol was introduced with a
simple modification, and its throughput scaling was analyzed. We proved that
the MH protocol is order-optimal for all the operating regimes of extended
networks. Our scaling results were also extended to the random network sce-
nario, where it was shown that the conventional MH scheme does not satisfy
the order optimality for any operating regimes. Although the capacity scaling
law was reached for regular network conditions studied here, the exact capac-
ity scaling of random underwater networks remains still open. In Part II of
this two-part series, the operating regimes that guarantee the order optimality
will be identified in dense underwater networks having unit area.

A Appendix

A.1 Proof of Lemma 1

The following definition is used to simply provide the proof.
Definition 1 [37]: A complex random variable Y is said to be proper if Σ̃Y = 0, where

Σ̃Y , called the pseudo-covariance, is given by E[(Y − E[Y ])2].
Since the (k, i)-th element of the channel matrix HL is given by (8), it follows that

E
[
(hki − E[hki])

2
]

=
1

A(rki, f)
E

[(
ejθki − E

[
ejθki

])2
]

.

From the fact that

E
[
ejθki

]
= E [cos(θki) + j sin(θki)] = 0

due to uniformly distributed θki over [0, 2π], we thus have

E
[
(hki − E[hki])

2
]

=
1

A(rki, f)
E

[
ej2θki

]

=
1

A(rki, f)
E [cos(2θki) + j sin(2θki)]

= 0, (16)

which complete the proof, because (16) holds for all i ∈ SL and k ∈ DL.
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Fig. 4 Grouping of source nodes in extended networks. There exist Θ(kx) nodes in the
first layer l′1. This figure indicates the case where one destination is located at the position
(kx, ky). The source nodes are regularly placed at spacing 1 on the left half of the cut L.

A.2 Proof of Lemma 3

An upper bound on P
(k)
L can be found by using the node-indexing and layering techniques

similar to those shown in Section VI of [42]. As illustrated in Fig. 4, layers are introduced,
where the i-th layer l′i of the network represents the ring with width 1 drawn based on a
destination node k ∈ DL, whose coordinate is given by (kx, ky), where i ∈ {1, · · · ,

√
n}.

More precisely, the ring is enclosed by the circumferences of two circles, each of which has
radius kx + i and kx + i − 1, respectively, at its same center (see Fig. 4). Then from (11),

the term P
(k)
L is given by

P
(k)
L =

P

c0

√
n/2∑

ix=1

√
n∑

iy=1

1

((ix + kx − 1)2 + (iy − ky)2)α/2 a(f)
√

(ix+kx−1)2+(iy−ky)2
.

It is further assumed that all the nodes in each layer are moved onto the innermost boundary

of the corresponding ring, which provides an upper bound for P
(k)
L . From the fact that there

exist Θ(kx + i) nodes in the layer l′i since the area of l′i is given by π(2kx + 2i− 1), P
(k)
L is
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then upper-bounded by

P
(k)
L ≤ P

c0

∞∑

i′=kx

c8(i′ + 1)

i′αa(f)i′

≤ 2c8P

c0kα−1
x

∞∑

i′=kx

1

a(f)i′

≤ 2c8P

c0kα−1
x

(
1

a(f)kx
+

∫ ∞

kx

1

a(f)x
dx

)

≤ c9P

kα−1
x a(f)kx

for some positive constants c0, c8, and c9 independent of n, where the fourth inequality
holds since a(f) > 1, which finally yields (12). This completes the proof.
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