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Random Access Compressed Sensing for
Energy-Efficient Underwater Sensor Networks

Fatemeh Fazel, Maryam Fazel and Milica Stojanovic

Abstract—Inspired by the theory of compressed sensing and
employing random channel access, we propose a distributed
energy-efficient sensor network scheme denoted by Random
Access Compressed Sensing (RACS). The proposed scheme is
suitable for long-term deployment of large underwater net-
works, in which saving energy and bandwidth is of crucial
importance. During each frame, a randomly chosen subset of
nodes participate in the sensing process, then share the channel
using random access. Due to the nature of random access,
packets may collide at the fusion center. To account for the
packet loss that occurs due to collisions, the network design
employs the concept of sufficient sensing probability. With this
probability, sufficiently many data packets – as required for field
reconstruction based on compressed sensing – are to be received.
The RACS scheme prolongs network life-time while employing
a simple and distributed scheme which eliminates the need for
scheduling.

Index Terms—Sensor networks, compressed sensing, wireless
communications, underwater acoustic networks, random access.

I. INTRODUCTION

UNDERWATER sensor networks are envisioned as con-
sisting of a number of static sensor nodes and/or vehicles

that are deployed over a region of interest to monitor a
physical phenomenon. Applications of such networks are
in oceanographic data collection (e.g., temperature, salinity,
zonal and meridional currents), field monitoring and disaster
prevention [1] [2]. Wireless acoustic communication is the
physical layer technology used in underwater networking. In
this paper, we consider a static area network, where sensor
nodes are anchored to the bottom of the ocean and deployed
for long periods of time. Each sensor node communicates its
observations of the field to a central node, referred to as the
Fusion Center (FC) and the FC reconstructs the map of the
physical field. Bandwidth and battery power are severely lim-
ited in underwater networks, and hence energy and bandwidth
efficiency are of particular importance.
Exploiting the fact that most natural phenomena are com-

pressible (sparse) in an appropriate basis, we employ com-
pressed sensing to reduce the energy consumption of the
network. The theory of compressed sensing establishes that
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under certain conditions, exact signal recovery is possible with
a small number of randommeasurements [3][4]. Authors in [5]
are the first to introduce the application of compressed sensing
in networks. In [5][6] and [7] the authors used phase-coherent
transmission of randomly-weighted data from sensor nodes
to the FC over a dedicated multiple-access channel, to form
distributed projections of data onto an appropriate basis at the
FC. Note that in this approach sensors need to be perfectly
synchronized which is a difficult assumption to maintain in
underwater acoustic networks. Reference [8] proposes com-
pressive cooperative spatial mapping using mobile sensors
based on a small set of observations. In [9] ultra-low power
infrastructure monitoring is achieved by employing data com-
pression and a low-collision MAC protocol. In [10] adaptive
compressed sensing is applied to wireless sensor networks.
Initially, a random set of readings are observed at the FC.
If the accuracy level is not satisfactory a projection vector
is obtained and the data is updated. The authors determine
the projection vector so as to optimize the information gain
per energy expenditure. A number of references, such as [11],
[12] and [13] focus on phenomena that are sparse in the spatial
domain, e.g., event detection or tracking of multiple targets.
In [12] authors consider a decentralized network (without
FC), where active nodes exchange measurements locally. The
authors formulate sparse recovery as a decentralized consensus
optimization problem and show that their iterative algorithm
converges to a globally optimal solution. In [13] sensors are
tracking the location of an audio source, transmitting their
readings to the FC. In this setting, the signals appearing at each
sensor are jointly sparse. The authors show that a very small
number of measurements can achieve the signal detection goal.
Authors in [14] and [15] also consider spatial mapping using
mobile sensors (robots), [15] proposes an efficient way to
reconstruct natural fields using random-walk-based sampling
and compressed sensing. Finally, in [16] capacity bounds of
an on-off random multiple access channel are determined by
transforming the problem to an equivalent compressed sensing
problem and using sparsity detection algorithms.

In this work, we consider an underwater sensor network
that measures a physical phenomenon for geographical and
environmental monitoring purposes. We assume that the
physical phenomenon to be studied is compressible (sparse)
in the frequency domain. The proposed method, based on
compressed sensing and random access, results in a simple
and energy-efficient scheme referred to as Random Access
Compressed Sensing (RACS). The system functions consist
of (i) a sampling procedure, during which sensor nodes
perform measurements; followed by (ii) a channel access
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method, during which measurements are transmitted to the
FC; and finally (iii) a reconstruction process, during which
sparse recovery algorithms are used to recover the measured
field at the FC. In the sampling procedure, inspired by the
theory of compressed sensing, we employ random sensing,
while for the channel access phase, we propose a simple
random access. As in any random access, the data packets
of two or more sensors may collide at the FC. The key
idea is that random collisions (which are inevitable) do not
change the random nature of the observations provided to
the FC. Since the FC only needs to receive some, and not
all the sensor packets, it can simply disregard the collisions.
The FC obtains an incomplete set of measurements (due
to both random sensing and losses due to random access)
from which it reconstructs the field using compressed sensing
techniques. Note, however, that in order to achieve successful
reconstruction, a certain minimum number of measurements–
as determined by compressed sensing theory– are required at
the FC. We thus need to compensate for the collision losses
by initially selecting the number of participating sensors to
be greater than the minimum number of required packets.
We provide an analytical framework for system design based
on the sufficient sensing probability. Note that our method
is completely distributed, requiring no coordination among
nodes. It also requires no downlink feedback from the FC
to the sensor nodes.
The paper is organized as follows: In Section II we in-

troduce the network model. In Section III, we outline the
system model and introduce the RACS scheme. Section IV
provides an analytical model for RACS based on which we
propose a network design methodology. In Section V we
provide performance assessment of our scheme and compare
the energy and bandwidth usage of RACS with that of a
conventional network. In Section VI using a real data example,
we demonstrate the performance of the RACS scheme. Finally,
we provide concluding remarks in Section VII.
Notation: We denote by �p the p-norm of a vector x =

[x1, . . . , xN ]T defined by ‖x‖�p =
(∑N

i=1 |xi|p
)1/p

. If

V is a k × l matrix, vec(V) denotes the kl × 1 vec-
tor formed by stacking the columns of matrix V, i.e.,
vec(V) = [ v11 . . . vl1 . . . v1k . . . vlk ]T . We de-
note by B(N, p) the Binomial probability distribution of the
number of successes in a sequence of N independent exper-
iments, each of which has a success probability p. Finally,
A⊗B denotes the Kronecker product of matrices A and B.

II. SYSTEM MODEL

Consider a grid network shown in Fig. 1, which consists of
N = IJ sensors located on a two-dimensional plane, with J
and I sensors in x and y directions, respectively.1 The sensors
are separated by distance d in each direction. Let us define
the coverage area A of a network as the total area covered
by the sensors, in our grid network A = Nd2. The network is
deployed to monitor a physical phenomenon, u(x, y, t), (e.g.,
temperature, pressure, current, etc.) over a long period of time.

1Note that the results of this paper can be easily extended to three-
dimensional (volume) networks as well.

Fig. 1. An area sensor network consisting of N = IJ sensor nodes.

Such long-term monitoring is crucial in climate monitoring or
environmental surveillance applications.
In frame n, the sensor node located at position (i, j) in the

network grid acquires a measurement uij(n) = u(xj , yi, n),
where xj and yi denote the sensor’s position in the 2-
dimensional space. The measurements are encoded, along with
the sensor’s location tag, into a data packet of L bits, which
is then modulated and transmitted to the FC. Upon reception,
the FC demodulates the signal and extracts the measurement
information from which it reconstructs the map of the field.
Assuming that the system has bandwidth B and that each
sensor transmits at a bit-rate equal to the bandwidth, the packet
duration is Tp = L/B. Let Di denote the distance of node i
from the FC, where i ∈ {1, . . . , N}. The propagation delay of
sensor i’s packet is thus given by τi = Di

c , where c = 1500
meters/sec is the nominal speed of sound.
In this paper, we consider a frame-based (slotted) transmis-

sion, i.e., the FC collects the incoming data packets during a
frame of length T . At the end of the frame, the FC reconstructs
the field based on the data packets received during that frame.
Once the reconstruction is performed, the frame is discarded
and FC waits for a new set of data in the next frame. In order
to determine a reasonable frame duration T , we consider the
correlation properties of the physical process u(x, y, t). Let
us define the coherence time Tcoh of a process as the time-
duration over which the process almost de-correlates in time,
i.e., the process is slowly varying during Tcoh. A conventional
design choice is thus to obtain a new map of the field u(x, y, t)
at least once per Tcoh.
The map of the process over the entire sensor network is

denoted by U(n)

U(n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

u11(n) . . . u1J(n)
...

...
...

. . . uij(n) . . .
...

...
...

uI1(n) . . . uIJ(n)

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

The data gathering procedure in a network consists of
two phases: a) sensing and b) communication. The sensing
phase can be (i) deterministic (conventional case), in which
case all the sensors sample the physical phenomenon; or (ii)
random (compressed), in which case only a random subset
of sensor nodes participate in sensing. The nodes that have
taken part in sensing now need to access the channel in
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Fig. 2. The scheduling required at each node in the benchmark case of
TDMA.

order to communicate their measurements to the FC. Multiple-
access schemes are generally divided into two categories:
(i) deterministic access methods, e.g., TDMA, FDMA, and
CDMA; and (ii) random access methods, e.g., Aloha, CSMA,
and CSMA/CD. In what follows we will consider both types
of access for use with compressed sensing, while we consider
deterministic sensing as a benchmark for comparison.

A. Conventional Network (Benchmark)

As a benchmark design, we consider a sensor network with
deterministic sensing and deterministic access, i.e., in each
frame, all N nodes conduct measurements and transmit their
measurement packets to the FC using a deterministic multiple-
access scheme. We assume that the conventional network
employs standard TDMA. This requires scheduling at each
node such that packets from different nodes arrive back-to-
back at the FC. Fig. 2 depicts the required scheduling process.
The received data at the FC at frame n, denoted by y(n), is
given by

y(n) = u(n) + z(n) (2)

where, u(n) = vec(U(n)) and z(n) represents the sensing
noise which arises due to the limitations in the sensing device.
The communication noise translates into bit errors, i.e., it
does not appear as an additive term in Eq. (2). In the present
analysis we neglect the communication noise. In TDMA, one
frame of data contains N packets; therefore, T = NTp. The
network needs updated measurements every T ≤ Tcoh. The
total number of nodes that can be deployed in a conventional
network is thus upper-bounded by

N ≤ Tcoh

Tp
(3)

where Tcoh is the property of the monitored field. Conse-
quently, the coverage area of a conventional network is limited
to A = Tcohd2/Tp.

III. RANDOM SENSING

Most natural phenomena have a compressible (sparse) rep-
resentation in the spatial frequency domain, and we therefore
assume that the vector of Fourier coefficients of U(n) is

sparse. Specifically, if V(n) is the two-dimensional spatial
discrete Fourier transform of U(n), it can be shown that
v(n) = (WJ ⊗ WI)u(n), where v(n) = vec(V(n)) and
WI is the matrix of discrete Fourier transform coefficients
(WI [m, k] = e−j2πmk/I ). Thus, in our case, the Fourier
representation v(n) is assumed to be sparse. Note that a sparse
signal is a signal that can be represented by a small number of
non-zero coefficients, compared to the dimension of the signal.
As an example, Fig. 3 shows the zonal currents recorded at
the Southern California bight, and their corresponding discrete
Fourier transform. One can show that almost 99% of the en-
ergy of the signal is contained in S = 13 Fourier coefficients.
Based on the theory of compressed sensing, if a signal has
a sparse representation in some domain, it can be recovered
from a small subset of random measurements [3], [4]. Thus
taking into account the sparsity of natural phenomena, we can
reduce the number of measurements required for field recovery
from N to some M < N .

Let us assume that all the nodes know the beginning time of
a frame at the FC. At frame n, a subset of sensors is selected
at random to conduct measurements. By randomly selecting
sensors, we perform the compression directly in the spatial
domain. If we denote by y(n) the observations of a random
subset of M sensors, the received data vector at the FC can
be expressed as

y(n) = R(n)u(n) + z(n) (4)

where R(n) is an M ×N random selection matrix for frame
n, consisting of M rows of the identity matrix selected
uniformly at random. Noting that u(n) = Ψv(n), where
Ψ = (WJ⊗WI)−1 is the Inverse Discrete Fourier Transform
(IDFT) matrix, Eq. (4) can be re-written in terms of the sparse
vector v(n) as

y(n) = R(n)Ψv(n) + z(n) (5)

The IDFT matrix Ψ is referred to as the representation basis,
which is the basis over which u(n) has a sparse representation.

To reconstruct the field at the end of the frame n, the FC
first tries to recover the vector v(n) as accurately as possible,
then uses it to construct the mapU(n). Given the observations
y(n), the random selection patternR(n) and the sparsity basis
Ψ, and in the absence of sensing noise z(n) – which is the
case we will be focusing on – reconstruction can be performed
by solving the following minimization problem:

minimizeṽ(n) ‖ṽ(n)‖�1 subject to R(n)Ψṽ(n) = y(n). (6)

The theory of compressed sensing (specifically, [17]) states
that as long as the number of observations, picked uniformly at
random, is greater than Ns = CS log N , then with very high
probability the solution to the convex optimization problem (6)
is unique and is equal to v(n). Here C is a constant that is
independent of N and S (see [17] for the details).

We thus conclude that in our wireless network setting,
it suffices to ensure that the FC collects at least Ns pack-
ets picked uniformly at random from different sensors to
guarantee accurate reconstruction of the field with very high
probability.
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Fig. 3. (a) Zonal current (m/s) at a latitude of 32.5◦, plotted versus the
longitude [238.5◦, 243◦]; and (b) the amplitude of the corresponding spatial
Fourier transform. Almost 99% of the energy of the signal of size N =
204 is contained in S = 13 Fourier coefficients. This data is accessible at
http://ourocean.jpl.nasa.gov.

A. Centralized Random Sensing / Deterministic Access (R/D)

We focus on the centralized selection to illustrate the
random sensing concept before moving on to the distributed
selection in the next section. In this scheme, the FC picks
a random subset of M sensors for sampling and broadcasts
the selected set of nodes in each frame. In order to obtain
perfect reconstruction, it has to be that M ≥ Ns. The selected
nodes then sample the physical process u(x, y, t) and send
their measurements back to the FC using a multiple-access
method of choice. Since the FC broadcasts the selected subset,
all sensors learn when a frame will start, which nodes will
be transmitting and their transmission order. Therefore, the
network can simply use deterministic access (TDMA) with
M slots as shown in Fig. 4. All transmitting nodes organize
their transmissions such that they are received at the FC in

Fig. 4. The frame structure in the R/D scheme. The FC broadcasts the
selected subset, the nodes then schedule their transmissions.
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Fig. 5. For a network of size N = 1000 and Nsim = 100 randomly
generated signals with sparsity S = 10, the average normalized reconstruction
error is plotted versus the number of measurements M . The required number
of measurements to obtain perfect reconstruction is Ns ≈ 57 as shown in
the figure.

the requested order. Thus, a frame of duration T consists of
the round-trip broadcast time followed by M packets of data,
i.e, T = 2τmax + MTp, where τmax = 1

c maxi∈{1,...,N} Di

denotes the longest propagation delay in the network.
The required number of observations Ns = CS log N

depends on the value of the constant C, a theoretical upper-
bound for which is offered in [17]. However, one can find
Ns empirically as the number of measurements for which
the reconstruction error is negligible. The empirical value of
Ns is typically much smaller than the one obtained using
the theoretical bounds. Here, we illustrate finding Ns in our
setting for the following example set of system parameters:
I = 50, J = 20, and S = 10. We study the recovery of these
signals from different numbers of random measurements in
a noise-free setting. Fig. 5 shows the average reconstruction
error plotted versus the number of measurements. As seen in
the figure, for M ≥ 57 full recovery is attained. Hence, for
the given system parameters, a reasonable choice for Ns is
determined to be Ns = 57.

B. Distributed Random Sensing / Random Access (R/R)

As discussed in Section III-A, centralized random sensing
requires scheduling among sensors by downlink transmission
from the FC. In order to eliminate the need for downlink
transmissions at each frame, we decentralize the process of
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selecting a random subset of nodes. This can be done by
equipping the sensors with independent, identically distributed
Bernoulli random generators, i.e., by having each sensor toss
an independent coin. At the beginning of a frame, each node
determines whether it will participate in the sensing process,
which occurs with some probability p. The total number of
sensors selected for sampling in a frame, M , is now a random
variable with a Binomial distribution, M ∼ B(N, p).
The principle of distributed sensing is thus very similar

to that of the centralized sensing from the viewpoint of
providing a random subset of observations. Its advantage is
in the fact that it eliminates the need for duplexing, i.e.,
no downlink transmission is required from the FC. However,
deterministic access is no longer applicable, because a node
has no knowledge of the other nodes that transmit, and
hence cannot schedule its transmission.2 If we couple random
sensor selection with random channel access this problem is
eliminated. Furthermore, employing random access eliminates
the overhead broadcast time and the next data frame starts
immediately.
In random access, each sensor i picks a random trans-

mission delay θi uniformly in [0, T − Tp]. In this scheme
there is possibility of collision. A collision is said to have
occurred if packets from different sensors overlap in time
at the FC. The key idea in RACS is to let the FC simply
discard the colliding packets. This approach is motivated by
the compressed sensing theory and the fact that the FC does
not care which specific sensors are selected, as long as (i)
the selected subset is chosen uniformly at random, and (ii)
there are sufficiently many collision-free packets received to
allow for the reconstruction of the field. Therefore, in a RACS
scheme, once a collision is detected the FC simply discards
the colliding packets and reconstructs the field using the rest.
Note that the random reduction matrix R(n) in Eq. (5) now
includes both the effects of random selection and of random
collisions.
The proposed frame-based RACS is summarized below:

Step 1. At the beginning of a frame, sensor node i tosses
a coin to determine whether it participates in sensing
(with probability p) or stays inactive (with probability
1 − p) during that frame.

Step 2. If node i is selected for sensing, it measures the
physical quantity of interest and encodes it into a
packet of L bits. The sensor’s location is also included
in the packet.

Step 3. Node i picks a uniformly-distributed delay θi for the
transmission of its packet.

Step 4. FC collects the packets received during one frame.
If a collision is detected, FC discards the colliding
packets.

Step 5. At the end of the frame, FC uses the correctly received
packets to reconstruct the data using �1 minimization
(or other sparse recovery methods [18]). We assume
that packets which do not collide are correctly re-
ceived.

Let K denote the number of correctly received packets at

2One could in principle reserve N slots, but since only a subset of sensors
transmit such a scheme would be wasteful.
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Fig. 6. Average number of collision-free packets K versus p; system
parameters are N = 1000, T = 120 s and Tp = 0.2 s.

the FC during one frame. Fig. 6 shows the average number
of collision-free received packets K versus the per-node
sensing probability p, for an example network of N = 1000,
Tp = 0.2 s and T = 120 s. As seen in the figure, there is
an interplay between the number of measurements and the
number of collisions. While increasing p results in a greater
number of measurements M , and could thus improve the
accuracy of reconstruction, it also increases the probability
of collision and after a certain point may even decrease the
number of useful packets received at the FC. Hence, there
exists a trade-off in choosing the value of p. We will outline
the probability distribution of K analytically in Section IV.
In designing a RACS network, the underlying figure of

merit is the reconstruction quality. The reconstruction error has
to be within an acceptable range in order to obtain a certain
reconstruction quality. In addition, among the set of design
parameters that meet the required reconstruction quality, our
goal is to choose the ones that minimize the average energy
consumption of the sensor network. Fig. 7(a) shows the
average normalized reconstruction error plotted versus the per-
node sensing probability p, for randomly generated sparse
data. The normalized error is defined as

||û(n)−u(n)||�2
||u(n)||�2 , where

u(n) is the actual data and û(n) is the recovered data. As
noted in the figure, accurate reconstruction is possible for
a range of values of p. Fig. 7(b) shows the corresponding
normalized average energy consumption of the network versus
p. In order to minimize the energy consumption of the network
while maintaining the average quality of reconstruction, we
choose the smallest value of p for which accurate reconstruc-
tion is possible.

IV. NETWORK DESIGN

In the R/D scheme of Section III-A, the number of correctly
received packets at the FC, K , is equal to the number of
sensor nodes selected for transmission, M . Thus, choosing
M = Ns provides a sufficient number of packets at the FC.
In the R/R case however,M andK are both random variables.
The fact that K is a random variable now implies that there
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Fig. 7. Average normalized reconstruction error versus p and the correspond-
ing energy consumption. Within the region where perfect reconstruction is
achievable we choose the smallest p as this choice results in the least energy
consumption.

can be no guarantee that K will be greater than Ns, i.e.,
obtaining a sufficient number of packets cannot be guaranteed.
A probabilistic approach to the system design thus becomes
necessary.
In what follows, we analyze the distribution function of

the number of correct packets at the FC. We then study the
conditions under which this random variable yields a sufficient
number of measurements, Ns = CS log N . These conditions
in turn imply a per-node sensing probability, p.

A. Packet Reception Model

Given a sensing probability p, the average packet generation
rate per node is given by λ1 = p

T−Tp
. Thus the aggregate

arrival rate of packets at the FC is λ = Np
T−Tp

. In order to
determine the probability of collision, we note that the packet
arrival process resembles a Poisson process. Accordingly, we
model the probability of no collision as the probability that

no packet arrives in an interval of length 2Tp,

Prob{no collision} = e
−2

NpTp
T−Tp (7)

The probability that a packet is successfully received at the
FC within a frame duration T is thus given by

q = pe
−2

NpTp
T−Tp (8)

We now conjecture that K has a binomial distribution with
parameter N and probability q, i.e.,

PK(k)=Prob{K=k} = B(N, q) =
(

N

k

)
qk(1 − q)N−k (9)

where q is given by Eq. (8). To empirically verify the con-
jecture, we conduct simulation experiments. Fig. 8(a) shows
the histogram of the number of correctly received packets
obtained from simulation. In this figure, the PK(k) obtained
from measurements is compared with that of the hypothesized
model B(N, q) where q is given by Eq. (8), and an estimated
model B(N, qest) where

qest =
1

Nsim

∑Nsim

i=1 k(i)

N

where k(i) is the number of successfully received packets
in the i-th simulation run and Nsim is the total number of
runs. We note that q and qest are very close, and that our
conjecture for PK(k) provides a reasonable match with the
simulated data. Fig. 8(b) shows the complementary cumulative
distribution function, QK(k) = Prob{K ≥ k}, for the
simulated data, as well as for the model (9) and B(N, qest).
Again, we note a close match. Consequently, we will rely on
the model (9) for system design.

B. Performance Requirement

In order to perform field reconstruction, the FC needs to
collect at least Ns collision-free packets during one frame.
However, since the packet arrival process is random, there is
no guarantee that the FC will collect sufficiently many packets.
Hence, we define the probability of sufficient sensing as the
probability that the FC collects Ns or more correct packets,
and we specify the performance requirement as the minimum
probability of sufficient sensing, Ps. In other words, we ask
that the FC collect at leastNs correct packets during one frame
with probability Ps or higher. This condition can be expressed
as

Prob {K ≥ Ns} = QK(Ns) ≥ Ps (10)

where QK(k) is the complementary cumulative distribution
function. Using the model (9), we note that

QK(Ns) ≥ Ps for q ≥ qs (11)

C. Design Objective

The design objective is to determine the per-node sensing
probability ps that ensures sufficient sensing. The first step in
the design approach is to solve for qs in Eq. (11). This can
be done numerically for a given Ns and Ps. The procedure is
illustrated in Fig. 9. Note that qs depends only on Ps and Ns.
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Fig. 8. The probability distribution PK(k) and the complementary cumu-
lative distribution function QK(k) for N = 1000, Tp = 0.2 s, T = 120 s,
p = 0.1 and Nsim = 10000 simulation runs.
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Fig. 9. Given a desired probability of sufficient sensing Ps, and a sufficient
number of packets Ns, one can determine the corresponding value qs. For
example, Ps = 0.9 and Ns = 57 (see Fig. 5) yields qs = 0.068.
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Fig. 11. Given qs, the per-node sensing probability ps is determined using
the model (13). For example, qs = 0.068 implies ps = 0.093.

Now, using Eq. (8) we have that qs = pse
−βps where β =

2NTp

T−Tp
. Given a specific value of qs, this relationship is used to

determine the underlying ps and β. Our design approach is to
minimize the energy consumption; hence, we want to identify
that solution which yields the smallest ps, since, as we will see
in Section V, it yields the least energy consumption. Fig. 10
shows the plots of q versus p for various values of β. As seen
in this figure, for a given qs, the curve with a smaller β yields
a smaller ps. The smallest β corresponds to T = Tcoh and is
determined as

βmin =
2NTp

Tcoh − Tp
. (12)

Using this value, we find ps as the solution of

qs = pse
−2

psNTp
Tcoh−Tp (13)

This procedure is illustrated in Fig. 11.
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Fig. 12. The probability q versus p for B = 2 kbps − 5 kbps; System
parameters are N = 1000, T = 120 s, L = 1000 bits. We note that in order
for a solution to exist a minimum bandwidth is required.

The following example describes the complete design pro-
cedure. Let us assume a network of size N = 1000, measuring
a phenomenon with sparsity S = 10 in the frequency domain.
Fig. 5 implies that the required number of collision-free
packets for perfect recovery is Ns = 57. For the given Ns

and a desired sufficient sensing probability of say Ps = 0.9,
Fig. 9 implies that qs = 0.068. Let us assume that the packet
duration is Tp = 0.2 s and that the coherence time of the
process is Tcoh = 120 s. Using Fig. 11, which shows q as a
function of p based on Eq. (13), one can determine the per-
node sensing probability ps = 0.093.
Note that there is a possibility that qs is too high for a

solution ps to exist. Fig. 12 shows q versus p for different
bandwidthsB = 2 kbps−5 kbps. For the given qs = 0.068, we
note from this figure that if B = 2 kbps or 3 kbps, there is no
solution for ps; however, for B = 4 kbps or 5 kbps a solution
exists. Thus, in order for a solution to exists, a minimum
bandwidth is required. There is also a possibility of having
two solutions for ps; if this occurs, we choose the smaller of
the two as it corresponds to fewer sensors transmitting, which
in turn translates into lower energy consumption as we will
see in Section V.
The resulting complementary cumulative distribution func-

tionQK(k) is shown in Fig. 13, which confirms that the choice
of p = 0.093 satisfies Eq. (11), i.e., that the desired sufficient
sensing is achieved.
In summary, we have a design approach that avails itself of

a simplified model. For a given N , a coherence time Tcoh, and
a packet duration Tp, the model (13) is used to determine the
per-node sensing probability p such that the desired probability
of sufficient sensing Ps is met.

V. PERFORMANCE ANALYSIS

In this section, we compare the performance of the RACS
scheme with that of a conventional network (Section II-A).
In an underwater deployment, network lifetime is of utmost
importance since re-charging batteries is difficult. Energy
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Fig. 13. Complementary cumulative distribution function QK(k) plotted
for ps = 0.093 confirms that the desired sensing probability is achieved, i.e,
QK(Ns) ≥ Ps for Ns = 57 and Ps = 0.9.

per successfully delivered bit of information thus naturally
emerges as a figure of merit for system performance. In light
of a sensor network based on compressed sensing, we define
a figure of merit as the total average energy required for one
field reconstruction. One of the performance measures that we
consider is thus the average energy consumption of the net-
work needed to sense a given area. Since bandwidth is severely
limited in an underwater acoustic network, another measure
of performance is the minimum bandwidth required. In what
follows we analytically derive these performance metrics for
the two schemes based on compressed sensing (R/D and R/R)
and compare the results to those of a conventional system.

If by PT we denote the per-node transmit power, the
consumed energy per node is given by

E0 = PT Tp

where Tp is the packet duration, i.e., the time during which a
node is active. The total consumed energy in the conventional
TDMA network is given by

Econv = NE0 =
A

d2
E0 (14)

where, A = Nd2 is the coverage area of the network. The
frame duration in a conventional network is T = NTp ≤ Tcoh.
Hence, noting that Tp = L/Bconv, the bandwidth requirement
is given by

Bconv ≥ NL

Tcoh
(15)

For the R/D scheme, the total energy required for one field
reconstruction is given by

ER/D = ME0 = CS log(N)E0 = CS log(
A

d2
)E0 (16)

The frame duration in R/D is given by T = 2τmax + MTp.
Moreover, the network needs updated data every Tcoh; there-
fore, MTp + 2τmax ≤ Tcoh. This condition results in a
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Fig. 14. Total network energy consumption, normalized with respect to the
energy E0 needed by one node to transmit one data packet, plotted versus
normalized coverage area A/d2. System parameters are T = 800 s and
Tp = 0.2 s. The sparsity level S = 10 is assumed to remain fixed.

minimum bandwidth requirement of

BR/D ≥ LCS log(N)
Tcoh − 2τmax

(17)

Finally, in the R/R scheme, the average consumed energy for
one field reconstruction is

ER/R = psNE0 = ps
A

d2
E0 (18)

where psN is the average number of nodes that transmit in
one frame. Note that ps in the above expression is implicitly
dependent on N , through the design procedure outlined in
Section IV.
The observations that we made from Fig. 12 imply that in

order for a set of design parameters to satisfy the sufficient
sensing condition, a minimum bandwidth is required. The
minimum required bandwidth is obtained by identifying the
maximum of q, i.e., by taking the derivative of q with respect
to p and setting it equal to zero. Let us assume that βmin > 1,
which is the case of our interest.3 The maximum value of q
is then obtained as qmax = 1/eβmin. In order for sufficient
sensing to occur, we need to have qs ≤ qmax, which results
in the minimum bandwidth requirement as

BR/R ≥ (2eNqs + 1)
L

Tcoh

Fig. 14 shows the energy consumption normalized with
respect to E0, versus the normalized coverage area A

d2 for
the three schemes above. Note that Tcoh = 800 s results in a
maximum of N = 4000 nodes in a conventional network.
As seen in the figure, for the same coverage area, RACS
offers energy savings of an order of magnitude compared to
the the conventional scheme. By reducing the energy con-
sumption, RACS extends the life-time of the sensor network.
Fig. 15 shows the minimum bandwidth required, versus the
size of the network N . For the same network size, RACS

3In the case that βmin ≤ 1, qmax = e−βmin and the analysis follows
similarly.
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Fig. 15. Minimum required bandwidth versus the size of the network N
for the conventional, R/D and R/R schemes. System parameters are S = 10,
T = 800 s, L = 1000 bits and τmax = 0.33 s.

requires lower bandwidth compared to the the conventional
scheme. For example, in a network of N = 2500 nodes,
R/R scheme requires only a bandwidth of 1.2 kbps, whereas
the conventional network requires 3.1 kbps. The savings in
bandwidth are a significant feature from the viewpoint of
acoustic communications.

VI. REAL DATA EXAMPLE

To visually illustrate the field recovery process, we em-
ploy RACS to sense a real field. We consider zonal
current data collected at Southern California bight at 3
GMT on August 19, 2010 at latitudes [32.5◦, 32.58◦] and
longitudes [238.8◦, 243◦]. This data set is accessible at
http://ourocean.jpl.nasa.gov and is shown in Fig. 16(a). We
note that almost 99% of the energy of the signal is contained
in S = 17 Fourier coefficients. For Ns = 285, assuming a
sufficient sensing probability Ps = 0.9, a desired updating
interval T = 1000 s, and a packet duration Tp = 0.2 s,
following the design approach of Section IV, the per-node
sensing probability is determined to be ps = 0.439. Fig. 16(b)
shows the map of the field recovered using RACS with
this probability.4 In this example recovery has been achieved
consuming less than half the energy of a conventional network,
ER/R/Econv ≈ 0.4. In order to study the error behavior of the
scheme as a function of sensing probability, Fig. 17 shows the
normalized reconstruction error versus the per-node sensing
probability p. Saturation region is not present in this figure, as
it is in Fig. 7(a), since the updating interval T is long enough
to keep the number of packet collisions from dominating the
error.

VII. CONCLUSION

We proposed a networking scheme that combines the con-
cepts of random channel access and compressed sensing to
achieve energy and bandwidth efficiency. This scheme is

4For reconstruction, we used CVX, a package for specifying and solving
convex programs [19].
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Fig. 16. The sensing field is recovered employing RACS with ps = 0.439,
T = 1000 s, and Tp = 0.2 s.

suitable for large networks, deployed for long-term monitoring
of slowly varying phenomena. The underlying condition is that
the measured physical phenomenon has compressible (sparse)
representation in the frequency domain, which is the case
in many natural fields. The proposed method is completely
decentralized, i.e., sensor nodes act independently without the
need for coordination with each other or with the FC. The only
downlink feedback needed is an occasional synchronization
beacon.
To account for the random packet loss caused by collisions,

it becomes necessary to employ a probabilistic approach
in the system design, thus we introduced the concept of
sufficient sensing probability. With this probability, which is
the system design target, the FC is guaranteed to acquire a
sufficient number of observations per frame to reconstruct
the measured field. A desired probability of sufficient sensing
then points to the necessary per-node sensing probability. The
performance of RACS was assessed analytically in terms of
the energy consumption and bandwidth requirement, demon-
strating substantial savings over a conventional scheme based
on deterministic sensing and access.
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Fig. 17. Normalized reconstruction error versus p for the zonal current data
of Fig. 16.
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