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Abstract— In this paper we propose new bounds on the
achievable information rate for discrete-time Gaussian channels
with intersymbol interference (ISI) and independent and uni-
formly distributed (i.u.d.) channel input symbols drawn from
finite-order modulation alphabets. Specifically, we are interested
in developing new bounds on the achievable rates for sparse
channels with long memory. We obtain a lower bound which
can be achieved by practical receivers, based on MMSE channel
shortening and suboptimal symbol detection for a reduced-state
channel. An upper bound is given in the form of a semi-analytical
solution derived using basic information theoretic inequalities, by
a grouping of the channel taps into several clusters resulting in
a newly defined single-input multiple-output (SIMO) channel.
We show that the so obtained time-dispersive SIMO channel
can be represented by an equivalent single-input single-output
(SISO) channel with a significantly shorter channel memory. The
reduced computational complexity allows the use of the BCJR
algorithm for the newly defined channel. The proposed bounds
are illustrated through several sparse channel examples and
i.u.d. input symbols, showing that the upper bound significantly
outperforms existing bounds. Performance of our lower bound
strongly depends on the channel structure, showing best results
for minimum-phase and maximum-phase systems.

Index Terms—Bounds, channel capacity, information rates,
intersymbol interference, sparse channel.

I. INTRODUCTION

CHANNELS with sparse inter-symbol interference (ISI)
are commonly found in a wide range of communica-

tion systems, such as underwater acoustic, aeronautical and
satellite systems. For instance, underwater acoustic (UWA)
communication systems are inherently wideband since the
acoustic propagation is best supported at low frequencies
(e.g. up to several tens of kHz for a range of several km).
They also exhibit extensive multipath spreads, resulting in ISI
spans of tens or even hundreds of symbols for single-carrier
systems. However, very few propagation paths carry signifi-
cant energy even though severe multipath propagation spans
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a large number of symbol intervals, resulting in sparse ISI
channels. For discrete-time ISI channel models with additive
white Gaussian noise there is no single-letter expression for
the achievable information rate that can be supported with
a particular modulation alphabet [1]. Under an independent
and uniformly distributed (i.u.d.) or Markov input constraints,
the achievable information rate can be estimated as accu-
rately as desired by means of a simulation-based algorithm
described in [2][3]. This approach requires simulation of
forward recursion of the full-complexity Bahl–Cocke–Jelinek–
Raviv (BCJR) algorithm [2] with a trellis whose complexity
increases exponentially with channel memory in order to
estimate the joint probability of the output sequence. The so
obtained probability is used to compute an estimate of the
mutual information between the input and output sequences.
Analytical simplifications are not available, and due to the long
channel memory, this simulation-based analysis is basically
infeasible for practical UWA channels.

The only tools for the characterization of the information
rate of channels with long memory are upper and lower bounds
on the achievable information rates. Shamai et al. [1][4]
investigated bounds on the capacity and the achievable infor-
mation rate of the channel with memory excited by identically
distributed (not necessary independent) inputs. They provided
lower and upper bounds which can be interpreted as the
average mutual information that corresponds to the output of
an ideal decision feedback equalizer (DFE) with errorless past
decisions (power degradation argument),1 and a memoryless
channel with independent and identically distributed (i.i.d.)
inputs that collect the overall energy content of the channel im-
pulse response (power enhancement argument),2 respectively.
While these bounds are obtained in the form of an integral,
Arnold et al. [5] presented a simulation-based upper bound
computed by means of a reduced-state recursion of the BCJR
algorithm. Even though this bound is very tight for high SNR,
it is very loose for low SNR, due to the fact that the prob-
ability mass of the output sequence is spread over all states.
In [5] and [6], lower bounds are obtained under mismatched
decoding, that is, when the BCJR algorithm assumes that the
channel is governed by a transition law that differs from the

1In [1] a lower bound on the achievable information rate is obtained based
on the ideal post-cursor cancellation where power degradation results from
the channel memory introduced by ISI.

2In [1] an upper bound on the achievable information rate corresponds
to single symbol transmission. For uncoded communications this leads to
matched filter lower bound on the error probability as a result of power
enhancement.
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actual channel law. Unfortunately, these bounds are loose,
since minimum-phase representation of a sparse channel with
a long memory doesn’t collect a significant portion of the
energy in the first few channel taps. The same observation
holds for the matched-filter representation of the ISI channel,
considered in [6]. A more advanced method is developed
in [7], where the auxiliary channel for mismatched decoding
is constrained to be an arbitrary finite-state machine, and the
conditional probabilities between states are optimized at each
stage of the algorithm. In a recent work [8], a proposed method
for the computation of a lower bound requires evaluation of
the magnitude sum of the precursor ISI terms as well as
identification of the dominant terms as seen at the output of
the MMSE-DFE. The computational load required to obtain a
tight bound is high, since the number of dominant terms of the
precursor ISI for the sparse channels with large delay spreads
is potentially very large. These bounds can be easily extended
to multiple-input multiple-output (MIMO) systems based on
the results given in [9] and [10]. None of the existing bounds
seem to be suitable for ISI channels with long delay spreads
and a sparse multipath structure.

In this paper, we investigate bounds on the information
rate of a deterministic channel with long memory and sparse
multipath structure, assuming i.u.d. inputs drawn from a
finite-order modulation alphabet. We propose a lower bound
achievable by practical receivers, extending the initial analysis
in [11] where a particular reduced-complexity soft-output
detection scheme is employed based on the application of the
sum-product algorithm to the factor graphs [12]. We analyze
the performance of the receiver composed of a finite length
impulse response (FIR) filter designed to reduce the number
of channel states by applying a channel shortening that does
not completely eliminate the ISI. We apply the modified
BCJR algorithm of the trellis size matched to the memory
of the reduced-state channel. We propose a simulation-based
approach for the computation of an upper bound. We group
channel taps into several clusters resulting in a newly defined
single-input multiple-output (SIMO) channel with a reduced
channel memory. From the so obtained SIMO channel we
derive an equivalent single-input single-output channel based
on maximal ratio combining (MRC) using the maximum
likelihood (ML) criterion. Using the BCJR algorithm we
estimate the achievable information rate for the derived single-
input single-output (SISO) channel and use it to obtain an
upper bound on the achievable information rate of the sparse
channel of interest. Therefore, we develop our lower and
upper bounds by utilizing the modified and the classical BCJR
algorithm, respectively, and operating on a trellis of reduced
computational complexity.

The paper is organized as follows. In the next section,
we describe the system model and the general framework
under which new bounds are derived. In Sections III and
IV, lower and upper bounds on the achievable information
rate of ISI channels are presented, respectively. Section V
presents the performance results of the proposed bounds based
on different channel examples. Concluding remarks are given
in Section VI.
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Fig. 1. System model.

II. SYSTEM MODEL

We consider the transmission scheme depicted in Fig. 1,
where it is assumed that the channel input is a sequence
of i.u.d. complex-valued symbols drawn from finite-order
modulation alphabet of cardinality M, and transmission is from
time index 𝑛 = 0 to 𝑛 = 𝑁 − 1. This symbol sequence
x = {𝑥𝑛}𝑁−1

𝑛=0 is obtained by a direct mapping of information
bits to symbols of the modulation alphabet. Assuming obser-
vation intervals that are shorter than the coherence time of the
channel, and ideal synchronization, the physical propagation
environment can be modeled as a fixed discrete-time channel,
so that the received sample at time index 𝑛 is given as [13]

𝑦𝑛 =

𝐿∑
𝑙=0

ℎ𝑙𝑥𝑛−𝑙 + 𝑤𝑛, (1)

where {𝑤𝑛}𝑁−1
𝑛=0 are i.i.d. complex Gaussian random variables

with zero-mean and variance 𝜎2 per dimension, h = {ℎ𝑛}𝑛=𝐿
𝑛=0

represents the discrete-time equivalent channel impulse re-
sponse, and 𝐿 is the channel memory. We focus on channels
with long memory 𝐿 , and very few non-zero channel taps ℎ𝑙
in order to emphasize the channel sparseness. We assume that
h and 𝜎2 are known at the receiver.

The achievable information rate supported by the system
(1) can be expressed as [14]

𝐼 (𝑋 ;𝑌 ) = lim
𝑁→∞

1

𝑁
𝐼 (x; y) , (2)

which can be estimated as accurately as desired by using the
simulation-based BCJR algorithm. Note that x is not defined
for negative indices, for which we assume that 𝑥𝑛 = 0. This
fact will lead to an “edge effect" with a diminishing effect
on the term from (2), as 𝑁 tends to infinity. This approach
requires simulation of a full-complexity forward recursion
of the BCJR algorithm that processes a trellis with 𝑀𝐿

states in order to estimate the joint probability of the output
sequence. Due to the large values of 𝐿, this simulation-based
analysis is practically infeasible. Therefore, upper and lower
bounds on 𝐼 (𝑋 ;𝑌 ) are required to characterize the achievable
information rate for channels with long memory.

A. Lower Bound on 𝐼 (𝑋 ;𝑌 ) – Preliminaries

A lower bound can be obtained based on the data-processing
inequality [14], by considering an arbitrary receiver that
processes the received samples y, and produces the decisions
z = {𝑧𝑛}𝑁−1

𝑛=0 . In the case of hard-output detection, 𝑧𝑛 is
the estimate of the symbol 𝑥𝑛, and thus belongs to the signal
constellation. For both hard and soft-output detection, the data-
processing inequality guarantees that

lim
𝑁→∞

1

𝑁
𝐼 (x; z) = 𝐼 (𝑋 ;𝑍) ≤ 𝐼 (𝑋 ;𝑌 ) (3)
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The mutual information in (3) still involves infinite-length
sequences, which makes it impractical to compute when the
channel and the receiver have memory. However, the chain
rule for the mutual information guarantees that 𝐼(𝑋 ;𝑍) is
lower bounded by

𝐼𝐿𝐵 = 𝐼 (𝑥𝑛; 𝑧𝑛) (4)

for each 𝑛 at which the system is not affected by transient
effects. Note that the evaluation of 𝐼𝐿𝐵 requires computation
of the mutual information between elements of the sequences,
and not between the entire sequences as in (3). Hence, similar
to [11] where a different soft-output detector is employed,
we can evaluate 𝐼𝐿𝐵 by first estimating the joint statistics of
𝑥𝑛 and 𝑧𝑛 through long simulations of the channel and the
receiver, and then employing numerical methods. The specific
receiver adopted for the computation of the lower bound in
(4) does not affect its validity, but does affect the tightness
of the inequality. In fact, the value of 𝐼𝐿𝐵 gives the ultimate
information rate supported by a system adopting that specific
receiver, when concatenated with a fully-interleaved outer
code [15]. Hence, the better the receiver, the tighter the lower
bound. Note that iterating between the outer channel decoder
and the soft-output detector will increase the information rate
at the output of the iterative receiver. Unfortunately, there is
no information theoretic support that this side information will
not violate the lower bound condition, since data processing
inequality is no longer applicable.

Optimal detection is based on the computation of the
maximum a posteriori probability (APP) 𝑃 (𝑥𝑛∣ y) of each
detected modulation symbol 𝑥𝑛 for each time instance 𝑛, given
the received sequence y = {𝑦𝑛}𝑁−1

𝑛=0 . Unfortunately, providing
APP as soft-output information is infeasible, since the optimal
soft-output BCJR detector is impractical for implementation
due to the long memory 𝐿 of the channel. Therefore, subop-
timal soft-output detection schemes are employed. This topic
will be addressed in Section III.

B. Upper Bound on 𝐼 (𝑋 ;𝑌 ) – Preliminaries

The upper bound in [1] is obtained based on the information
rate computation of a memoryless channel with i.i.d. inputs
that collects the overall energy content of the channel impulse
response (power enhancement argument). The framework un-
der which this bound is derived motivate us to propose a
new class of upper bounds with the tightness governed by
the multipath structure of the channel.

In general, we can re-write the mutual information 𝐼(x; y),
by applying the chain rule [1]:

𝐼(x; y) = 𝐼(x𝑁−1
0 ; y𝑁−1

0 ) (5)

=

𝑁−1∑
𝑛=0

𝐼(𝑥𝑛; y
𝑁−1
0 ∣ x𝑛−1

0 )

≤
𝑁−1∑
𝑛=0

𝐼(𝑥𝑛; y
𝑁−1
0 ∣ x𝑛−1

0 , 𝑥𝑛+1, 𝑥𝑛+2, ..., 𝑥𝑁−1),

where the inequality follows from the fact that we consider
i.u.d. channel inputs x. An abbreviated form x𝑗𝑖 is used to
denote the sequence {𝑥𝑛}𝑗𝑛=𝑖. This argument, following the
derivation in [1], will lead to the well known upper bound on

the achievable information rate for i.i.d. inputs based on MRC
(power enhancement argument):

𝐼 (𝑋 ;𝑌 ) = lim
𝑁→∞

1

𝑁
𝐼 (x; y) ≤ 𝐼(𝑥𝑛; 𝜌𝑥𝑛 + 𝑤𝑛), (6)

where

𝜌 =

√√√⎷ 𝐿∑
𝑙=0

∣ℎ𝑙∣2. (7)

Generally, this bound is not tight for channels with large delay
spreads and strong ISI, meaning that the channel energy 𝜌
is more or less evenly distributed among all channel taps.
The reason is that collecting of the channel energy 𝜌 into a
single channel tap maximizes the achievable information rate
among all ISI channels with the same energy constraint. This
fact indicates that different channels with the same energy
constraint support rates that are between the rates of the
original channel (1) and the single-tap channel (6). In fact, we
will see in Section IV that a tighter bound on the achievable
information rate can be obtained by grouping the channel taps
into clusters as in (5), and exploiting the similar method as
MRC. This will transform our channel into the newly defined
SIMO channel with a reduced size memory, which leads to
a less demanding computation of the achievable information
rate of the modified channel, i.e., an upper bound on the
information rate of the original one.

III. LOWER BOUND ON INFORMATION RATE WITH I.U.D.
INPUTS

In order to compute the lower bound on the achievable
information rate as in (4) suboptimal detectors are required
that exploit the knowledge of the channel sparseness.

We have considered several receivers in the literature and
found that the best performance/complexity trade-off is pro-
vided by that proposed in [12], a reduced-complexity soft-
output detector based on the application of the sum-product
algorithms to factor graphs representing joint APP of the
transmitted symbols. The most attractive features of this
receiver are its computational complexity, which increases
exponentially not with the channel memory 𝐿 (as in the
BCJR algorithm), but with the number of non-zero taps.
The advantage of this algorithm is very clear in the case
of UWA channels characterized by long delay spreads and
a sparse multipath structure. It was verified that the sum-
product algorithm approaches the performance to the optimal
BCJR algorithm [12] that computes exact marginal APPs
of the transmitted symbols when the factor graph does not
have cycles of length less than 6. The proposed lower bound
significantly improves the lower bound from [4] as demon-
strated by numerical examples previously reported in [11].
However, the receiver used in [11] requires multiple iterations
that are critical for the proper functionality of the detector, and
calibration of various parameters, which is very challenging
for typical UWA channels with large delay spreads. There are
also other suboptimal detectors that exploit knowledge of the
channel sparseness [16][17].

We consider an alternative receiver structure consisting of
a channel shortening filter, and a modified soft-output BCJR
detector employed with the objective of obtaining a suboptimal
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Fig. 2. Reduced-complexity receiver structure.

soft-output detector with a reasonable performance/complexity
trade-off, and computational complexity that is lower than the
receiver proposed in [12]. Essentially, bounds from this paper
and [11] originate from the same idea – to exploit the detector
which is suitable for a sparse multipath structure and long
channel delays. The receiver shown in Fig. 2 is discussed in
the rest of this section.

A. Prefiltering

Suboptimal detectors can be derived by reducing the mem-
ory of the channel at the input of the detector. For this
purpose we consider linear channel shortening filters. Pre-
filtering will usually result in loss of the sparse structure
of the channel, what makes our approach applicable even
to general (non-sparse) ISI channels. The channel shortening
filter in conjunction with the classical BCJR algorithm is
no longer the optimal detector for soft-output detection and
modifications to the classical BCJR are required in order to
improve its performance. Nevertheless, the filter coefficients
can be computed efficiently based on various design methods
available in the literature, leading to significant complexity
reduction.

In this paper, the MMSE method similar to the one de-
scribed in [18][19] is used to design linear channel shorten-
ing filters. Let us define a target channel impulse response
f = {𝑓𝑛}𝑛=𝐿′

𝑛=0 where 𝐿′ is the memory of the target channel
impulse response, and a MMSE equalizer filter g = {𝑔𝑛}𝑛=�̄�

𝑛=0

with finite memory �̄�. The objective of the MMSE-based
approach is to find the target function f and the equalizer
filter g simultaneously by minimizing the mean-squared er-
ror between the equalizer output and the desired target. By
defining error sequence 𝜖𝑛 = f𝐻x𝑛𝑛−𝐿′ − g𝐻y𝑛

𝑛−�̄�
, and under

the assumption of independent inputs and independent noise
samples, the MSE can be written as [19]

𝐸
{
∣𝜖𝑛∣2

}
= 𝜖2 = f𝐻𝑅𝑥𝑥f+g𝐻𝑅𝑦𝑦g−f𝐻𝑅𝑥𝑦g−g𝐻𝑅𝑦𝑥f , (8)

where 𝑅𝑥𝑥 = 𝐸{x𝑛𝑛−𝐿′(x𝑛𝑛−𝐿′)𝐻}, 𝑅𝑦𝑦 =
𝐸{y𝑛

𝑛−�̄�
(y𝑛

𝑛−�̄�
)𝐻} and 𝑅𝑥𝑦 = 𝐸{x𝑛𝑛−𝐿′(y𝑛𝑛−�̄�

)𝐻} are
(𝐿′ +1)× (𝐿′ +1) correlation, (�̄�+1)× (�̄�+1) correlation
and (𝐿′+1)×(�̄�+1) cross-correlation matrices, respectively.

Minimization of the MSE given by (8) with respect to
both f and g, is done under the constraint that 𝑔0 = 1 to
avoid the trivial solution f = 0 and g = 0. This constraint
corresponds to the minimum-phase solution to the decision
feedback equalizer design problem for large 𝐿′. In [18] it is
shown that this constraint introduces less correlation in the
noise at the output of the equalizer filter than other constraints
such as fixed energy or partial response targets. In order to
minimize the MSE subject to 𝑔0 = 1 , we write the Lagrangian
in the following form:

𝜖2= f𝐻𝑅𝑥𝑥f+g𝐻𝑅𝑦𝑦g−f𝐻𝑅𝑥𝑦g−g𝐻𝑅𝑦𝑥f−2𝜆(e𝐻0 f−1), (9)
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Fig. 3. Example of the optimal and actual target response with 𝐿′ = 9 for
an underwater channel impulse response with 𝐿 = 34.

where e0 is a unit vector with first element having value 1 and
all other elements set to 0. Taking the derivative of MSE with
respect to f , we obtain the following solution for the optimal
target response at the output of the equalizer filter:

f𝑜𝑝𝑡 =
(𝑅𝑥𝑥 −𝑅𝑥𝑦𝑅

−1
𝑦𝑦 𝑅𝑦𝑥)

−1e0
e𝐻0 (𝑅𝑥𝑥 −𝑅𝑥𝑦𝑅

−1
𝑦𝑦 𝑅𝑦𝑥)−1e0

. (10)

Consequently, the optimal solution for the equalizer filter is
obtained as

g𝐻𝑜𝑝𝑡 = f𝐻𝑜𝑝𝑡𝑅𝑥𝑦𝑅
−1
𝑦𝑦 . (11)

We note that other constraints may result in a lower MSE
in (8), but at the expense of increased correlation among noise
samples at the output of the equalizer filter g.

In Fig. 3, we provide an example of the channel shortening
filter applied to a shallow water acoustic channel impulse
response (measured in KAM08 experiment [20]). The optimal
target channel impulse response f𝑜𝑝𝑡 is assumed to be of length
𝐿′ = 9. We observe that the actual target channel impulse
response f (obtained by convolving h and g𝑜𝑝𝑡) is close to
f𝑜𝑝𝑡 (i.e. for 𝑛 ≥ 𝐿′ + 1, the channel taps 𝑓𝑛 are sufficiently
small).

We assume that the channel output (1) is filtered by the
linear equalizer g𝑜𝑝𝑡 from (11) and produces output sequence
q = {𝑞𝑛}𝑁−1

𝑛=0 . We consider equalizer filters which are nonsin-
gular (this is guaranteed from the MMSE design [21]), or filter
approximations [22], for which there exists a stable invertible
filter. Under this condition, we can write

𝐼 (𝑋 ;𝑌 ) = 𝐼 (𝑋 ;𝑄) = lim
𝑁→∞

1

𝑁
𝐼 (x; q) , (12)

where the sequence q preserves the information rate supported
by the original channel output sequence y. The achievable
information rate 𝐼 (𝑋 ;𝑄) is bounded as in (3) by employing
a soft-output detector to the prefiltered sequence. Therefore,
following the channel shortening filter g𝑜𝑝𝑡 given by (11),
the classical BCJR algorithm with a 𝑀𝐿′

state trellis can be
applied to the prefiltered sequence q. Note that the classical
BCJR is mismatched by coloring of the noise at the output
of the equalizer, and a difference between the actual and the
optimal target impulse responses as illustrated in Fig. 3.
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B. Modified BCJR

The noise correlation induced by g𝑜𝑝𝑡 degrades the per-
formance of the classical BCJR algorithm significantly, and
modifications of the classical algorithm are required. There-
fore, we propose a modified BCJR detector based on noise
prediction. For this trellis-based algorithm, let us define, at
each time instance 𝑛, the state 𝑠𝑛 as

𝑠𝑛 = (𝑥𝑛−𝐿′ , 𝑥𝑛−𝐿′+1, ..., 𝑥𝑛−2, 𝑥𝑛−1). (13)

The branch metric of the classical BCJR algorithm is given
as [23][24]

𝛾𝑛(𝑥𝑛, 𝑠𝑛) =
1

𝑀
exp

⎛
⎝− 1

2𝜎2

∣∣∣∣∣𝑦𝑛 −
𝐿∑

𝑙=0

ℎ𝑙𝑥𝑛−𝑙

∣∣∣∣∣
2
⎞
⎠ . (14)

Ideally, the branch metrics (14) can be modified by whitening
the noise with infinite length impulse response filters. Because
the linear filter design based on the MMSE criterion presented
in the previous subsection introduces less noise correlation
than other similar methods, we observed that an ideal infinite-
length invertible filter can be approximated reliably by an FIR
filter g𝑖𝑛𝑣 = {𝑔𝑖𝑛𝑣,𝑛}�̂�𝑛=0

, where �̂� is the memory of the finite
length approximation. Therefore, following similar arguments
as in [25], the branch metric in (14) can be modified as

𝛾∗𝑛(𝑥𝑛, s
𝑛
𝑛−�̂�

)=
1

𝑀
exp

⎛
⎜⎝−

∣∣∣g𝐻𝑖𝑛𝑣(q𝑛𝑛−�̂�
−p(𝑥𝑛, s𝑛𝑛−�̂�

)
)∣∣∣2

2𝜎2

⎞
⎟⎠, (15)

where p(𝑥𝑛, s𝑛𝑛−�̂�
) = {𝑝𝑘}𝑘=𝑛

𝑘=𝑛−�̂�
is a sequence of noise-

less outputs of the target channel impulse response, 𝑝𝑘 =∑𝐿′

𝑙=0𝑓𝑙𝑥𝑘−𝑙. Since our modified BCJR algorithm has a trellis
of size 𝑀𝐿′

, the channel inputs 𝑥𝑛−𝑖, for 𝐿′+1 ≤ 𝑖 ≤ 𝐿′+�̂�,
are not available at time instant 𝑛, forcing us to use tentative
decisions 𝑥𝑛−𝑖. These decisions can be obtained during a mod-
ified forward recursion of the BCJR algorithm as described in
the remainder of this section.

Besides the branch metric formulation, an important part
of the classical BCJR algorithm is given by two recursive
equations [24]:

𝛼𝑛+1(𝑠𝑛+1) =
∑
𝑥𝑛,𝑠𝑛

𝐼(𝑥𝑛, 𝑠𝑛, 𝑠𝑛+1)𝛾𝑛(𝑥𝑛, 𝑠𝑛)𝛼𝑛(𝑠𝑛), (16)

𝛽𝑛(𝑠𝑛) =
∑

𝑥𝑛,𝑠𝑛+1

𝐼(𝑥𝑛, 𝑠𝑛, 𝑠𝑛+1)𝛾𝑛(𝑥𝑛, 𝑠𝑛)𝛽𝑛+1(𝑠𝑛+1), (17)

where 𝛼𝑛(𝑠𝑛) and 𝛽𝑛(𝑠𝑛) are the state metrics of forward
recursion (16) and backward recursion (17), respectively.
𝐼(𝑥𝑛, 𝑠𝑛, 𝑠𝑛+1) is the indicator function equal to 1 if 𝑥𝑛,
𝑠𝑛 and 𝑠𝑛+1 satisfy the trellis constraints, and 0 otherwise.
We will assume that the first state 𝑠0 and the last state 𝑠𝑁+1

of the BCJR algorithm are known. Therefore, recursions (16)
and (17) are initialized by 𝛼0(𝑠0) = 1 and 0 for other state
metrics, and 𝛽𝑁+1(𝑠𝑁+1) = 1 and 0 for other state metrics,
respectively. The modification of the forward recursion given
in equation (16) is based on the concept of survivor paths from
the classical Viterbi algorithm [26] and it is given by

𝛼∗
𝑛+1(𝑠𝑛+1) = max

𝑥𝑛,𝑠𝑛
𝐼(𝑥𝑛, 𝑠𝑛, 𝑠𝑛+1)𝛾

∗
𝑛(𝑥𝑛, 𝑠𝑛)𝛼

∗
𝑛(𝑠𝑛). (18)

Once the tentative decisions �̂�𝑛−𝑖 for 𝐿′+1 ≤ 𝑖 ≤ 𝐿′+ �̂� are
obtained, we can compute the modified backward recursion in
the following form:

𝛽∗
𝑛(𝑠𝑛) =

∑
𝑥𝑛,𝑠𝑛+1

𝐼(𝑥𝑛, 𝑠𝑛, 𝑠𝑛+1)𝛾
∗
𝑛(𝑥𝑛, 𝑠𝑛)𝛽

∗
𝑛+1(𝑠𝑛+1). (19)

Note that the concept of survivor paths is not needed for back-
ward recursion since tentative decisions are already available.
We should point out that determining tentative decisions from
the forward recursion (18) is more reliable in the case of
a minimum-phase channel, suggesting that without any loss
in the achievable information rate, every channel of interest
should be transformed to a minimum-phase representation be-
fore the modified BCJR detector is employed. For maximum-
phase systems, the alternative is to use the backward recursion
to determine tentative decisions on transmitted symbols. The
lower bound (4) is computed numerically by estimating the
first order joint statistics of the channel input 𝑥𝑛 and the soft-
output 𝑧𝑛 of the modified BCJR algorithm, as done in [15].

Note that the proposed receiver structure is applicable
to non-sparse ISI patterns as well, but the effectiveness of
the proposed approach is strictly limited by the design of
the channel shortening filter. The equalizer filter from (11)
would have to suppress most of the ISI which is outside the
scope of the memory length 𝐿′ of the target channel impulse
response (11). We conducted extensive simulations which
indicate that channel shortening is not effective for the channel
with long memory and non-sparse structure, if the memory of
the target channel impulse response is reasonably short. The
reason is a high correlation among the noise samples at the
output of the equalizer, which seriously limits the performance
of the modified BCJR algorithm.

IV. UPPER BOUND ON INFORMATION RATE WITH I.U.D.
INPUTS

Let us consider a SIMO ISI channel with the channel
outputs given by

𝑦𝑘,𝑛 = ℎ𝑘(𝐿′+1)𝑥𝑛 + ℎ𝑘(𝐿′+1)+1𝑥𝑛−1 + ...

+ℎ𝑘(𝐿′+1)+𝐿′𝑥𝑛−𝐿′ + 𝑤𝑘,𝑛, (20)

where 𝑘 = 0, 1, ...,𝐾 − 1, 𝐾 = ⌈(𝐿+ 1)/(𝐿′ + 1)⌉, 𝑛 =
0, 1, ..., 𝑁 − 1 and 𝑤𝑘,𝑛 is i.i.d. complex Gaussian random
variable in both indices 𝑘 and 𝑛, with zero-mean and variance
𝜎2 per dimension. The number of outputs (clusters) of the
SIMO ISI channel is bounded by 𝐾 ≤ 𝐿, and depends on the
sparse structure of the original channel (1). The achievable
information rate of the SIMO channel from (20) can be
expressed as

𝐼(𝑋 ;𝑌1, 𝑌2, ..., 𝑌𝐾) = lim
𝑁→∞

1

𝑁
𝐼(x; y1, y2, ..., y𝐾), (21)

where y𝑘 = {𝑦𝑘,𝑛}𝑁−1
𝑛=0 . Note from the expression (20) that the

computational complexity of the achievable information rate
of the derived SIMO channel is driven by the cluster with
the longest memory 𝐿𝑒𝑞 = max𝑘𝐿𝑘 ≤ 𝐿′, where 𝐿𝑘 is the
memory of 𝑘-th cluster, and 𝑘 = 1, 2, ...,𝐾 . The SIMO ISI
channel of interest is illustrated in Fig. 4. We note that noise
in each cluster is i.i.d. with the variance equal to 𝜎2.
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Fig. 4. The derived SIMO ISI channel with 𝐾 clusters of memory 𝐿𝑘 ,
𝑘 = 1, 2, ...,𝐾 .

Instead of the inequality in (6), we can provide a tighter
bound on the information rate by noting that we can group
channel inputs (for simplicity) into blocks:

𝐼(x; y) = 𝐼(x𝑁−1
0 ; y𝑁−1

0 ) (22)

= 𝐼(a𝑁−1
0 ; y𝑁−1

0 )

=

𝑁−1∑
𝑛=0

𝐼(a𝑛; y𝑁−1
0 ∣ a𝑛−1

0 )

≤
𝑁−1∑
𝑛=0

𝐼(a𝑛; y𝑁−1
1,0 , y𝑁−1

2,0 , ..., y𝑁−1
𝐾,0 ∣ a𝑛−1

0 ),

where a𝑛 = {𝑥𝑖}𝑛𝑖=𝑛−𝐿′ . The inequality follows from the fact
that we consider i.u.d. channel inputs x and multiple channel
observations. This bound is strictly tighter than the one given
by the inequality in (6) since we have excluded from the
conditioning in (5) the future blocks a𝑁−1

𝑛+𝐿′+1. Hence, we can
bound the achievable information rate by that of the SIMO
channel obtained by grouping the channel taps into no more
than 𝐿 clusters (by setting 𝐾 = 𝐿+1 and conditioning on the
future blocks we obtain the bound in (5)). At this point, we
should indicate that grouping the channel inputs into blocks
a𝑛 of different size in (22), will organize the channel taps
differently in order to exploit the knowledge of the sparse
structure.

Since this approach for deriving an upper bound is moti-
vated by the desire to avoid the long channel memory, we
prefer to group the channel inputs such that the channel taps
in all the clusters are either equally spaced, so that the channel
is potentially compressible, or all 𝐿𝑘’s (and consequently 𝐿𝑒𝑞)
are relatively small. From an information theoretical viewpoint
we emphasize that relative delays among clusters in the
derived SIMO ISI channel in (20) are irrelevant. Therefore,
for simplicity, we assume that the first tap in each cluster has
zero delay and the last tap is at delay 𝐿𝑘, i.e. the taps in
each cluster in the expression (20) are advanced by 𝑛 time
instances. Now, the 𝑘-th received element at time instant 𝑛
can be written as

𝑦𝑘,𝑛 =

𝐿𝑘∑
𝑙=0

ℎ𝑘,𝑙𝑥𝑛−𝑙 + 𝑤𝑘,𝑛, (23)

where ℎ𝑘,𝑙 are determined from (20). It is useful to re-write
the model in the following matrix notation:

y𝑘 = H𝑘x + w𝑘, (24)

where y𝑘, x, and w𝑘 are column vectors collecting {𝑦𝑘,𝑛},
{𝑥𝑛}, and {𝑤𝑘,𝑛}, respectively, while H𝑘 is a matrix con-
structed from the ISI vector {ℎ𝑘,𝑛}. In the matrix model (24),
the dimension of the column vectors is 𝑁 × 1, while the
dimension of the matrix H𝑘 is 𝑁×𝑁 . The information rate of
the system is completely defined by the conditional probability
density function of the received vector (y1, y2, . . . , y𝐾) given
x = a, denoted by 𝑝(y1, y2, . . . , y𝐾 ∣ a), and can be written as

𝑝(y1, y2, . . . , y𝐾 ∣ a) =
𝐾∏

𝑘=1

𝑝(y𝑘∣ a)

=

𝐾∏
𝑘=1

(
2𝜋𝜎2

)−𝐾
2exp

{
−∥y𝑘 − H𝑘a∥2

2𝜎2

}
(25)

By expanding the expression on the right-hand side of (25) and
neglecting factors which do not depend on a, we can write

𝑝(y1, y2, . . . , y𝐾 ∣ a)∝
𝐾∏

𝑘=1

exp

{
2y𝐻𝑘 Ha − a𝐻H𝐻

𝑘 H𝑘a
2𝜎2

}

=

𝐾∏
𝑘=1

exp

{(
x𝐻− 1

2
a𝐻
)

G𝑘a+N𝑘a
}
,(26)

where we defined

G𝑘 =
H𝐻

𝑘 H𝑘

𝜎2
, (27)

N𝑘 =
w𝐻
𝑘 H𝑘

𝜎2
. (28)

Finally, we can re-write (26) as

𝑝(y1, y2, . . . , y𝐾 ∣ a) ∝ exp

{(
x𝐻 − 1

2
a𝐻

)
G𝑒a + N𝑒a

}
, (29)

where we defined

G𝑒 =

𝐾∑
𝑘=1

G𝑘, (30)

N𝑒 =

𝐾∑
𝑘=1

N𝑘. (31)

It can be easily shown that G𝑒 is a valid autocorrelation matrix
and that

𝐸
{

N𝐻
𝑒 N𝑒

}
= G𝑒. (32)

In practice, the relationship in (29) indicates that the informa-
tion rate of the system is completely defined by the matched-
filter representation of the ISI channel, scaled by the noise
variance. Particularly, different noise-whitened representations
are equivalent when their matched-filter representations are
equal, which is well known. Hence, the SIMO channel is
equivalent to a SISO channel with matched-filter represen-
tation G𝑒. Practically, the outputs z𝑒 = {𝑧𝑒}𝑁−1

𝑛=0 of the
equivalent SISO channel in a matched-filter representation can
be obtained by matched-filtering and scaling (by the noise
variance) of the cluster outputs, y𝑘’s, followed by the summing
operator. Therefore, the relationship in (29) implies identical
achievable information rates of the SIMO channel in (23) and
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the equivalent SISO channel in (29). From the inequality (22),
it follows that

𝐼 (𝑋 ;𝑌 ) = lim
𝑁→∞

1

𝑁
𝐼 (x; y) (33)

≤ lim
𝑁→∞

1

𝑁
𝐼 (x; y1, y2, ..., y𝐾)

= lim
𝑁→∞

1

𝑁
𝐼 (x; z𝑒)

= 𝐼𝑈𝐵 ,

where we denote the output sequence of the equivalent SISO
channel as z𝑒 = {𝑧𝑒}𝑁−1

𝑛=0 . The upper bound 𝐼𝑈𝐵 is thus
obtained on the achievable information rate for channels with
memory. Our first observation is that unlike the bound derived
in [1], which depends only on the overall power contained in
the channel impulse response, the upper bound (33) depends
on the channel structure as well. Note that the computational
complexity of this bound depends exponentially on 𝐿𝑒𝑞 ≤ 𝐿′.
It is feasible to optimize 𝐼𝑈𝐵 , and it can be accomplished
through two degrees of freedom inherently present in our
approach: the number of clusters𝐾 in (23) and the distribution
of the channel taps among the 𝐾 clusters. Considering the
number of clusters 𝐾 , our preliminary results indicate that
by choosing fewer clusters, better performance is obtained.
Intuitively, this is expected, because in this way we minimize
the number of observation sequences (y𝑘’s) at the receiver.
With regard to the distribution of the channel taps among
clusters, we rely on our observations which suggest that we
should not keep the strongest path alone in the ISI-free cluster
(if such a cluster exists), but combine it with other taps.
Another observation is that the bound is tighter if clusters
have a power ratio that tends to a small value, i.e. we should
place the weakest tap into a separate cluster, if feasible.

For non-sparse ISI channels, the idea of clustering the chan-
nel taps is also applicable. However, computational complexity
of the corresponding upper bound is very high if we are aiming
at obtaining a tight bound, i.e. if we split the channel taps
into two clusters only, the memory of the SIMO channel will
be half of the memory of the original channel, and it cannot
be further compressed due to the channel non-sparseness.
Increasing the number of clusters will degrade the tightness
of the bound for a general ISI channel.

V. EXAMPLES

In this section, the performance of the simulation-based
bounds that were developed in Section III and Section IV are
presented. For each of the channel examples, we will compare
the performance of the proposed bounds with those reported
in [1], [4] and [5]. The channel impulse responses considered
in the computer simulation are shown in Table I.

In Fig. 5 we consider the achievable information rates with
BPSK (𝑀 = 2) transmission over the minimum-phase channel
𝐶1. Note that the channel is sparse with just three non-zero
taps, and its delay spread is 𝐿 = 7. All the zeros of channel
𝐶1 in the Z-domain are inside the unit circle, making it a
minimum-phase system. Consequently, the simulation-based
upper bound [5] is very loose as it can be seen from Fig. 5.
In order to obtain the proposed upper bound, we group the
channel taps 𝐶1(0) = 1.0 and 𝐶1(4) = 0.6 into one cluster,

TABLE I
THE CHANNEL IMPULSE RESPONSE EXAMPLES.

Channel 𝐿 f

𝐶1 7 1√
1.45

[1 0 0 0 .6 0 0 .3]

𝐶2 5 1√
1.45

[1 0 0 .6 0 .3]

𝐶3 7 1√
1.45

[.3 0 0 .6 0 0 0 1]

𝐶4 7 1√
1.49

[.7 0 0 0 .8 0 0 .6]

𝐶5 50 1√
3.31

[1 .8 0 (25) .5 .7 .5 0 (18) .4 .6 .4]∣

and the weak tap 𝐶1(7) = 0.3 into the second cluster. The
proposed upper bound now outperforms the simulation-based
bound [5], and as it was shown in Section IV, performs better
than the power enhancement bound [1] over the entire SNR
region. The former approach is illustrated in Fig. 5 as bound
𝐼𝑈𝐵𝑛𝑒𝑤, 𝑠𝑢𝑏 where we keep the first channel tap 𝐶1(0) alone.
This is clearly poor choice of channel clustering and the bound
is very close to the power enhancement bound. The latter
approach is trivial for the case of the channel with only three
non-zero taps, since the memory of our equivalent SISO chan-
nel z𝑒 reduces to 𝐿′ = 1. We also note that our lower bound
is tighter than bounds [4] achievable by practical receivers,
where we assumed that the memory of the target channel
response is 𝐿′ = 3. This also indicates that tentative channel
decisions obtained through the modified forward recursion of
the BCJR algorithm in (18) are reliable, since the filter g𝑜𝑝𝑡
induces noise correlation that is mainly suppressed through
the perfectly known channel inputs from the state definition
in (13). We also compare our bound with the lower bound we
presented previously in [11], which utilizes a detector based
on the application of the sum-product algorithm to the factor
graph of the channel impulse response. The performance of
this detector converges to that of the optimal BCJR detector,
since 𝐶1 does not have cycles of length less than 6. We
observe that our bound, based on a channel shortening filter
and the modified BCJR detector, converges to the optimal
detector performance for high SNR, while slight degradation
is observed for low SNR, where tentative decisions are less
reliable.

In Fig. 6 we consider a minimum-phase channel 𝐶2 with
a channel structure similar to 𝐶1. The span of the ISI is
shorter, and for 𝐿′ = 3 the simulation-based upper bound [5],
based on the reduced-search on the full-complexity trellis, is
tighter than the one for 𝐶1. The reason for such behavior
is that more channel states carrying significant portion of the
estimated probability mass of the channel output sequence are
included into reduced-search. Since we use the same strategy
of grouping channel taps into the clusters, our upper bound
is the same as in the case of the previous channel 𝐶1. We
also observe that the tightness of our lower bound is slightly
improved, since prefiltering will introduce less correlation in
the noise by canceling out only the weak ISI components for
tap indices strictly greater than 𝐿′ = 3. We note that our bound
performs almost as well as the one previously proposed [11]
for factor graph-based detector.

In Fig. 7 we consider a maximum-phase representation of
𝐶1. The tightness of our upper bound is similar to the one
for the minimum-phase channel, since the power ratio among
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Fig. 5. Bounds on the achievable information rate for minimum-phase
channel 𝐶1. Target memory 𝐿′ = 3 is assumed for the computation of both,
𝐼𝑈𝐵𝑛𝑒𝑤 and 𝐼𝐿𝐵𝑛𝑒𝑤.
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Fig. 6. Bounds on the achievable information rate for minimum-phase
channel 𝐶2. Target memory 𝐿′ = 3 is assumed for the computation of both,
𝐼𝑈𝐵𝑛𝑒𝑤 and 𝐼𝐿𝐵𝑛𝑒𝑤.

channel taps is the same as in the previous examples. The
simulation-based upper bound [5] is significantly looser for
the entire SNR region, and therefore, it is omitted from the
figure. As for the lower bound, the performance is seriously
degraded unless we redefine our approach to increase the
reliability of tentative decisions. This can be accomplished by
running the modified backward recursion in (19) as in (18),
and then the modified forward recursions with these decisions.
With this approach, we observe significant improvement in
the receiver performance as shown in Fig. 7 by comparing
𝐼𝐿𝐵𝑛𝑒𝑤, 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 with 𝐼𝐿𝐵𝑛𝑒𝑤, 𝑓𝑜𝑟𝑤𝑎𝑟𝑑. We note that
the lower bound based on the power degradation argument
is sensitive to the phase of the channel. Since 𝐶3 and 𝐶1

are equivalent channels, identical performance comparison
as in Fig. 5 between our bound and the one previously
proposed [11] is observed.

In Fig. 8 we consider a mixed-phase channel 𝐶4. For
this channel the upper bound is similar to those from the
previous examples, and obtained by grouping𝐶4(0) and 𝐶4(4)
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Fig. 7. Bounds on the achievable information rate for maximum-phase
channel 𝐶3. Target memory 𝐿′ = 3 is assumed for the computation of
𝐼𝑈𝐵𝑛𝑒𝑤, 𝐼𝐿𝐵𝑛𝑒𝑤, 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 and 𝐼𝐿𝐵𝑛𝑒𝑤, 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑.
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Fig. 8. Bounds on the achievable information rate for mixed-phase channel
𝐶4. Target memory 𝐿′ = 3 is assumed for the computation of 𝐼𝑈𝐵𝑛𝑒𝑤,
𝐼𝐿𝐵𝑛𝑒𝑤 and 𝐼𝐿𝐵𝑛𝑒𝑤,𝑚𝑖𝑛− 𝑝ℎ𝑎𝑠𝑒.

into one cluster and 𝐶4(7) into a second one, whereas the
lower bound shows a degradation due to unreliable tentative
decisions, obtained either by means of forward or backward
recursion. We also observe that the bound based on factor
graphs [11] outperforms our bound 𝐼𝐿𝐵 significantly. This
result suggests that a mixed-phase type of channel may
be transformed either to a minimum-phase or a maximum-
phase representation (𝐼𝐿𝐵𝑛𝑒𝑤,𝑚𝑖𝑛− 𝑝ℎ𝑎𝑠𝑒) prior to the
application of the reduced-state modified BCJR. However,
this method will certainly provide a looser lower bound than
the one treated in our approach, because the modified BCJR
shows the best performance for the minimum-phase channel
representation. The validity of the bound obtained from the
minimum-phase representation, follows from the fact that the
achievable information rate of the channel is insensitive to the
channel phase.

In Fig. 9 we illustrate the proposed bounds for the channel
𝐶5 (with long memory of 𝐿 = 50), and clustered non-
zero tap pattern, where few consecutive channel taps carry
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Fig. 9. Bounds on the achievable information rate for minimum-phase
channel 𝐶5. Target memory 𝐿′ = 9 is assumed for the computation of both,
𝐼𝑈𝐵𝑛𝑒𝑤 and 𝐼𝐿𝐵𝑛𝑒𝑤.

significant energy. The simulation-based upper bound [5] is
omitted since it is loose for the entire SNR region. We
derive the proposed upper bound by assigning each of the
channel clusters to the clusters of the SIMO channel (23).
As we observe, the proposed upper bound shows a significant
improvement with respect to the bound [1] based on the power
enhancement argument. The new lower bound on the channel
impulse response shows significant improvement with respect
to the one based on the power degradation argument due to
strong ISI components present in the large delay spread of
the channel 𝐶5. We emphasize that 𝐿′ = 9 is considered
to be sufficiently large in order for the actual target channel
impulse response f to be relatively close to the optimal one
f𝑜𝑝𝑡 for this example. Since the receiver used in [11] requires
calibration of various parameters that are critical for the proper
functionality of the detector, this bound was not considered in
the case of the realistic UWA channel with the large delay
spread, as in the case of 𝐶5. The newly proposed detector
has slight performance degradation, and significantly lower
implementation complexity, which is the main reason why we
favor it.

VI. CONCLUDING REMARKS

Upper and lower bounds on the achievable information
rate of the discrete-time additive white Gaussian channel
with long memory and sparse structure are examined. The
proposed lower bound is attainable by practical receivers,
with varying degrees of tightness depending upon the specific
receiver used. Particularly we consider a receiver structure
consisting of a channel shortening filter and a modified BCJR
detector with the objective of obtaining a suboptimal soft-
output detector with reasonable performance/complexity trade-
off. The lower bound improves upon usefulness of the existing
bounds for minimum-phase and maximum-phase channels,
and indicates the utility of the considered reduced-complexity
receiver. For mixed-phase systems, the lower bound shows
poor performance due to the unreliable tentative decisions
made by the modified BCJR algorithm. The proposed upper

bound is based on grouping of the channel taps into clusters.
Performance of the upper bound depends on the strategy
for channel clustering, and it can be optimized further by
computer search. For sparse channels with a long memory,
this approach leads to a significant complexity reduction in
the simulation of the newly defined SISO channel, which
also yields the upper bound on the achievable information
rate of the actual channel. As illustrated by examples, the
upper bound significantly outperforms the bounds previously
published in the literature.
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