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Abstract—Multicarrier code-division multiple access
(MC-CDMA) combines multicarrier transmission with di-
rect sequence spread spectrum. Recently, different approaches
have been adopted which do not assume a perfectly known
channel. In this paper, we examine the forward-link performance
of decision-directed adaptive detection schemes, with and without
explicit channel estimation, for MC-CDMA systems operating
in fast fading channels. We analyze theoretically the impact of
channel estimation errors by first considering a simpler system
employing a threshold orthogonality restoring combining (TORC)
detector with a Kalman channel estimator. We show that the
performance deteriorates significantly as the channel fading
rate increases and that the fading rate affects the selection of
system parameters. We examine the performance of more realistic
schemes based on the minimum mean square error (MMSE) cri-
terion using least mean square (LMS) and recursive least square
(RLS) adaptation. We present a discussion which compares the
decision-directed and pilot-aided approaches and explores the
tradeoffs between channel estimation overhead and performance.
We find that there is a fading rate range where each method
provides a good tradeoff between performance and overhead. We
conclude that the MMSE per carrier decision-directed detector
with RLS estimation combines good performance in low to
moderate fading rates, robustness in parameter variations, and
relatively low complexity and overhead. For higher fading rates,
however, only pilot-symbol-aided detectors are appropriate.

Index Terms—Adaptive detection, channel estimation, mul-
ticarrier code-division multiple-access (MC-CDMA) detection,
multicarrier-CDMA, orthogonal frequency division multiplexing
(OFDM)-CDMA.

I. INTRODUCTION

SEVERAL different approaches that combine multicarrier
transmission with direct-sequence code-division multiple

access (DS-CDMA) have been proposed in the literature. The
schemes which have attracted most research interest are the
scheme proposed by Milstein and Kondo in [1] which has been
adopted as an option in the IS-2000 next-generation CDMA
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cellular standard, and the scheme proposed independently in
[2]–[4], which combines orthogonal frequency division multi-
plexing (OFDM) with DS-CDMA. In this paper, we refer to the
latter as multicarrier (MC)-CDMA. This scheme appears to be
an attractive alternative to DS-CDMA for broadband wireless
integrated services networks (B-WISN) because it can some-
times offer higher spectral efficiency than its single carrier coun-
terpart [5] and increased flexibility to support integrated, high
data-rate applications with different quality-of-service (QoS) re-
quirements [6]. The basic idea of this scheme is to divide the
available bandwidth into a large number of narrow subchannels
and spread each data symbol in the frequency domain by trans-
mitting all the chips of a spread symbol at the same time, but
in different orthogonal subchannels. Since the chips of all the
symbols that form a multicarrier block overlap in time, even
high-data rate information can be transmitted using a large MC
symbol duration, which drastically reduces ISI, allows for ap-
proximately flat fading in each subchannel, and combats the
frequency-selective fading of the channel by introducing a large
degree of frequency diversity.

Earlier work that investigated the performance of
MC-CDMA detectors (e.g., [7]–[9]) made the assumption
that the channel is perfectly known to the receiver. Recently,
the impact of channel estimation errors on the performance
of MC-CDMA detectors attracted significant research interest
and different approaches were adopted. According to the first
approach [10]–[12], known pilot training symbols are inserted
in the transmitted data in both the frequency dimension (every

subchannels of the same OFDM symbol) and the time
dimension (every OFDM symbols at the same subchannels).
The estimates of the channel coefficients are then obtained
through some form of two–dimensional (2-D) linear filtering.
The pilot-symbol grid in [10] and [11] is designed using
oversampling by a factor of two based on the generalized 2-D
sampling theorem considering the worst expected channel
fading conditions ( based on minimum coherence band-
width, based on maximum Doppler spread). A special
case of the pilot-symbol-aided approach uses “pilot-carriers”
[13], i.e., pilot symbols are inserted in a subset of the available
subchannels in each OFDM symbol ( , ). The
estimates of the channel coefficients are then obtained by fil-
tering in the frequency dimension, although [13] also examines
some type of 2-D filtering. The second approach proposed in
[14] and [15] considers explicit channel estimation based on
channel-sounding. The OFDM transmitter is bypassed and a
“train of pulses” spaced by the maximum delay spread of the
channel is transmitted instead (in effect , ). The
receiver uses the fast Fourier transform (FFT) to obtain the
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estimates of the channel coefficients, which are then used (or
their linearly interpolated values) in the detection of data until a
new snapshot of the channel is captured. Finally, our approach,
introduced in part in [16], is to consider decision-directed,
adaptive MC-CDMA detectors. This approach includes a
new type of MC-CDMA detectors using explicit decision-di-
rected channel estimation. It also includes decision-directed
MC-CDMA detectors without explicit channel estimation. An
example of the latter type is a form of the decision-directed
minimum mean square error (MMSE) detector based on least
mean square (LMS) adaptation which was proposed in [3]
and whose transient performance and convergence in a static
channel were examined in [17].

The motivation of this paper is to present a comprehensive
examination of different decision-directed adaptive MC-CDMA
detectors with and without explicit channel estimation and to
analyze their performance under different fading rate scenarios;
furthermore, to compare the decision-directed and pilot-aided
approaches and explore the tradeoffs between channel estima-
tion overhead and performance. Note that, as opposed to the
pilot-symbol-aided and channel-sounding approaches, the de-
cision-directed detectors do not require overhead symbols to be
regularly inserted in the transmitted data, although in a practical
system an initial training sequence and occasional retraining
when there is a disruption in the channel are necessary before
switching to the decision-directed mode. We start our investi-
gation by performing a theoretical analysis that demonstrates
the mechanism through which the channel estimation process
affects the performance of adaptive MC-CDMA detectors
operating in multipath, fast fading, Rayleigh channels. For
this purpose we consider a simple detector, termed threshold
orthogonality restoring combining (TORC) detector, and we
make the simplifying assumption that the channel is described
by a Gauss–Markov state–space model, whose parameters
are known. The receiver uses the Kalman filter, which is
the MMSE estimator for the channel described by the above
model, to track the complex channel coefficients. We expand
our investigation by considering the more realistic case in
which the parameters of the channel model are not known
and we examine the performance of more practical, although
more complex, detectors based on the MMSE criterion. More
specifically, we examine the performance of two forms of the
MMSE detector, which were proposed in [3] as MMSE per user
and MMSE per carrier, and we consider adaptive schemes with
explicit channel estimation using the LMS and recursive least
square (RLS) algorithms, which are compared with the optimal
Kalman filter. We also consider adaptive MMSE detectors
using the LMS and RLS algorithms without explicit channel
estimation, and we compare them to the forms employing
channel estimation. Finally, we present a discussion which
compares the decision-directed and pilot-aided approaches.

This paper is organized as follows. In Section II, a descrip-
tion of the channel model, of the MC-CDMA transmitter and re-
ceiver structure, and of the decision-directed channel estimation
process is given. In Section III, the TORC detector is introduced
and a closed-form expression of its performance is derived. In
Section IV, adaptive detectors based on the MMSE criterion are
introduced. In Section V, numerical and simulation results on

the performance of the adaptive MC-CDMA detectors are pre-
sented and comparisons are performed, and in Section VI, we
summarize our conclusions.

II. SYSTEM DESCRIPTION

We consider a multiple access system whereusers are
transmitting simultaneously in a synchronous manner using
Walsh–Hadamard orthogonal codes of length. Therefore,
up to users can transmit at the same time. The system
corresponds to the forward-link (downlink) from the base
station to the users. Theth MC block symbol (of duration

) for user is formed by taking symbols
in parallel, spreading them with the user’s spreading sequence

, , performing frequency
interleaving, and placing the resulting
chips into the available subchannels, each having
width , by using an inverse fast Fourier transform
(IFFT) of size . In practice, is larger than the number
of subchannels required for the tranmission of the data
in order to avoid frequency aliasing after sampling at the
receiver. For that reason, the data vector at the input of the
IFFT is padded with zeros at its edges so that the ( )
unmodulated carriers are split in both sides of the useful
spectrum. The function of the identical frequency interleavers
is to ensure that the chips corresponding to each of the

symbols are transmitted over approximately independently
faded subchannels. This is possible only if is larger than
the coherence bandwidth of the channel. After
performing a parallel to serial conversion, a guard interval is
added in the form of a cyclic prefix, and the signals of all
the users are added and transmitted through the channel. The
block diagram of the transmitter is depicted in Fig. 1. In the
rest of this paper, for simplicity of notation, we concentrate
only on one of the symbols each user transmits and the
corresponding subchannels and we drop or modify the
indices where appears, while keeping in mind that the fre-
quency-interleaving function still exists. Also, we will consider
binary symbols , forming the data
vector , where is the time index
denoting the th symbol interval. The transmitted signal during
the th MC block symbol period can be approximately written
as follows:

(1)

where , , is the guard interval
chosen to be at least equal to the delay spreadof the channel
and is the energy per chip.

We assume a fast-fading, multipath, Rayleigh channel whose
impulse response has path arrivals at delays , which
are described by independent zero-mean, complex Gaussian dis-
tributed path gain processes , . We assume
that the channel is not changing during one MC symbol interval;
however, we allow for variations during successive symbol in-
tervals. Because of the large symbol duration, the fading of the
subchannels is approximately flat and is described by multi-
plicative complex channel coefficients , ,
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Fig. 1. MC-CDMA transmitter block diagram.

which are samples of the channel frequency response at the
center frequency of the th subchannel at . There-
fore, . Because of the inde-
pendence of , the variance

is the same for all subchannels and we as-
sume it is time invariant. Because of the frequency-interleaving
function, the channel complex coefficient processes will be con-
sidered independent. We assume that each of these random pro-
cesses is described by a first-order Gauss–Markov model. In
performance results presented in Section V, we also use the more
realistic Jakes’ model [18]. The channel model has the following
form:

(2)

where is a zero-mean, white Gaussian noise process, with
autocorrelation

(3)

and is the Kronecker delta. The parametercorresponds
to an exponentially decaying channel time-correlation function,
and is related to the 3-dB frequency of the corresponding
Doppler power spectrum as

(4)

where .
Because of the existence of a guard interval with duration at

least equal to the channel’s delay spread, there is no intersymbol
interference, and the signal received by usercan be approxi-
mately described by

(5)
where , are the complex channel
coefficients which describe the channel between the transmitter
and the user, and is the additive white Gaussian noise
(AWGN). For simplicity of notation in the rest of the paper,
the superscript () will be dropped. At the receiver, the signal

is sampled at a rate , the samples which correspond to
the cyclic prefix are discarded, an FFT of sizeis performed,
and frequency deinterleaving takes place. The vector

at the output of the deinterleaver is given
in matrix notation by

(6)

where diag , matrix
is the matrix whose columns are the

spreading sequences of the users, is the data vector of the
users, and is a vector containing
zero mean, uncorrelated complex Gaussian noise samples, with
variance 2 .

In this paper, we consider two forms of decision-directed
adaptive detectors, depending on the channel estimation
process. When the MC-CDMA detectors are implemented
adaptively without explicit channel estimation, the observation
vector is used by each detector to obtain an estimate of
the current data vector , and both and are used
to update the detector coefficients for the next symbol interval.
On the other hand, when the detectors use explicit channel
estimates, the observation vector is fed to both the detector
and the channel estimator, which in addition uses estimates
of previous data vectors from the output of the detector. The
block diagram of the general form of the decision-directed
MC-CDMA receivers that we propose is depicted in Fig. 2.

We consider three decision-directed ways of obtaining the
channel estimates . If the channel process
model (2) is assumed known to the receiver, the Kalman filter
gives the best estimates in the MMSE sense. In the general
case, when the process model is not known, the estimate of the
channel coefficients can be obtained by using the LMS or the
RLS algorithm. In all three cases, the estimator’s input is the
vector , which represents the measured quantity, and the es-
timate of the data vector . The equation that describes the
channel measurement vector is derived from (6) by rearranging
its terms

(7)
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Fig. 2. Decision-directed MC-CDMA receiver block diagram.

where

(8)

and is the measurement noise process, which is white
Gaussian, with zero mean and variance 2. The algorithms of
the three estimators are described as follows [19], [20].

A. Kalman Filter

The Kalman filter is the optimal in a class of linear filters,
minimizing the estimation error variance

. The new channel estimate at time using infor-
mation available up to time is

(9)

where the term , is the Kalman gain, which
is related to the error variance

(10)

The estimation error variance is calculated in an iterative way

(11)

B. LMS Estimator

The LMS estimator calculates the estimates of the channel
by minimizing the MSE . The new
channel estimate at time using information available up
to time is

(12)

where , and is the step size of the LMS
algorithm.

C. RLS Estimator

The RLS estimator calculates the estimates of the channel by
minimizing the cost function ,
where . The new channel estimate at time
using information available up to timeis

(13)

where the term is the Kalman gain given by

(14)

is given by the following recursion:

(15)

and is called the forgetting factor of the RLS algo-
rithm.

In the above equations, denotes the estimate of the
quantity given in (8), as it is obtained by using the estimate of
the data vector . In the rest of this paper, we will assume
that the estimates of the previous data are correct and, therefore,
that .

III. PERFORMANCEANALYSIS: THE TORC DETECTOR

In this section, we present a theoretical analysis of the impact
of channel estimation on the performance of MC-CDMA
detectors. We select the TORC detector because it combines
low complexity, relatively good performance, and it admits a
closed-form performance expression. We make the simplifying
assumption that the channel is described by the state–space
model (2) whose parameters are known and that Kalman
filtering is used for channel estimation. The TORC detector
uses the channel estimates to invert the effect of the channel
by attempting to invert matrix in (6). In order to avoid
excessive noise enhancement by inverting channel coefficients
with very small amplitude, the detector discards the chips
which correspond to subchannels with magnitude below a
chosen threshold. It then correlates the resulting signal with the
user’s spreading sequence and performs a threshold decision.
The decision rule it uses to obtain the estimate of symbolof
user is the following:

(16)

where is the estimate of
matrix obtained by using information available up to the
time interval , ,

, is the selected threshold, and is the
unit step function.
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The decision variable for symbol of user ,
has the following form:

(17)

We denote by and the magnitude and the phase,
respectively, of the estimate , and by

, the error in the estimation of , .
If we also define and

, the decision variable given in (17) can be
rewritten in the following form:

(18)

In (18), the first term corresponds to the desired signal, the
second term to the multiuser interference, the third term

to the noise, while the fourth term arises from the
channel estimation errors.

Before we investigate the distribution of the four terms in
(18), we note that each of the channel coefficients , which
is described by the process (2), is Gaussian with zero mean and
with variance [19]

(19)

Clearly, for large , since
. On the other hand, each of the channel estimates

is conditionally Gaussian given the data symbols and since the
Kalman estimator is the minimum variance, linear, unbiased es-
timator, it has zero mean and is orthogonal to the estimation
error

(20)

The error is also zero-mean Gaussian,
and its variance can be calculated in an iterative way from
(11), where it can be seen that the error variance depends on the
data vector through the term . In order to
eliminate this dependency and to obtain a quasi-steady form of
(11), we approximate the term by its average value

. Then, in the steady state, the error variance is approxi-
mately given by

(21)

Simulation tests [16] showed that the approximate error vari-
ance in (21) is smaller than the actual variance by less than 1 dB,
for fading rates ( ) between 10 and 10 . Finally, we no-
tice that, as a result of the orthogonality property (20) and the
definition of the error, and
in the steady-state

(22)

In deriving the analytical expression of the probability of
error, we follow a similar approach as in [9] and we denote with

the random variable of the estimated number of subchannels
with the property . We will say that these sub-
channels areON (as opposed toOFF). Since we have assumed
that the channel coefficients are independent, the random
variable is binomially distributed and its probability mass
function is

(23)

where , and . Conditioned
on the number of channels that areON, the signal term
takes the value

(24)

The interference term can be considered approximately
Gaussian and its distribution has the form [9]

(25)

The estimate depends on the previous noise samples, but
is independent of . Therefore, it can be shown [9] that

is ON

is ON

(26)

where

(27)

and . The noise term can be
considered approximately Gaussian so that

(28)

The estimate and the error are Gaussian, and be-
cause of (20) they are independent. Therefore, the last term in
(18) can also be approximated as Gaussian with

(29)
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Given the conditional distributions of the signal (24), inter-
ference (25), noise (28), and error (29) terms, we average over
the distribution (23) of the estimated number of subchannels
which areON, and we obtain the following expression for the av-
erage probability of bit error, as shown in (30), at the bottom of
the page, where and we define the average
SNR per bit at the input of the detector as follows:

(31)

Note that in practice there is a signal-to-noise ratio (SNR) degra-
dation (e.g., 0.4 dB for a guard interval overhead of 10%) be-
cause of the energy wasted in the cyclic prefix which is not re-
flected in definition (31). We notice that the expression for the
probability of error obtained in [9] is a special form of (30), in
the case of perfect channel estimation.

IV. A FAMILY OF ADAPTIVE MMSE DETECTORS

While useful in demonstrating the mechanism through which
fast-fading channels affect the performance of MC-CDMA de-
tectors, the TORC detector, as shown in the case of perfectly
known channels [21], is outperformed by detectors based on the
MMSE criterion. Two different forms (termed MMSE per user
and MMSE per carrier) of the MMSE detector have been pro-
posed and examined under the assumption of perfectly known
channels in [3]. The MMSE per carrier detector has been an-
alyzed for perfectly known channels also in [8], while its per-
formance using pilot-symbol-aided channel estimation has been
evaluated in [10]. The two detectors defer in the optimization
criterion as follows.

A. MMSE per User Detector

The optimization criterion is to find a matrix such
that

(32)

Then, the data vector estimate is obtained as follows:

(33)

The solution of (32) is obtained by applying the orthogonality
principle and has the form

(34)

where

B. MMSE per Carrier Detector

The MMSE per carrier detector attempts to invert each sub-
channel coefficient, applying the MMSE criterion in order to
avoid excessive noise enhancement. The optimization criterion
is to find for each subchannel, a filter coeffi-
cient that multiplies the observation given in (7)
such that

(35)

The solution to (35) is obtained by applying the orthogonality
principle and has the form

(36)

where the expression of in (7) was used. Note that in the
limit when there is no AWGN, (36) gives ,
and the MMSE per carrier becomes the decorrelating detector.
Finally, the data vector estimate is given by

(37)

where .
We consider two forms of adaptive implementation of the

MMSE detectors. According to the first form, the channel co-
efficients are explicitly estimated using one of the deci-
sion-directed methods described in Section II, and then the ma-
trix is calculated by using the channel estimates
instead of in (34) and (36). According to the second form,
(32) and (35) are solved in an adaptive manner using the LMS
and RLS algorithms. In this case, the adaptive MMSE per User
algorithm takes the following form.

1) LMS Algorithm:

(38)

2) RLS Algorithm:

(39)

(40)

(41)

Similar expressions can be derived for the MMSE per Car-
rier detector. The adaptive MMSE per user detector (38) using

(30)
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the LMS algorithm has been suggested in [3] and [17], although
no performance results were given. In Section V, we will focus
on the performance of the MMSE per carrier detector with ex-
plicit channel estimation and on the adaptive MMSE per user
detector described in (38) and (39). The reason is that the adap-
tive MMSE per user is too complex to be implemented using
explicit channel estimation, since it involves an ma-
trix inversion and multiplication in each symbol period. There-
fore, it is necessary to calculate the matrix
using the LMS (38) or RLS (39) algorithm. On the other hand,
the MMSE per carrier detector can be easily implemented adap-
tively by using explicit channel estimates in the exact expression
(36), since it involves only inversion and multiplication of
scalars.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we give several numerical and simulation
results that illustrate the performance of the proposed adaptive
MC-CDMA detectors. We examine the performance of the
TORC detector by evaluating (30) for the probability of error
and by presenting simulation results that demonstrate close
agreement with the theoretically predicted performance. We
present performance results of the different adaptive MMSE
detectors, make comparisons with the TORC detector, and
examine the performance sensitivity to the choice of adaptation
parameters. In all cases, we normalize the channel coefficients
so that

(42)

Except where the Jakes’ model is specified, the channel model
described in (2) is used in simulations and then (42) becomes

. The SNR refers to the definition in (31).
It is obvious that, in order to keep a constant reference in the
definition of SNR, the variance should be varied accordingly
as changes for different fading rates .

In order to demonstrate the validity of the basic assumptions
of the paper, we present a system design example without, how-
ever, restricting the scope of our results to the specific design.
An MC-CDMA system design could consider central carrier
frequency GHz, total bandwidth MHz,
total number of subchannels , and the number of si-
multaneous user symbols , which allows for . In
practice, would be slightly smaller to allow for 64 or 128 un-
modulated carriers to be used against frequency aliasing at the
receiver. The subchannel spacing is then kHz and the
symbol duration s. We also assume the delay spread
is s (coherence bandwidth kHz) and
user speeds are up to km h. We notice that this de-
sign allows for the frequency-interleaved chips corresponding
to each user symbol to be transmitted through approximately in-
dependently faded subchannels ( ) and for a rea-
sonable guard interval overhead of 10% ( s). The
Doppler spread of the subcarrier of the system
is given by . Since the differ-
ence in the fading rate experienced by any two subchannels is at
most 0.5% ( ) it is reasonable to assume that
all subchannels experience approximately the same fading rate.
For km h we have and, therefore, it

Fig. 3. Performance of TORC detector with Kalman estimation as a function
of SNR.

Fig. 4. Performance of TORC detector with Kalman estimation as a function
of the thresholdh .

is reasonable to assume that the channel remains approximately
constant during one MC symbol period.

The performance analysis of the TORC detector in Section III
provides insight into the mechanism affecting the performance
of MC-CDMA detectors in fast-fading channels. As the channel
fading becomes faster ( increases), the estimation error and
its variance in (21) grow larger, thus increasing the variance
of the term as shown in (29). This, in turn, degrades
the performance of the TORC detector, as depicted in Fig. 3.
We see that for a probability of error 10, the performance
deteriorates by 1 dB for a fading rate of 10 , by
3 dB for a fading rate of 10 , while for very fast
fading, 10 , the detector performance is unacceptable.
Similar performance degradation is observed in Fig. 4, which
depicts the dependence of the probability of error on the
threshold . There is an optimal selection of the threshold
that balances excessive multiuser interference when too many
subchannels are rejected (threshold too large), and excessive
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Fig. 5. Impact of fading rate on the selection ofN (TORC detector).

thermal and channel estimation noise enhancement when
subchannels with lower amplitudes are inverted (threshold too
low). We notice in Fig. 4 that as the channel fading becomes
faster, the optimal threshold increases because of the
larger impact of the channel estimation noise enhancement.

Another implication of the channel estimation process is on
the selection of system parameters, such as the length of the
spreading sequences . We expect that increasing will im-
prove the performance of the system, by introducing a larger de-
gree of frequency diversity. This is, indeed, true in the case when
the channel is perfectly estimated at the receiver [8], [9]. How-
ever, for a fixed bandwidth per symbol , increasing

by a factor , implies that , and that the
new symbol duration should be .
Therefore, the fading rate experienced by the system is also
increased times, thus affecting adversely the performance of
the system. This performance loss can even overshadow the fre-
quency-diversity gain. Fig. 5 shows that, although in the case
of perfect channel knowledge the system with outper-
forms the one with , in the case of imperfect channel es-
timation it performs worse, because it is subject to fading whose
rate is four times higher. This example illustrates the importance
of the fading rate in the design of a MC-CDMA system. Note
that the processing gain cannot be increased arbitrarily in
the described way without violating our basic assumptions.

In the case of perfectly known channels, the TORC detector is
outperformed by detectors based on the MMSE criterion [21].
We conducted simulation experiments which showed that the
MMSE per carrier outperforms the TORC detector for all fading
rates also when the detectors are implemented adaptively. The
intuition behind this is that the TORC detector tries to invert the
channel coefficients without enhancing the noise excessively by
making “hard” decisions (ON or OFF) on which subchannels will
be inverted, while the MMSE per carrier detector does the same
by making “soft” decisions, as expressed in (36), in the optimal
MSE manner. In terms of complexity, although both detectors
have to calculate scalars, the MMSE per carrier is moder-
ately more complex mainly because it requires an estimate of
the SNR in (36).

Fig. 6. Performance of RLS-based MMSE detectors as a function of forgetting
factor�.

We continue by investigating the performance of the different
forms of the MMSE detector. We begin by examining the ef-
fect of the adaptation parameters on the performance of the dif-
ferent forms of the MMSE detector. When LMS and RLS based
channel estimators are used by the MMSE detector, the selec-
tion of the step size and the forgetting factor depends on the
channel fading rate. For each fading rate there is an optimal se-
lection of the adaptation parameters, as depicted in Fig. 6 for the
RLS case. Simulation results on the performance of the MMSE
per carrier detector with LMS channel estimation showed that
it is more sensitive to the selection of the step size, than the
performance of the corresponding RLS-based detector to the
variations of the forgetting factor. For fading rates between
10 10 the optimal selection is approximately

. Fig. 6 also shows that the RLS-based MMSE per
User detector without explicit channel estimation is also rela-
tively more sensitive to the selection of the forgetting factor.

Since the Kalman filter gives the optimal estimates in the
MMSE sense, it is expected that the performance of the MMSE
detector using the Kalman filter presents a lower bound on the
probability of error when other channel estimators such as the
LMS and RLS are used. Therefore, in Figs. 7 and 8 we use the
performance of the MMSE per carrier detector with Kalman
channel estimation as a reference against which more realistic
implementations of the MMSE detector, which do not require
knowledge of the channel model, are compared. Fig. 7 illus-
trates the performance of the MMSE per carrier detector with
LMS and RLS channel estimation. It can be seen that the per-
formance of the detector, when RLS channel estimation is used,
is closer to that of the Kalman filter than when LMS estimation
is used, at the expense of increased complexity. We also notice
that the performance of the MMSE detector deteriorates with
increasing channel fading rate in a similar manner as it was pre-
viously observed for the TORC detector.

As it was described in Section IV, the MMSE detector can be
implemented adaptively without explicit channel estimation. In
[17], the transient performance and convergence of the MMSE
per User detector using LMS proposed in [3] was examined
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Fig. 7. Performance of the MMSE per carrier detector with explicit channel
estimation based on LMS and RLS.

Fig. 8. Performance of the RLS-based MMSE per user adaptive detector
without explicit channel estimation.

in a static channel and it was shown that even then its conver-
gence is very slow because of the large eigenvalue spread of the
observation autocorrelation matrix. Our computer experiments
in different fading rates showed that the LMS adaptive detector
indeed demonstrates very slow convergence and is unable to
perform well (BER 10 ) even for slowly fading channels
( 10 ), for any value of the step size. Although in the
case of perfectly known channel the MMSE per user detector
performs slightly better than the MMSE per carrier detector [3],
in an adaptive implementation the adaptation errors dominate
the performance of the MMSE per User detector and make it
perform worse. Fig. 8 shows that the RLS adaptive MMSE per
User detector (39) manages to track the channel variations up to
a certain point, although it still performs worse than the MMSE
per Carrier detector employing explicit channel estimation.

The above results suggest that the adaptive MMSE per
carrier detector with RLS channel estimation is an attractive
MC-CDMA detector which combines good performance with

Fig. 9. Performance of MMSE per carrier detector with RLS channel
estimation, when the Jakes’ channel model is used.

relatively low complexity, especially for relatively low fading
rates. Because of these features, it is useful to examine the per-
formance of the detector when a more practical channel model,
the widely accepted Jakes’ model, is used. The power spectrum
of the first-order channel described in (2) has infinite support
and decreases with frequency according to ,
where corresponds to the 3-dB frequency. On
the other hand, the power spectrum derived from the Jakes’
channel model has finite support and depends on the frequency
according to , where corresponds
to the maximum Doppler shift . Therefore, the fading rates
of the two channel models as measured by the products
and are not directly comparable. The performance of the
MMSE per carrier detector with RLS channel estimation when
the Jakes’ channel model is used is depicted in Fig. 9. It can
be seen that the RLS estimator manages to track the channel
variation described by Jakes’ model well for low to moderate
fading rates ( 10 ). However, its performance
deteriorates significantly after that point.

In the remainder of this section, we present a discussion
which compares the decision-directed and pilot-aided ap-
proaches and explores the tradeoffs between channel estimation
overhead and performance. The channel-sounding method pro-
posed in [14] uses entire OFDM symbols for periodic channel
estimation. As the fading rate increases, so does the frequency
of OFDM blocks required for channel sounding. Therefore,
although in those OFDM symbols with data the processing
gain and the number of symbols are not reduced, this
method becomes very inefficient even for moderately fading
channels. This is pointed out in [14] and [15], where it is
suggested that 10% of the OFDM symbols be used for channel
estimation, even for very slowly fading channels. Performance
results in static channels [15] show it is slightly better than the
“pilot-carriers” method.

The pilot-symbol-aided method of [10], [11] requires the
minimum pilot overhead among all pilot-aided schemes. Even
with oversampling by a factor of 2, a typical overhead of
only 5.5% ( , ) is reported in [10] and [11],
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Fig. 10. Channel estimation MSE for RLS-based, decision-directed, and
pilot-aided channel estimation (N = N = 8, Jakes’ model).

which implies a 16.6% reduction in the processing gain or the
data rate in every third OFDM symbol. The “pilot-carriers”
method reduces the number of subchannels available for data
in each OFDM symbol (lower and/or ). Its overhead is
increased with decreasing coherence bandwidth and typical
overhead of 10% to 25% is reported in [13] and [15]. The
decision-directed approach is the only approach that does not
require regular insertion of known symbols in the transmitted
data and all available subchannels are used to transmit data.
Therefore, even with occasional retraining that may occur in a
practical system because of serious disruptions in the channel,
the overhead is comparatively the lowest (on the order of
100 initial OFDM training symbols). This reduced overhead
comes with a penalty since the detectors cannot trade increased
overhead for better performance in very fast fading channels
and the performance deteriorates significantly for high fading
rates ( 10 ) as can be seen in Figs. 9 and 10. Only
the pilot-symbol-aided approach of [10], [11] is able to adjust
its overhead to improve its performance in very fast fading
channels. Since the design is based on the worst case scenario,
in slower fading rates the “excess” oversampling in the time
domain (inherently present also in “pilot-carriers”) does not
improve the system performance. This is demonstrated in [10]
and [11] as depicted in Fig. 10, where the pilot grid is designed
for a user speed of km h. The channel estimation
MSE increases only when km h ( 10 )
and remains practically the same for all speeds between 3 and
150 km/h ( 10 10 ) for which the
2-D sampling theorem is satisfied [11]. This explains why
the BER performance of the systems in [11] and [13] is more
than 2-dB worse than with perfectly known channels, even for
very slow fading rates ( 10 ). As it can be seen in
Figs. 9 and 10, the more complex decision-directed method
using RLS estimators experiences smaller performance
degradation compared with the case of known channel for
low to moderate fading rates ( 10 ). However, its

performance deteriorates significantly in high fading rates and
the decision-directed detectors become inapplicable.

VI. CONCLUDING REMARKS

In this paper, we examined the forward-link performance of
different decision-directed adaptive detection schemes, with
and without explicit channel estimation, for MC-CDMA sys-
tems operating in fast fading Rayleigh channels. The theoretical
analysis of the performance of the TORC detector demonstrated
the mechanism through which the channel estimation process
degrades the system performance significantly as the channel
fading rate increases. We examined the effect of other system
parameters such as the selected threshold and the length of
the spreading sequences. We expanded our investigation to
examine the performance of more realistic adaptive schemes
based on the MMSE criterion, which, as in the case of perfectly
known channels, were observed to outperform the TORC
detector. We found the MMSE per Carrier detector with RLS
channel estimation to be robust with respect to adaptation
parameter variations, approaching the performance of the
detector using optimal Kalman filtering. The adaptive MMSE
detector without channel estimation using the LMS algorithm
was unable to follow the channel variations and demonstrated
poor performance. The more complex MMSE detector using
RLS adaptation performed better, but it too did not achieve
very good performance.

Finally, we presented a discussion comparing the deci-
sion-directed detectors with other pilot-aided approaches in
terms of overhead and performance in different fading rates.
The “channel sounding” method had been shown to perform
well at static or very slow fading rates, beyond which its
overhead makes it inapplicable. The “pilot-carriers” method
is a special case of the pilot-symbol-aided approach, which
increases the pilot overhead regardless of the fading rate by
oversampling the channel in the time dimension. The general
approach of inserting pilot-symbols in both the frequency
and time dimensions represents the best combination of pilot
overhead and performance in moderate to fast fading channels;
however, it becomes less efficient for lower fading rates. The
decision-directed approach, which does not require regularly
inserted pilot symbols, combines low overhead with good
performance in low to moderate fading rates; however, its
performance deteriorates rapidly for fast fading rates and the
detectors become inapplicable.

Our analysis and performance results considered the for-
ward-link and they are not, in general, representative of the
performance of the same MC-CDMA configuration in the
reverse-link. Since strict reverse-link synchronization is highly
unlikely, the performance of the described MC-CDMA system
is likely to degrade because of increased adjacent carrier
interference and ISI. Some alternative MC-CDMA system
design should be considered in the uplink. For example,
users could share the uplink channel in a TDMA manner, where
only one user transmits at a time at a data-ratetimes the
base data-rate by using orthogonal codes in a multicode
CDMA configuration.

In conclusion, the MMSE detector per Carrier employing
RLS-based decision-directed channel estimation combines rel-
atively low complexity and overhead, robustness in parameter
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variations, and very good performance in low to moderate
fading rates. These qualities make a MC-CDMA system em-
ploying this detector attractive for use in B-WISN. For higher
fading rates, however, only pilot-symbol-aided MC-CDMA
detectors are appropriate.
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