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a b s t r a c t

For networks that are deployed for long-termmonitoring of environmental phenomena, it
is of crucial importance to design an efficient data gathering scheme that prolongs the life-
time of the network. To this end, we consider a RandomAccess Compressed Sensing (RACS)
scheme that considerably reduces the power and bandwidth usage of a large network.
Motivated byunderwater applications,wepropose a continuous-timeRACS that eliminates
the need for synchronization and scheduling which are difficult to achieve in a distributed
acoustic network. We provide an analytical framework for system design that ensures
fast recovery and power-efficiency. Through analysis and examples, we demonstrate that
recovery of the field can be attained using only a fraction of the resources used by a
conventional TDMA network, while employing a scheme which is simple to implement.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

With the advances in underwater sensor technology, it
is envisioned that underwater sensor networks, consisting
of a number of static or mobile nodes, will be deployed
to monitor physical, chemical or biological phenomena
in the ocean. Potential applications of underwater sen-
sor networks are in environmental observation and data
collection (e.g., temperature, salinity, oxygen levels, pollu-
tants, etc.), field and equipment monitoring (e.g., in deep-
sea oil-fields) or disaster prevention [1]. Wireless acoustic
communication is the physical layer technology used in
underwater networking. Threemain characteristics distin-
guish an acoustic communication system from its radio
counterpart: limited and distance-dependent bandwidth,
time-varyingmultipath propagation, and high latency. The
shortage in bandwidth results in long packets, thus in-
creasing the probability of packet collision in contention-
based medium access protocols. Due to the low speed
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of sound, the propagation delay in acoustic communica-
tion could be comparable to the packet duration. This fact
calls for careful scheduling, especially when deterministic
medium accessmethods such as time divisionmultiple ac-
cess (TDMA) are employed. Additionally, recharging bat-
teries in sensor devices that are deployed underwater is
difficult.

In this paper, we consider a static area network, where
sensor nodes are anchored to the sea floor, and deployed
for long periods of time (months or even years). Each
sensor node communicates its observations to a central
node, referred to as the fusion center (FC) and the FC
reconstructs the map of the field of interest. To be able
to operate over long intervals of time, sensor nodes need
to conserve their energy. In both wireless networks and
underwater acoustic networks, power consumption is a
major concern. A large body of literature examines energy-
aware design methodologies for managing the periodic
sleep cycles of sensors, such as [2–4]. Furthermore,
bandwidth is severely limited in underwater acoustic
networks, hence efficient networking schemes are of
particular importance [5,6].

To achieve the desired efficiency, we capitalize on the
fact that most natural phenomena are sparse (compress-
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ible) in an appropriate basis and exploit the principle of
compressed sensing. The theory of compressed sensing
establishes that under certain conditions, exact signal
recovery is possible with a relatively small number of ran-
dommeasurements [7,8]. Application of compressed sens-
ing in wireless sensor networks was first introduced in
[9–11], where the authors use phase-coherent transmis-
sion of randomly-weighted data from sensor nodes to the
FC over a dedicated multiple-access channel, to form dis-
tributedprojections of data onto an appropriate basis at the
FC. In this approach sensors need to be perfectly synchro-
nized, which is difficult tomaintain in underwater acoustic
networks. Ref. [12] proposes compressive cooperative spa-
tial mapping using mobile sensors based on a small set of
observations. A number of references, such as [13,14], fo-
cus on phenomena that are sparse in the spatial domain,
e.g., event detection or tracking of multiple targets. In [15],
authors consider a decentralized network (without FC),
where active nodes exchange measurements locally. The
authors formulate sparse recovery as a decentralized con-
sensus optimization problem and show that their iterative
decentralized algorithm converges to a globally optimal
solution. In [16], ultra-low power infrastructure monitor-
ing is achieved by employing data compression and a low-
collision MAC protocol. Authors in [17,18] consider spatial
mapping using mobile sensors (robots) and show that if
robots cover the field in a random path, reconstruction can
be achieved with far fewer samples. Finally, in [19], capac-
ity bounds of an on–off random multiple access channel
are determined by transforming the problem to an equiv-
alent compressed sensing problem and using the sparsity
detection algorithms.

Employing the principles of compressed sensing and
random channel access, in [20], we proposed a simple and
efficient networking scheme referred to as Random Access
Compressed Sensing (RACS). The RACS scheme consists
of distributed random sampling, followed by random
channel access. The key idea behind RACS is that packet
collisions (which are inevitable in random access) occur
randomly and thus do not change the random nature of
the observations provided to the FC. Since the FC only
needs to receive some, and not all the sensor packets, it can
simply disregard the collisions. By disregarding collisions,
we eliminate the need for listening to the medium (as
used in contention-based MAC protocols), which in turn
reduces the energy consumption of sensor nodes. The
FC obtains an incomplete set of measurements (due to
both random sensing and losses due to random access)
from which it reconstructs the field using compressed
sensing techniques. To provide a sufficient number of
measurements to the FC, we compensate for the collision
losses by initially selecting the number of participating
sensors to be somewhat greater than the minimum
number of packets required.

The RACS scheme [20] assumes a frame-based (slotted)
transmission and batch reconstruction, i.e., the sampling
process is performed at the beginning of a frame, the FC
collects data within one frame duration, and at the end of
each frame it attempts to reconstruct the field. Once the
reconstruction is performed, the frame is discarded and the
FCwaits for a new set of data in the next frame. The frame-
based RACS requires the sensor nodes to be synchronized,

which is challenging in large acoustic networks where
variable propagation delays are present and the nodes
are subject to clock drift. This fact motivates our present
work, whose goal is to dispense with synchronization and
scheduling requirements.

Wepropose a continuous-timenetworking scheme that
employs the RACS principles yet obviates the need for
frame-based transmission. For such a scheme, we develop
an analytical model for the data collection process that
provides the system designer with a flexible tool to trade-
off the recovery time for power-efficiency. The proposed
continuous-time RACS has a simple implementation and
eliminates the need for time-synchronization.

The rest of the paper is organized as follows. In
Section 2, we introduce the network model, discuss the
application of compressed sensing to our problem, and
review the RACS scheme [20]. In Section 3, we propose
two analytical frameworks to model the continuous
transmission of data. In Section 4, we offer two design
approaches to determine the network parameters. In
Section 5, we analyze the performance of the proposed
system in terms of power consumption and bandwidth
requirements, and compare it with a conventional TDMA
network. Section 6 illustrates the performance of the
suggested scheme on a sample data set. Finally, we provide
the concluding remarks in Section 7.

Notations:We denote by ℓp the p-norm of a vector x = [x1,

. . . , xN ]
T , ∥x∥ℓp =

N
i=1 |xi|p

1/p
. If V is a k × l matrix,

vec(V) denotes the kl × 1 vector formed by stacking
the columns of matrix V, in other words, vec(V) =
v11 . . . vl1 . . . v1k . . . vlk

T . We denoteby
B(N, p) the binomial probability distribution of the num-
ber of successes in a sequence of N independent experi-
ments, each of which has a success probability p. Finally,
A ⊗ B denotes the Kronecker product of matrices A and B.

2. Random access compressed sensing network model

Consider a grid network shown in Fig. 1, which consists
of N = IJ sensors located on a two-dimensional plane,
with J and I sensors in x and y directions, respectively. The
sensors are separated by distance d in each direction. The
total coverage area of the network is A = Nd2. We assume
that the network has the task of measuring a physical
phenomenon, u(x, y, t), whose coherence time is Tcoh. At
time t , the sensor node located at position (i, j) in the
network grid acquires a measurement denoted by uij(t) =

u(xj, yi, t), where i ∈ {1, . . . , I} and j ∈ {1, . . . , J} and xj
and yi denote the sensor’s position in the two-dimensional
space. Note that the process is slowly varying during Tcoh,
thuswe can assume that uij(t1) ≈ uij(t2) for |t1−t2| ≤ Tcoh.
In what follows, we will focus on an observation window
of size T ≤ Tcoh, and drop the time index from the sensor
measurements.

The measurements are sent to the FC whose task is to
reconstruct the field of interest. For example, the FC can be
located on the surface of a body of water with depth D, as
shown in Fig. 2, such that node n is at a distanceDn from the
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Fig. 1. A grid sensor network consisting of N = IJ sensor nodes.

Fig. 2. Positioning of the fusion center on the surface.

FC, for n ∈ {1, . . . ,N}. The complete map of the process,
obtained by the sensor measurements, is denoted by

U =

uij


i=1,...,I
j=1,...,J

. (1)

Most natural phenomena have a compressible (sparse)
representation in the frequency domain [18,12], and
we will assume that this holds for our measurements
as well. Specifically, let V = WIUWJ be the two-
dimensional spatial discrete Fourier transform of U, where
WI is the matrix of discrete Fourier transform coefficients,
WI [m, k] = e−j2πmk/I . It can now be shown that v =

(WJ ⊗ WI)u, where v = vec(V) and u = vec(U). The
Fourier representation, v, is assumed to be sparse.

Each sensor node measures the physical quantity
of interest and encodes the measurements, along with
the sensor’s location tag, into a data packet of L bits,
which is then transmitted to the FC. Upon receiving a
data packet, the FC demodulates the signal and extracts
the measurement information as well as the location
information of the transmitting sensor. If each sensor is
given a fixed bandwidth B to communicate with the FC,
the packet duration is Tp =

L
B , where we assume without

the loss of generality that the bandwidth is equal to the
bit rate. The propagation delay of each packet depends on
the distance between the sensor node and the FC, i.e., the
propagation delay of node n’s packet is given by τn =

Dn
c ,

where c = 1500 m/s is the nominal speed of sound
underwater. The observations of a random subset of M
sensors’ packets at the FC can be expressed as

y = Ru + z (2)

where R is an M × N random selection matrix, consisting
of M rows of the identity matrix selected at random,
and z represents the measurement noise. Note that the
communication noise translates into bit errors; in this
work, we neglect the communication noise and assume
that packets are received error-free. Note that each row
of the matrix R contains a single 1 at the position of a
received packet while all the other elements are zero. The
FC can simply form the random selection matrix R from
the received packets, since the location information of the
transmitting node is encoded in the packet.

Noting that u = 9v, where 9 = (WJ ⊗ WI)
−1 is the

Inverse Discrete Fourier Transform (IDFT) matrix, Eq. (2)
can be re-written in terms of the sparse vector v as follows

y = R9v + z. (3)

To reconstruct the field, the FC first tries to recover the
vector v as accurately as possible, then uses it to construct
the map U. Given the observations y, the random selection
pattern R and the sparsity basis 9, and in the absence
of noise – which is the case we will be focusing on –
reconstruction can be performed by solving the following
minimization problem:

minimizeṽ ∥ṽ∥ℓ1 subject to R9ṽ = y. (4)

The theory of compressed sensing (specifically, [21])
states that as long as the number of observations, picked
uniformly at random, is greater than CS logN , then
with very high probability the solution to the convex
optimization problem (4) is unique and is equal to v. Here
C is a constant that is independent of N and S (see [21] for
the details). Thus, in our case, it suffices to ensure that the
FC collects at least Ns = CS logN packets picked uniformly
at random from different sensors to guarantee accurate
reconstruction of the field with very high probability.

2.1. Frame-based RACS

In the frame-based transmission [20], we assume that
all the sensor nodes are time-synchronized, i.e., that every
node knows when a data frame begins at the FC. This
can be achieved by employing a synchronization algorithm
such as [22] or by having the FC broadcast a beacon signal
which the nodes then use to time their transmissions. At
frame k, a random subset of sensors is selected to conduct
measurements. This can be done in a distributed manner
by equipping the sensors with independent, identically
distributed Bernoulli random generators, i.e., by having
each sensor toss an identical coin. At the beginning of a
frame, each node determines whether it will participate in
the sensing process, which occurs with some probability
p. The selected nodes then use random channel access to
transmit their data to the FC. Specifically, sensor n picks
a random transmission delay θn uniformly in [0, T − Tp],
where T ≤ Tcoh is the frame duration.
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As in any random access, packets may collide at the
FC. The key idea here is to let the FC simply discard
the colliding packets. This approach is motivated by the
compressed sensing theory and the fact that the FC does
not care which specific sensors are selected as long as
(i) the selected subset is chosen uniformly at random,
and (ii) there are sufficiently many collision-free packets
received at the FC to allow for the reconstruction of the
field. Therefore, once a collision is detected, the FC simply
discards the colliding packets and reconstructs the data
using the rest of the packets. Note that the matrix R of
Eq. (3) now includes both the effects of random selection
and random collisions. The frame-based RACS scheme [20]
is summarized below:

Step 1. At the beginning of a frame, sensor node n tosses
a coin to determine whether it participates in
sensing (with probability p) or stays inactive (with
probability 1 − p) during that frame.

Step 2. If node n is selected for sampling, it measures the
physical quantity of interest and encodes it into
a packet of L bits. The sensor’s location is also
included in the packet.

Step 3. Node n picks a uniformly-distributed delay for the
transmission of its packet.

Step 4. FC collects the packets received during one frame.
If a collision is detected, FC discards the colliding
packets.

Step 5. At the end of the frame, FC uses the correctly re-
ceivedpackets to formEq. (3) and then reconstructs
the data using ℓ1 minimization in Eq. (4). We as-
sume that packets which do not collide are cor-
rectly received.

3. Continuous transmission RACS

Maintaining time synchronization is a challenging task
in large acoustic networks. First, due to the skew of the
local clock at each sensor and the long deployment time of
the network, synchronization process needs to be repeated
frequently. Second, propagation delays are long and may
vary with time as the channel conditions change. Both
of these facts make network synchronization difficult and
motivate the demand for schemes that can do without
synchronization.

Continuous-time RACS that we describe here, is a
simple and completely distributed networking scheme
whose goal is to eliminate the need for synchronized
scheduling. This scheme does not rely on time slotting,
but the nodes instead transmit asynchronously, whenever
they have a packet. We consider two packet generation
processes for the distributed sensors: a deterministic, and
a Poisson process. For each of these cases, we analyze the
aggregate arrival process of the useful packets at the FC,
and study the conditions under which this process yields
a sufficient number of measurements, Ns = CS logN .
These conditions in turn imply a per-node packet generation
rate, λ1, or a collection time, T , that meets the system
requirements. These two parameters completely define a
continuous-time RACS system.

Fig. 3. FC collects the received packets within an interval [Tx, Tx + T ].

3.1. Scenario 1: deterministic arrival process

In this scenario, each node senses the field every
T1 seconds, and transmits its packets as soon as it is
generated. However, the nodes are not synchronized, and
the FC perceives the data packets as being generated
at different (uniformly random) instants within [0, T1].
In other words, according to the FC’s clock, packet n is
generated at time t ′n and arrives at the FC at time tn =

t ′n + τn, where τn is the propagation delay of node n ∈

{1, . . . ,N}.
The FC starts collecting the packets at time Tx and

collects the received packets within an observation
interval of duration T , as shown in Fig. 3. Note that the
packets that arrive after Tx + T − Tp will not have been
completed by the end of the collection window; hence,
they are not counted in the number of received packets.
Packets that arrive in [Tx − Tp, Tx] are not within the
collection window, yet they can cause collision to data
packets, and as such have to be taken into account when
calculating the number of collisions. The FC needs to
recover the field in T ≤ Tcoh, before the sensing field has
undergone considerable change. The probability that a full
packet from sensor n arrives within duration T is given by

prob

Tx ≤ tn ≤ Tx + T − Tp


= λ1(T − Tp) (5)

where λ1 = 1/T1 is the per-node packet generation rate
and tn is the arrival time of sensor n’s packet. Given that
packet n has arrived at time tn, a collision will occur if
another packet m arrives at any time in [tn − Tp, tn + Tp].
This event occurs with the probability

prob

tn − Tp ≤ tm ≤ tn + Tp


= 2λ1Tp. (6)

Consequently, the probability of no collision for packet n is
given by

prob(packet n is collision-free | packet n arrived at tn)

= (1 − 2λ1Tp)N−1. (7)
The FC discards the collisions, buffers the correctly

received packets, and waits to have a sufficient number of
packets to perform the reconstruction. Let K(λ1, T ) denote
the number of correctly received packets at the FC during
the time interval T . The probability that a packet is fully
received within [Tx, Tx + T ] and is collision-free is given by

q = λ1(T − Tp)

1 − 2λ1Tp

N−1
. (8)

To derive a simple expression characterizing K(λ1, T ), we
propose the following approximate model for the density
function of the number of correctly received packets:

PK (k; λ1, T ) = prob (K(λ1, T ) = k) = B(N, q)

=


N
K


qk(1 − q)N−k (9)
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Fig. 4. Probability density function of the number of correctly received
packets K(λ1, T ) for N = 1000, T = 200 s, T1 = 1000 s (λ1 = 1/T1 =

0.001 packet/s) and Tp = 0.2 s; the number of simulation runs is 100,000.

Table 1
Kullback–Leibler distances between the simulated data and the binomial
model in Eq. (9) (Tp = 0.2 s and thenumber of simulation runs is 100,000).

N = 1000 T = 200 s T = 1000 s

λ1 = 0.001 packet/s 0.0141 0.081
λ1 = 0.0001 packet/s 0.00092 0.0012

where q is given by Eq. (8). To justify the validity of this
simplemodel, we have conducted simulation experiments.
Fig. 4 shows the histogram of the number of correctly
received packets obtained from simulation, as well as the
plot of B(N, q), where q is determined from Eq. (8), and
B(N, qest), where qest is estimated from the simulated data.
We observe that our approximation for PK (k; λ1, T ) closely
matches the estimated binomial and fits the simulated
data. Table 1 also shows the Kullback–Leibler distances1
between the probability distribution of the simulated data
and themodel in (9) for different values of T and λ1. Noting
a goodmatch, wewill rely on this model whenwe proceed
with system design in Section 4.

3.2. Scenario 2: Poisson arrival process

In this scenario, we assume that each node generates
packets according to an independent Poisson process at an
average rate ofλ1. The nodes transmit their packets as soon
as they are generated. The overall packet arrival rate at the
FC is λ = Nλ1. In order to be able to reconstruct the field,
the FC needs to collect at least Ns useful packets as before;
however, unlike in the deterministic scenario, there is
no guarantee that the packets received by the FC belong
to different nodes. Therefore, if the FC receives multiple
packets from a node, it keeps only one packet and discards
the copies. The FC deals with collisions as before, by simply
discarding them. The total number of packets that are used

1 The Kullback–Leibler distance or the relative entropy between two
probability mass functions p(x) and q(x) is defined as [23]

D(p ∥ q) =


x

p(x) log2
p(x)
q(x)

.

in the reconstruction process, K(λ1, T ), is the number of
received packets left after discarding the colliding packets
and the multiple copies of the same packet. Hence, the
FC observes an effective arrival rate (successful and non-
repeated packets only) that is less than λ, say λ′. We
suggest the following model for λ′:

λ′
=

N(1 − e−λ1T )e−2Nλ1Tp

T
. (10)

This model can be justified by the following two
observations:

(i) Given an arrival rate of λ = Nλ1, the probability of no
collision at the FC is modeled as

prob(no collision) = e−2Nλ1Tp . (11)

The average number of collision-free packets observed
at the FC in T is thus Nλ1e−2Nλ1T .

(ii) Focusing on an individual node, let N1(T ) denote
the number of packets that it generates in T . The
FC discards repetitive packets; hence, the effective
number of packets generated at each node during T is
given by

N ′

1(T ) =


0, N1(T ) = 0
1, N1(T ) ≥ 1. (12)

The average effective packet generation rate at each
node is thus some λ′

1 ≤ λ1. Let us define the
corresponding reduction factor as ρ = λ′

1/λ1, i.e.,

ρ =
E


N ′

1(T )


E {N1(T )}
=

1 − prob{N1(T ) = 0}
λ1T

=
1 − e−λ1T

λ1T
. (13)

The average arrival rate of useful packets at the FC,
λ′, can now be expressed as the product of average
aggregate arrival rate, the reduction factor ρ and the
probability of no collision:

λ′
= Nλ1ρe−2Nλ1Tp . (14)

Substituting for ρ from Eq. (13), the above expression
reduces to (10). We now conjecture that K(λ1, T ) is
modeled as a Poisson process,2 i.e.,

PK (k; λ1, T ) = prob (K(λ1, T ) = k) =
(λ′T )k

k!
e−λ′T (15)

where λ′ is given by Eq. (10). In order to examine our
conjecture, we conducted numerical experiments. Fig. 5
shows the histogram of a simulated K(λ1, T ) process,
the Poisson distribution with λ′ of Eq. (10), and the
Poisson distribution with λest , an average arrival rate
estimated from the simulated data. Table 2 shows the

2 Note that the Poisson model is commonly adopted for analyzing
random access protocols [24], where it is assumed that the aggregate
packet arrival, including retransmitted packets in case of collisions,
follows a Poisson model. Here, we invoke a similar assumption for the
total number of packets that remains after we discard the colliding and
duplicate packets.
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Fig. 5. Probability density function of the number of correctly received
packets K(λ1, T ) for N = 2500, T = 400 s, λ1 = 0.001 packet/s and
Tp = 0.2 s; the number of simulation runs is 500,000.

Table 2
Kullback–Leibler distances between the simulated data and the Poisson
model in Eq. (15). (Tp = 0.2 s and the number of simulation runs is
100,000).

N = 2500 T = 200 s T = 1000 s

λ1 = 0.001 packet/s 0.0248 0.0191
λ1 = 0.0001 packet/s 0.0046 0.0117

Kullback–Leibler distances between the distribution of the
simulated K(λ1, T ) and the model (15) for few values of
T and λ1. Noting a good match between the model and the
simulation, wewill rely on (15)whenwe proceed to design
the system in Section 4.

4. System design

We propose two design criteria for the sensor network
and provide an analytical framework to determine the
corresponding design parameters. In the first approach,
we aim at minimizing the required recovery time. In this
‘‘fast recovery’’ criterion, the design approach is to fix λ1,
and find the smallest T (denoted by Ts) for which recovery
is achieved with a desired probability. In other words,
the question that we address is how long does the FC
need to wait in order to collect a sufficient number of
packets to reconstruct the field. This approach is of interest
for applications where recovery time is a major concern.
In the second criteria, we aim at minimizing the power
consumption in the network. In this ‘‘power efficiency’’
criterion, the design approach is to fix the recovery time
T , and find the smallest λ1 (denoted by λ1s) for which
field recovery is achieved with a desired probability. The
question now is how often the sensor nodes need to
transmit. This approach is suitable for applications where
power, i.e., the network lifetime, is a major constraint. The
two design approaches thus exhibit a trade-off between
recovery time and power efficiency. The choice of the
appropriate approach is specific to a particular system’s
constraints. Note that in both cases, in order for a design to
be feasible, the collection time T has to be smaller than or
equal to the coherence time (Tcoh) of themeasured process.

For a given system, we define the performance require-
ment as the minimum probability of sufficient sensing Ps.

In other words, we ask that the FC collect at least Ns =

CS logN useful packets during time T with probability Ps
or higher. This condition can be expressed as

prob (K(λ1, T ) ≥ Ns) ≥ Ps. (16)

We now seek to obtain the values of system parameters,
i.e., T or λ1, that will satisfy the above sufficient sensing
condition. To do so, it will be useful to define the
complementary cumulative function of K(λ1, T ):

QK (Ns; λ1, T ) = prob (K(λ1, T ) ≥ Ns)

=

∞
k=Ns

PK (k; λ1, T )

= 1 −

Ns−1
k=0

PK (k; λ1, T ) (17)

where PK (k; λ1, T ) is given by Eq. (9) for the deterministic
arrival model, or by Eq. (15) for the Poisson arrival model.3

4.1. Design criterion 1: fast recovery

Under this criterion, given a fixed λ1, the goal is to
recover the field with probability Ps in the shortest time
possible Ts. In otherwords, wewant to determine the value
of Ts for which

QK (Ns; λ1, Ts) = Ps. (18)

Eq. (18) can be solved for Ts numerically. Below,
we illustrate the fast recovery design approach for the
deterministic and the Poisson arrival models. To do so, we
use an example of a network consisting of N = 2500
nodes and a system design that calls for the probability of
sufficient sensing Ps = 0.9. The packets have a duration
Tp = 0.2 s and are generated at a rate of λ1 =

10−3 packet/s. We assume that the measured process
has a sparse representation in the frequency domain with
sparsity S = 10. Assuming C = 2, Ns = CS logN ≈ 142
correctly received packets are required for reconstructing
the field.
Deterministic model. The question that we want to answer
is how long does the FC need to listen before it can
recover the field with the probability Ps = 0.9. To answer
this question, in Fig. 6(a) we show the complementary
cumulative function QK (Ns; λ1, T ) versus q. This plot is
used to find qs, the value corresponding to Ps. Once this
value is determined, Fig. 6(b), which represents Eq. (8), is

3 Note that for the Poisson model, calculating (λ′T )k may become
intractable as k grows. In order to alleviate this problem, in the
numerical simulations we use the Gosper approximation for the factorial
function [25],

k! ≈


2k +

1
3


πkke−k

which yields the following approximation for the Poisson probability
density function

PK (k; λ1, T ) ≈
1

2k +
1
3


π


λ′T
k

k

e−λ′T+k.
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(a) qs = 0.07. (b) Ts = 191 s.

Fig. 6. Determining Ts , using the fast recovery criterion, for the example of deterministic arrivals: required probability of sufficient sensing Ps = 0.9
implies qs = 0.07 which in turn determines Ts = 191 s.

(a) αs = 174. (b) Ts = 210 s.

Fig. 7. Determining Ts , using the fast recovery criterion, for the example of Poisson arrivals: required probability of sufficient sensing Ps = 0.9 implies
αs = 174 which in turn determines Ts = 210 s.

used to determine the time required for sufficient sensing.
We obtain Ts = 191 s; hence, in order to recover the field
with probability 0.9, the FC needs to collect packets for at
least Ts = 191 s.

Poisson model. We consider the same example network,
assuming that each node generates a packet according
to a Poisson process at an average rate of λ1 =

10−3 packet/s. Fig. 7(a) shows QK (Ns; λ1, T ) versus α =

λ′T . Corresponding to Ps = 0.9, this figure implies a value
αs = 174. Now, using αs, Fig. 7(b), which corresponds
to Eq. (10), implies Ts = 210 s. Note that the value of
Ts obtained using a Poisson transmission model is greater
than the value of Ts obtained using a deterministic arrival
model with the same per node arrival rate. This difference
is due to the fact that a Poisson model may result in
repetitive packets, hence the FC requires a longer time to
obtain the same number of collision-free and repetition-
free packets.

4.2. Design criterion 2: power efficiency

Under this criterion, we assume that the system has a
specified recovery time T ≤ Tcoh. Our goal is to recover
the field at minimum packet transmission rate, which
translates into minimum power expenditure. The design
parameter is thus the minimum sensing rate of each node,
λ1s, that needs to be determined such that

QK (Ns; λ1s, T ) = Ps. (19)

This equation can be solved numerically for λ1s. We
illustrate this design approach for both deterministic and
Poisson models through our earlier example. The recovery
time is now set to T = 1000 s, and the arrival rate λ1s is to
be determined.
Deterministic model. The question now is how fast does
each sensor need to sample the process such that the
FC can recover the field with probability Ps = 0.9
within T seconds. To answer this question, we show
in Fig. 8(a) the complementary cumulative distribution
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(a) qs = 0.07. (b) λ1s = 7.6 × 10−5 packet/s.

Fig. 8. Determining λ1s , using the power efficiency criterion, for the example of deterministic arrivals: required probability of sufficient sensing Ps = 0.9
implies qs = 0.07 which in turn determines λ1s = 7.6 × 10−5 packet/s.

(a) αs = 175. (b) λ1s = 7.9 × 10−5 packet/s.

Fig. 9. Determining λ1s , using the power efficiency criterion, for the example of Poisson arrivals: required probability of sufficient sensing Ps = 0.9 implies
αs = 175 which in turn determines λ1s = 7.9 × 10−5 packet/s.

function QK (Ns; λ1s, T ) versus q. Corresponding to the
desired Ps = 0.9, the underlying probability q is
determined as qs = 0.07. For this value, Fig. 8(b), which
shows q versus λ1 using Eq. (8), implies a sensing rate of at
least λ1s = 7.6 × 10−5 packet/s.
Poisson model. For the specified collection interval T =

1000 s, Fig. 9(a) shows QK (Ns; λ1s, T ) versus α. From this
figure, the value of α corresponding to Ps is determined as
αs = 175. For the so-obtained value of αs, Fig. 9(b), which
shows α = λ′T as a function of λ1s according to Eq. (10),
implies λ1s = 7.9 × 10−5 packet/s. Similarly as in the fast
recovery design approach, the packet transmission rate
required in the Poisson transmission case is greater than
the packet transmission rate required in the deterministic
arrival case.

5. Performance analysis

To assess the performance of continuous-time RACS,
we consider three criteria: recovery time, total consumed

power, and required bandwidth. As a comparison bench-
mark, we use a conventional network with deterministic
sensing and deterministic access. In the conventional net-
work, all N nodes conduct measurements every T seconds
and transmit their data packets to the FC using a stan-
dard TDMA. This approach requires scheduling, such that
packets from different nodes arrive back-to-back at the FC.
Fig. 10 depicts the required scheduling process. One frame
of data containsN packets, and the total collection time has
to be T = NTp ≤ Tcoh. The maximum number of nodes that
can be deployed in a conventional network is thus given
by N ≤

Tcoh
Tp

, where Tcoh is the property of the sensing field.
Thus, the coverage area of a conventional network is lim-
ited to A = Nd2 ≤ Tcohd2/Tp.

5.1. Time analysis

Fig. 11 compares the collection time needed for each
scheme as a function of the number of nodes, i.e., the area
covered by the network. The signal is assumed to have
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Fig. 10. The scheduling required at each node in the benchmark case
(TDMA).

Fig. 11. Collection time vs. network coverage area, under the fast
recovery design criterion of Section 4.1; λ1 = 10−3 packet/s and Tp =

0.2 s.

a fixed sparsity S = 10 and the fast recovery design
procedure of Section 4.1 is employed. The collection time
for the benchmark design is given by T = NTp. We note
that RACS offers substantial savings in the collection time
as compared to the conventional design. Moreover, the
savings growwith the coverage area, as long as the sparsity
does not change. For instance, for N = 2500 sensor
nodes, the collection time of RACS is less than half of that
required for a conventional network. Note also that the
collection time of the network assuming a Poisson model
is slightly greater than the one assuming a deterministic
model, which is to be expected due to the occurrence of
repetitive packets in the Poisson model.

5.2. Power analysis

We now derive the (average) total transmit power
consumption of the network for each of the schemes. Let
P1 denote the transmission power per node required to
send a data packet to the FC. For the sake of generality, we
assume that all nodes transmit at the samepower. The total
consumed power in the benchmark (conventional) case,
denoted by Pc , is given by

Pc = NP1. (20)

Fig. 12. Total power consumption vs. coverage area, under the power
efficiency design of Section 4.2; T = 1000 s and Tp = 0.2 s.

The coverage area is given by A = Nd2; therefore,

Pc =
A
d2

P1. (21)

The average total consumed power for continuous-time
RACS,with deterministic or Poisson arrivalmodels, is given
by

P = Nλ1TP1 (22)

where Nλ1T is the average number of nodes that
transmit in one collection interval T . The minimum power
consumption corresponds to the minimum sensing rate
λ1s, which is calculated according to the power efficiency
design criterion of Section 4.2. Fig. 12 compares the
consumed power by each scheme as a function of the
area covered by the network. We note that continuous-
time RACS offers substantial savings as compared to the
benchmark case. For N = 2500, the power consumed
by RACS is about 7 dB less than the power consumed by
the conventional TDMA network to cover the same area.
As before, power consumption is slightly higher if the
packets are generated according to the Poisson process as
compared to the deterministic process.

5.3. Bandwidth analysis

Bandwidth is severely limited in an underwater acous-
tic network, hence the lower the bandwidth requirement,
the more practical the network scheme is for underwa-
ter applications. We define the minimum required band-
width, Bs, as the bandwidth for which sufficient sensing
can be provided, and compare this bandwidth for different
schemes.

5.3.1. Benchmark case
In the benchmark scheme, for the network to recover

the field within Tcoh, the frame duration has to be T =

NTp ≤ Tcoh, where Tp = L/B and we are assuming for
simplicity that B equals the bit rate. Hence, the minimum
bandwidth requirement is stated as

B ≥
NL
Tcoh

= Bs. (23)
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Fig. 13. The probability q of Eq. (8) plotted vs. B for various values of T ;
N = 2500, Tcoh = 1000 s and L = 1000 bits.

5.3.2. Continuous-time RACS with deterministic packet
arrivals

Fig. 13 shows the probability q as a function of
bandwidth B for various values of the collection time T .
As seen from the figure, for a certain qs, the minimum
bandwidth usage corresponds to maximum T , T = Tcoh.
Hence, in order to determine theminimum bandwidth, we
let T = Tcoh. Moreover, we assume that Tp ≪ Tcoh; hence,
Tcoh − Tp ≈ Tcoh, and

q ≈ λ1Tcoh

1 − 2λ1Tp

N−1
. (24)

Fig. 14 plots this q as a function of λ1 for a sample set of
parameters. In order for a set of design parameters to be
achievable, qs has to be below the maximum value qmax;
otherwise, no solution for λ1 exists. Setting the derivative
of q with respect to λ1 equal to zero, we obtain the
maximum value of q as

qmax =
Tcoh
2NTp


1 −

1
N

N−1

≈
Tcoh

2NTpe
(25)

where the approximation is valid for largeN . Now, in order
for a solution to exist, qs ≤ qmax has to hold. This condition
yields the required bandwidth as

B ≥
2NLqse
Tcoh

= Bs. (26)

5.3.3. Continuous-time RACS with Poisson packet arrivals
Analogous to the deterministic case, herewe can findλ1

forwhich λ′ of Eq. (10) ismaximized. Setting the derivative
of λ′ with respect to λ1 equal to zero results in

λ1 =
1
T
log


1 +

T
2NTp


. (27)

Now the maximum value λ′
max is given by

λ′

max =
1
2Tp


1 +

T
2NTp

−
2NTp
T −1

≈
1

2Tpe
(28)

where the approximation holds for T ≪ 2NTp, which will
normally be justified for large N . Noting that λ′

s ≤ λ′
max

Fig. 14. The probability q of Eq. (24) plotted vs. λ1 exhibits a clear
maximum; N = 4000, Tcoh = 500 s and Tp = 0.2 s.

Fig. 15. Minimum bandwidth requirement vs. N .

has to hold in order for the solution to exist, we arrive at
the minimum bandwidth requirement:

B ≥ 2eLλ′

s = Bs. (29)

Note that in Eq. (29), Bs depends implicitly on the size of
the network N , through the parameter λ′

s, which grows
logarithmically with N (e.g., if Ps = 0.5 then λ′

s =

CS logN). Fig. 15 shows the minimum bandwidth required
for the three schemes. This result demonstrates that
continuous-time RACS is capable of providing the same
performance as the benchmark case but using a lower
bandwidth, a significant feature from the viewpoint of
underwater acoustic networking.

5.4. Power and bandwidth savings

So far we have shown that for a given set of system
parameters, N , L and T , RACS achieves power and
bandwidth savings compared to the benchmark case. In
this section, we quantify the performance limits and
find closed form expressions for the achievable savings.
Without loss of generality, let us focus on a Poisson
packet arrival model. Fig. 16 shows λ1s plotted versus
the bandwidth B. The minimum required bandwidth Bs
is shown in the figure. We note that as the bandwidth
increases from the minimum required, the corresponding
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Fig. 16. Minimum per-node sensing rate λ1s plotted vs. the bandwidth B,
for N = 2500, Ns = 157 packets, L = 1000 bits and T = 1000 s. We note
that as the bandwidth increases, the corresponding λ1s decreases.

λ1s decreases, i.e., λ1s(Bs) ≥ λ1s(B). Where, using the
expression (27) we have that

λ1s(Bs) =
1
T
log


1 +

T
2NL/Bs


. (30)

Now, an upper bound on the minimum power, Pup, is
attained as the power consumption corresponding to
λ1s(Bs), i.e.,

Pup = N log

1 +

T
2NL/Bs


P1

≈ N log

1 +

eλ′
sT
N


P1. (31)

Similarly, from Fig. 16 we note that the smallest λ1s is
attained when B → ∞. This value can be derived
analytically as

λ1s(∞) =
1
T
log


1

1 − λ′
sT/N


. (32)

A lower bound on the average power consumption is thus
obtained as

Plow = N log


1
1 − λ′

sT/N


P1. (33)

The saving in power,GP , offered by employing RACS is thus
quantified as

Pc/Pup ≈ 1/ log

1 +

eλ′
sT
N


≤ GP ≤ Pc/Plow

= 1/ log


1
1 − λ′

sT/N


. (34)

Similarly, the saving in bandwidth, GB, is derived simply by
dividing Eq. (23) by Eq. (29) as

GB = N/2eTcohλ′

s. (35)

6. Numerical examples

In this section, we use a numerical example to visually
illustrate the field recovery process using continuous-time
RACS. We consider a 50 × 50 grid network measuring a
physical process with a spatial map given in Fig. 17(a). This
map may for instance represent temperature. Its spatial
Fourier transform is shown in Fig. 17(b), which indicates
a sparse behavior with sparsity S = 16. Let us assume a
Poisson arrivalmodel for the data packets, a collection time
of T = 1000 s, and a power-efficient design. Following the
design guidelines of Section 4.2,wedetermine the required
sampling rate to be λ1 = 1.33×10−4 packet/s. Employing
the so-obtained sampling rate, Fig. 18 shows the recovered
image at the FC after T = 1000 s.We note a good similarity
between the original and the recovered map. If by u we
denote the actual data and by û the recovered data, the
normalized error (

∥û−u∥ℓ2
∥u∥ℓ2

) for the recovered image is on

the order of 10−9 (−90 dB), which is in the domain of
numerical round-off errors. Note that in this example we
are considering a noiseless scenario.

(a) Spatial map of the sensing field. (b) Spatial Fourier transform of the field.

Fig. 17. The sensing field is sparse in the Fourier domain with S = 16.
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Fig. 18. The spatial map of the field recovered using continuous-time
RACS.

Fig. 19. The spatial map of the sea surface temperature provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA [26].

6.1. Real data example

As an illustrative example, we have used the sea
surface temperature data from the National Oceanic and
Atmospheric Administration (NOAA) website [26]. This
data set contains long term monthly means of sea surface
temperatures derived from data taken between the years
1971 and 2000. The network consists of 2.0° latitude by
2.0° longitude global grid spanning 88.0° N–88.0° S and
0.0° E–358.0° E. We use the 12 × 37 data grid depicted
in Fig. 19. The Fourier transform of the data shows a
sparse (compressible) representation, where almost 99%
of the energy of the signal is contained in S = 23
Fourier coefficients. Note that we expect similar sparse
behavior models for other natural processes such as deep
sea temperature, salinity, etc.

Assuming that each node is capable of transmitting at
10 kbps and that the sea surface temperature is required
to be mapped every T = 5000 s, for Ns = 281,
and a probability of sufficient sensing Ps = 0.9, the
design guidelines of Section 4.2 lead us to λ1 = 2.41 ×

10−4 packet/s for the Poisson arrival model. Fig. 20 shows
the reconstructed field using the so-obtainedλ1, where the
reconstruction error is −20 dB. The recovery error can be
reduced further by increasing Ns.

Fig. 20. The recovered map of the sea surface temperature, employing
the proposed continuous-time RACS scheme with λ1 = 2.41 ×

10−4 packet/s. The corresponding reconstruction error is −20 dB.

7. Conclusion

In this paper, we proposed a networking scheme which
combines the concepts of random channel access and
compressed sensing to achieve power and bandwidth
efficiency, and to eliminate any synchronization or schedul-
ing requirements. The proposed scheme is suitable for
large coverage networks, deployed for long-term moni-
toring of slowly varying phenomena. The design method-
ology is based on introducing the concept of sufficient
sensing probability, i.e., the probability with which the FC
is guaranteed to collect a sufficient number of observations
(Ns = CS logN). Two design criteria were considered, one
that targets a fast recovery, and another that targets power
efficiency. Under each criterion,we considered twomodels
for the data packet arrivals, deterministic and Poisson. In
each case, we provided design principles for determining
the salient system parameters (collection time and packet
arrival rate), which ensure that the desired probability of
sufficient sensing is met. The benefits of RACS were as-
sessed analytically in terms of the power, time and band-
width savings achieved over a conventional TDMA scheme.
Finally, numerical results were presented to illustrate the
effectiveness of the proposed scheme.
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