


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TU et al.: MULTIPLE-RESAMPLING RECEIVER DESIGN FOR OFDM OVER DOPPLER-DISTORTED UNDERWATER ACOUSTIC CHANNELS 11

Fig. 12. Path location estimates of the sparse channel estimators.

Fig. 13. BER performance comparison between OMP- and BP-based estima-
tors for the test channel. MR receiver with regularized linear MMSE detector is
implemented. Basic and phase-compensated (Phase-Comp) receiver configura-
tions correspond to the ones using the initial channel estimate, and the GDA-up-
dated channel estimate (39) and (40), for demodulation and data detection, re-
spectively (see Section V).

Fig. 14. BER performance comparison between MR and SR receivers (with
regularized linear MMSE detector) for the test channel with basis mismatch
(path delays not in the dictionary).

with basis mismatch in the path delay. Particularly, as shown
in Fig. 14, a sixfold BER reduction is achieved at 21-dB SNR
when theMR receiver is employed. The performance difference
is very close to that obtained under the perfect CSI conditions.

C. Experimental Data Results

To verify the effectiveness of the proposed MR receiver de-
signs with experimental data, we use data recorded in two re-
cent shallow-water (100-m water depth) acoustic communica-
tions experiments, namely, the Mobile Acoustic Communica-
tions Experiment (MACE10) conducted in June 2010 off the

southeastern coast of Massachusetts, and the Kauai Acomms
MURI (KAM08) experiment conducted in June 2008 off the
western coast of Kauai, HI.
1) Results Obtained With the MACE10 Data: During the

MACE10 experiment, one mobile source, towed at a nominal
speed of about 1 m/s, and two fixed receivers were used. The
source was equipped with four International Transducer Corpo-
ration (ITC) 1007 spherical transducers, submerged at a depth of
between 30 and 60 m. The transducer spacings were 48 cm be-
tween the first and second ones, 42 cm between the second and
third ones, and 48 cm between the last two. The two receivers,
both with four receiving elements, were suspended from small
surface buoys. The interelement spacing and sampling rate were
20 cm and 50 kHz, respectively, for both. We particularly focus
on data recorded when the source was about 1.3 and 4.3 km
from the two receivers. The corresponding transmitted signals
contained 15 blocks of 512-subcarrier CP-OFDM signals em-
ploying QPSK modulation and 16-ms cyclic prefix. The sam-
pling rate before digital-to-analog conversion (DAC) was
10 /256 39.0625 kHz, and the bandwidth was /8
5 kHz, resulting in a subcarrier spacing of about 10 Hz. The
lowest frequency subcarrier was located at 10.580 kHz.
Interested readers are referred to [31] for examples of measured
impulse response on real UWA channels.
The existing experimental configuration supports transmis-

sion from a single source to multiple receivers. To mimic the
conditions for multiuser transmissions, where independent
streams are emitted from multiple spatially separated nodes, we
use received signals that correspond to two consecutive blocks
recorded at the two spatially separated receivers and sum them
to form a superimposed signal—effectively each block of the
superimposed signal corresponds to 2048 transmitted bits.
The superimposed signal thus contains two independent data
streams with independent multipath structures and different
nominal Doppler rates. The latter is due to different relative
speeds between the transmitters and the receiver. Since the
difference between the relative speeds is small, the difference
between the nominal Doppler rates is also small—on the
order of 5 10 . To mimic scenarios with larger nominal
Doppler rate differences, we resample the received signals
from different receivers at different rates before summing
them. Effectively, we introduce an additional Doppler scaling
to the received signal, and as a result, we are able to control the
nominal Doppler rate difference in the received signal. As an
example, we generate superimposed signals with 4.4 10
Doppler rate differences—the Doppler rates for the two users
are the same in magnitude but opposite in sign. The equivalent
speed difference between the two paths is 6.6 m/s.
We implement the SR and MR receiver designs with the

OMP-based channel estimator, as discussed in Section VI-B.
Since the average nominal Doppler rate of the two users is
zero, the optimal SR receiver performs no resampling. For the
MR receiver, two MR branches suffice as the path-specific
Doppler rate difference is on the order of 2 10 for each
user. Therefore, we adopt a simplified MR receiver implemen-
tation with an SR branch for each user. The resampling rate
is set according to the nominal Doppler rate of that user. The
receivers are implemented in the decision-directed fashion.
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Fig. 15. MACE10 BER performance comparison between MR and SR
receivers in decision-directed mode ( 4.4 10 ).

That is, we start the data detection from channel estimates
obtained with pilots signals—the pilot assignment is similar
to that in [16]; then, we use the channel estimates to perform
regularized MMSE detection (Section III-B1), whose tentative
decisions are finally used for IC detection (Section III-B2). The
detected symbols are then used together with the pilot signals
for the next round of iterative channel estimation and detection.
In Fig. 15, we show the BER performance comparison be-

tween SR and MR receivers with 4.4 10 Doppler rate dif-
ference, where the BER results refer to those obtained at the fifth
iteration in a 2 4 system configuration. On average, theMR re-
ceiver results in a twofold BER reduction over the SR receiver.
The BER reduction improves with the difference in Doppler.We
point out that using detected symbols for channel estimation in
decision-directed mode may subject the overall system to per-
formance degradation due to error propagation. A solution is to
involve explicit channel coding in the loop where decoded sym-
bols are fed back for channel estimation. As a preliminary study,
we consider a coded system with each 512-subcarrier QPSK-
modulated OFDM block spanning two length 512, rate 0.9 low-
density parity-check (LDPC) codewords. The channel decoder
takes soft-information, i.e., log-likelihood ratios (LLRs), gener-
ated by the IC detector as its input, and outputs updated LLRs
(after ten decoding iterations) that are used to obtain coded bit
decisions. The decoded bits are then remapped to modulation
symbols, which are exploited in the next iteration for channel
estimation, detection, and LDPC decoding. In Fig. 16, we show
the BER comparisons of MR and SR receivers of the above
coded system. We observe a threefold uncoded BER reduction
for the 8.8 10 Doppler rate difference after three iterations
of channel estimation, detection, and decoding—for both re-
ceivers, the coded BERs drop to zero since they are too low to
be captured by the limited number of transmissions. The perfor-
mance gain of the MR over the SR receiver increases as a result
of the improved channel estimation quality when modulation
symbols mapped from the decoded bits are used for channel es-
timation.
2) Results Obtained With the KAM08 Data: Last, we con-

sider communication data collected in the KAM08 experiment.
We focus on the results for a 512-carrier OFDM system, where
BPSK modulation was used. The signal spanned a frequency
band between 12 and 20 kHz and had a cyclic prefix of 20 ms,
which implied a block duration of 276 ms including the CP.
The experimental data were collected while the transmitter was

Fig. 16. MACE10 BER performance comparison between MR and SR
receivers with channel coding ( 8.8 10 ).

Fig. 17. KAM08 BER performance comparison betweenMR and SR receivers
with channel coding ( 4.4 10 ).

moving. The transmitter was submerged at a depth spanning
20–50 m, depending on the specific experiment, and was towed
at a nominal speed of 3 kn (i.e., about 1.54 m/s). The receiver
had a 16-element vertical array. The sampling rate at the re-
ceiver was 50 kHz. The interelement spacing was 3.75 m, with
the top element deployed at a nominal depth of 42.25 m. Partic-
ularly, we consider the case when the transmitter/receiver sepa-
ration was approximately 2 km, and the towing ship was moving
toward the fixed receiver, with the transmitting transducer being
about 25 m below the sea surface.
Adopting the same approach as described in Section VI-C1,

we predistort the received signals to form composite signals that
have controlled Doppler rate differences. We notice that, com-
pared to the MACE10 experiment, the received signals are sub-
ject to lower SNR and, therefore, lead to an inferior channel es-
timation quality. To make up for the performance loss, we use
2 6 systems instead of 2 4 systems in Section VI-C1. We
see a similar trend of the MR receivers to perform better than
the SR receivers, as shown in Fig. 17. However, attributed to
the inaccurate channel estimates, the performance advantages
of the MR receivers are not as pronounced.

VII. SUMMARY AND CONCLUSION

We have investigated the problem of multiuser detection
when different users’ signals are subject to different Doppler
distortions. This problem is also mathematically analogous to
the problem of path-specific Doppler. Doppler-compensated
receiver front–end designs are presented. In particular, we
focused on OFDM transmissions in the context of multiuser
MIMO and single-user SISO scenarios. In the former case, a
centralized receiver was considered (with collocated receiver
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elements) communicating with multiple distributed users,
which transmit independent data streams simultaneously in
the same frequency band. We pointed out the inadequacy of
standard SR designs and proposed a set of new designs based
on MR front–ends. For multiuser MIMO systems, each branch
corresponds to the Doppler rate of a particular user, provided
that path-specific Doppler for each user can be neglected,
whereas for single-user SISO systems, a resampling branch is
needed for each cluster of arrivals that share a common Doppler
rate. The new designs have the advantage of compensating for
the user- and/or path-specific Doppler distortions, therefore
avoiding strong interuser and/or intercarrier inference inherent
to SR designs. Via extensive simulations and experimental
data studies, we have demonstrated that compensation of user-
and/or path-specific Doppler translates into performance gains
in terms of BER improvement and ICI power reduction.
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