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Abstract—In networks with large latency, feedback about re-
ceived packets may lag considerably the transmission of the orig-
inal packets, limiting the feedback’s usefulness. Moreover, time du-
plex constraints may entail that receiving feedback may be costly.
In this work, we consider tailoring feedback and coding jointly in
such settings to reduce the expected delay for successful in order
reception of packets. We find that, in certain applications, judi-
cious choices provide results that are close to those that would be
obtained with a full-duplex system. We study two cases of data
transmission: one-to-all broadcast and all-to-all broadcast. We also
analyze important practical considerations weighing the trade off
between performance and complexity in applications that rely on
random linear network coding. Finally, we study the problem of
transmission of information under the large latency and time du-
plexing constraints in the presence of random packet arrivals. In
particular, we analyze the problem of using a batch by batch ap-
proach and an online network coding approach with Poisson ar-
rivals. We present numerical results to illustrate the performance
under a variety of scenarios and show the benefits of the proposed
schemes as compared to typical ARQ and scheduling schemes.

Index Terms—Bulk queueing, half duplex, large latency, net-
work coding, online network coding, time-division duplexing.

I. INTRODUCTION

T HIS paper constitutes a step toward coding with delay
as the main focus of study and optimization. We focus

on reliable communications in environments with packet era-
sure channels, large latency, and with nodes that have a half-
duplex or time-division duplexing constraint. In particular, we
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focus on tailoring coding and feedback to determine how long
a node should transmit before it stops to listen for other nodes’
transmissions.

A. Background

The concept of network coding was introduced by Ahlswede
et al. [1]. The fundamental idea of network coding is to en-
courage the system to mix different data packets at interme-
diate nodes through coding, rather than storing and forwarding
copies of packets that are routed through the network. Under this
premise, it is no longer required for the system to keep track
of which packets have been received: receivers need only aim
at accumulating enough coded packets in order to recover the
information.

Network coding research originally studied throughput
performance without delay considerations for channels with
no erasures and no feedback [1]–[3]. References [2] and [3]
showed linear codes over a network to be sufficient to establish
any feasible multicast connection. Reference [4] proved that
randomly generated linear codes in a distributed fashion also
achieve multicast capacity with high probability, providing
a crucial step toward a practical implementation of network
coding. For networks with packet erasures, two approaches
have been used. The first approach relies on rateless codes (i.e.,
transmission of coded packets until all terminals receive enough
information to decode). Studies have shown the optimality of
random linear network coding (RLNC) for multicast connec-
tions in wireline and wireless networks [5], tradeoffs between
memory usage and achievable rate [6], and modifications to
the code structure to preserve the communication efficiency
of RLNC, while achieving better computational efficiency [7].
Practical implementations, such as MORE [8], have illustrated
throughput gains of network coding via experimental results.

Delay performance gains of network coding are more recent
and have focused on scenarios of large file transmissions with
limited or no feedback (e.g., [9] and [10]). Other studies on
delay performance have compared RLNC with Automatic Re-
peat reQuest (ARQ) and forward error correcting (FEC) tech-
niques (e.g., [11]). One of the first uses of feedback in network
coding was to provide efficient queue management [12]. Ref-
erence [12] used feedback to acknowledge degrees of freedom
(dofs), defined as linearly independent combinations of the data
packets, instead of original data packets, to show that queue size
in a node follows the dofs.

The second approach focuses on block-by-block transmis-
sions. For this approach, linear codes are shown to achieve ca-
pacity in wireless networks [13], while the use of feedback has
been constrained to queueing techniques to acknowledge suc-
cessful transmission of each block of data packets [14], [15].
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B. Motivation

We study a problem that we believe has not been considered
previously: coding for delay in time-division duplexing (TDD)
channels (i.e., when a node can only transmit or receive, but not
both at the same time). A TDD channel is usually called half du-
plex, but we prefer the term TDD to emphasize that the channel is
not assigned half of the time to the receiver and half to the trans-
mitter or in any predetermined fashion. Important applications
can be found in infrared devices (IrDA) [16], [17], underwater
acoustic communications [18], and in very high latency condi-
tions (e.g., satellite and deep space communications) [19]–[21].

The key question to ask for achieving reliable communication
in TDD channels is quite simple and natural: how much should a
node transmit before stopping to listen to others’ transmissions?
This is particularly relevant in the presence of high latency (i.e.,
a large number of packets in flight) since the penalty for not
transmitting (talking) the right amount of time before stopping
is very high.

To provide an answer, we exploit synergies between (net-
work) coding and feedback, where the latter is used to: 1) indi-
cate the number of dofs missing at the receivers, rather than just
signaling completion of the transmission as in previous studies,
and 2) to tailor the redundancy of the code to the channel and
system conditions.

In its simplest form, we consider a node transmitting data
packets to a single receiver using RLNC. The sender transmits
RLNC packets back-to-back before stopping to wait for an ac-
knowledgement (ACK) packet. This ACK indicates how many
dofs are missing at the receiver to decode, say . The number
of coded packets to be transmitted before stopping depends
on .

There is a natural tradeoff in the choice of the ’s. If the ’s
are too small given the channel conditions, many ACK packets
will be sent before completing a transmission, introducing un-
necessary delay. If the ’s are too large, the receiver may be un-
able to signal a successful transmission promptly. We show the
existence of optimal ’s and provide techniques to find good
estimates for them.

By leveraging feedback and coding, our schemes are inher-
ently hybrid. However, they are different from classical Hybrid
ARQ (HARQ) schemes. HARQ focuses on exploiting soft
combinations of previous transmissions of the same packet to
enhance performance [22]. For example, an HARQ scheme
will use different channel-code puncturings of the same packet
at each transmission to provide new information to the receiver.
For the erasure channel, such soft combining is not possible:
a packet is either received or completely lost. Our schemes
are also different from HARQ in that they: 1) rely on coding
across packets, rather than on soft combinations of the same
packet, for increased performance, and 2) an ACK feeds back
precisely how much information is missing at the receiver
rather than providing an estimate of it (e.g., stating successful
decoding of the information (Type II HARQ [23]). As a final
comment, HARQ would face similar challenges as ARQ or
scheduling techniques in broadcast transmissions. Namely, a
retransmission of the same packet (even with different code
puncturing) will only benefit receivers missing that packet. On

the other hand, coding across packets will allow a larger number
of receivers to benefit from each RLNC packet transmission,
as shown in [9].

II. OUTLINE OF CONTRIBUTIONS

By tailoring feedback and coding, we show that it is possible
to perform network coding in large latency TDD channels in
an efficient manner. We study the benefits in terms of several
metrics, such as mean completion time/energy and throughput.
Section III begins by presenting preliminary results for the anal-
ysis of 1) absorbing Markov chains; 2) throughput in batch-by-
batch schemes; and 3) probability distributions that will be used
throughout this paper.

Our contribution can be separated into three main themes.

A. When to Stop Talking and Start Listening

We show that an optimal number of coded data packets exist
to be transmitted back-to-back before stopping to wait for other
nodes’ transmissions, in terms of the mean completion time/en-
ergy, and provide techniques to find estimates for these values.
The optimal depends on the number of dofs that the re-
ceiver requires to decode the information, on the packet erasure
probability, and on the latency.

More specifically, Section IV studies the case of one node
broadcasting information to several receivers (one-to-all broad-
cast). We prove that the computation of the optimal number of
coded packets to transmit for the case of one receiver is simple
and leverage it to propose heuristics that compute estimates for
the case of multiple receivers. These heuristics have close-to-op-
timal performance while reducing the complexity of the esti-
mation process. Section V extends our results to the case of
all-to-all broadcast. We provide a full characterization of both
cases by means of a moment generating function and compare
to ARQ and scheduling schemes. Our results show that min-
imizing for the mean completion time under a TDD constraint
yields close to or the same performance as a full-duplex system.

Although both standard ARQ techniques and our schemes
achieve reliability by using feedback to recover lost packets,
our schemes are different in that they rely on: 1) transmission
of coded packets (i.e., there is no need to specify a particular
data packet to retransmit); 2) ACKs that indicate the number of
dofs needed at the receiver, rather than particular data packets,
as in ARQ [23]; and 3) pre-emptive and adaptive redundancy de-
termined by channel characteristics and feedback information.
Previous work on rateless schemes typically assumes a dedi-
cated, error-free channel to signal the completion of the data
transfer. We assume a common transmission media for data and
ACK, with a nonzero loss probability for the ACK. Other rate-
less codes (e.g., LT codes [24] or Raptor Codes [25]) will face
similar challenges under the TDD channel. The advantage of
RLNC is that an extension to general networks is simple and re-
lies on re-encoding at intermediate nodes. End-to-end rateless
erasure protecting codes (e.g., [24], [25]) do not share this trait.

The use of RLNC ensures that any -coded packets received
can be used to decode the original data packets with high
probability. This feature is similar to MDS coding schemes,
such as Reed–Solomon codes, but with important differences.
A Reed-Solomon code relies on a careful code design requiring:
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1) a priori knowledge of the erasure probability in order to de-
termine the required redundancy of the code and 2) all coded
packets being generated at the same time before starting their
transmission. RLNC has none of these constraints. Generating
an RLNC coded packet is simple, on demand, and indepen-
dent of previously encoded packets. An RLNC scheme can thus
adapt easily to varying channel conditions. Finally, MDS codes
will not allow for seamless re-encoding at intermediate nodes,
which limits their impact in multihop network scenarios.

B. Practical Considerations

We address two key objections to the use of RLNC in practice.
The first comes from the perception that very large field sizes
are necessary in order to achieve good delay/throughput perfor-
mance, which will compromise decoding complexity. The rea-
soning is that Galois fields of a larger size require more complex
basic operations (e.g., multiplication) in order to code/decode.
The second objection is that the decoding complexity of RLNC,
which is for decoding a batch of data packets, is
larger than for other rateless codes [24], [25]. For example,
Raptor codes require operations to recover the
original data with packets being received [25].

Section VI addresses these objections. First, we show that the
use of a small field size causes very little degradation to perfor-
mance, especially if the number of packets to be combined
is moderately large. More specifically, each receiver will need,
on average, strictly less than coded packets to decode,
regardless of the field size. Second, we propose the use of sys-
tematic RLNC as an approach that allows us to reduce decoding
complexity and rely on small field sizes, while maintaining close
to optimal throughput performance.

C. Random Arrival of Packets

In a more realistic network setting, packets are generated ac-
cording to an arrival process. Thus, a sender’s buffer may be
empty or contain fewer than packets awaiting transmission.
A sender must choose to either wait for additional packets to
arrive or take those packets in the buffer and start coding. We
provide a joint characterization of this problem with our initial
problem, namely, when to stop transmitting and start receiving.

The problem of queueing for network coding systems has
been considered previously to account for burstiness or losses.
This work is split between online approaches (e.g., [26]) and
batch-by-batch approaches (e.g., [14], [15]), focusing on cases
with slotted time. Our work is different in that it considers a
TDD constraint, continuous time (not slotted), and a service
time that depends on the number of packets being combined.

Section VII studies in detail an online network coding ap-
proach providing a nontrivial extension to the work in [26]. We
then identify the required changes to capture batch-by-batch
transmissions using the same general model.

Another important contribution of our work is to characterize
the time between decoding events for online network coding. A
decoding event constitutes decoding all packets that have been
involved in linear combinations up to a given moment.

Conclusions are summarized in Section VIII.

III. PRELIMINARIES

This section provides preliminary results in terms of fig-
ures of merit and general results relevant to our analysis, but
useful also for problems with similar modeling and analysis
techniques.

A. Absorbing Markov Chains

RLNC schemes for TDD channels in this paper can be accu-
rately characterized using absorbing Markov chains. We prove
general results for several relevant cases. We provide a full char-
acterization of the cost associated with transitioning to the ab-
sorbing state via a moment generating function (MGF).

Definition: MGF of an Absorbing Markov chain: the MGF
of a variable associated with the transitions of an absorbing
Markov chain starting in state and ending in a unique ab-
sorbing state is

(1)

where is the probability of .
The following theorem states an iterative expression for the

MGF of aperiodic, absorbing Markov chains.

Theorem 1: Let be the MGF of an absorbing, ape-
riodic Markov chain where each state can only transition back
to itself through self-transitions when starting in state . Let
us consider a cumulative random variable with transition cost

for each transition starting at state . Then

(2)

where , is the absorbing state, and is
the probability of transitioning from state to state .

Proof: Define as a transition path to go from
state to the absorbing state for the first time (i.e.,

). Define as the cu-
mulative cost (e.g., time or energy) for that transition path,
and as the probability of choosing that path. Then,

By assumption,
can only be revisited by self-transitions and we can split
into a self-transition path with self-transitions and path

when a transition to a state occurs.
We define as the probability to transition from

to , and as the probability of occurring
before transitioning to . Thus

(3)
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We conclude the proof by showing that

The following theorem states an extension to the Theorem 1
for periodic, absorbing Markov chains.

Theorem 2: Let be the MGF of an absorbing,
periodic Markov chain with period in which each state can
only transition back to itself through a transition path of the
form when starting in state . If
is a cumulative random variable with transition cost for
each transition starting in state , then

(4)

where , is the absorbing state, is
the probability of transitioning from to , and

if ,

if ,

o.w.

(5)

Proof: The proof technique is similar to the one used in
Theorem 1. There are two main differences. First, the original
transition path has several possible transitions from state to
itself going through states , which is sim-
ilar to the case of self-transition in Theorem 1. Second, transi-
tions that do not return to state could constitute a) a direct
transition from to with or b) a transition from

to and from there possibly to other states until
a transition occurs from , to a state of the form

for , and if , and if .

The mean of a variable associated with the cost of transi-
tions in an absorbing Markov chain before the system reaches

and when the system is in state is given by

(6)

We can express this in vector form as

(7)

where , , is the corresponding transition
probability matrix, and represents the vector formed by el-

ements , . If we are interested in the mean cost when we
start at state , we can use Cramer’s rule to determine

(8)

where , and represents a matrix that has
all columns as the matrix except the column corresponding to
state which is substituted by the vector .

B. Performance Metrics

Let us now define some performance metrics to be used in
our discussion of block transmission schemes.

Definition: Completion time (energy): of a block-by-block
scheme constitutes the time (energy) required to transmit a
block of data packets reliably to the intended receivers and
receive confirmation of successful delivery of the block of
packets. If the process is characterized by an absorbing Markov
chain, the completion time (energy) constitutes the accumulated
time (energy) from transitions starting at an initial state and
until the first transition to an absorbing state.

Definition: Mean throughput of a block scheme: The mean
throughput for a block scheme is strictly defined as

Mean Throughput (9)

where is the time to complete transmission of packets,
each containing bits of information.

If we assume and to be constants, which is valid in our
scheme, we have

Mean Throughput

(10)
where the second term comes from the expression of negative
moments [27], [28].

Note that , proven in Theorems 1 and 2 have
a left-most multiplying term which decreases to zero exponen-
tially as for . Thus, all terms inside the
integral in (10) will go to zero exponentially. We can determine

by using numerical integration techniques and the fol-
lowing approximation:

(11)

where , , and is a constant
in order to ensure is small enough (e.g.,
ensures ).

Although the mean throughput is important, we define a
different throughput measure called because 1) the mean
throughput is computationally demanding, and 2) most of the
analysis of typical ARQ schemes is performed using .

Definition: Throughput measure for block-by-block trans-
missions: throughput measure constitutes the ratio between
the number of data bits transmitted and the time it takes to
transmit them. For the case of a block-by-block transmission

(12)
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where is the mean time to complete the transmission of
the data.

Using Jensen’s inequality, it is clear that constitutes a lower
bound to the mean throughput. Finally, minimizing the mean
time to complete transmission of a block of data packets with

bits each is equivalent to maximizing for those values.

C. Extended Binomial Distribution

The extended binomial distribution is used in many of our
discussions and is expressed as follows:

if

if

otherwise

where is the probability of an event (e.g., a packet was
successfully received) and is the number of events that occur
in trials. Finally, indicates the maximal number of events
that can be accumulated in a meaningful fashion (e.g., receiving
10 or 7 boxes into a storage warehouse that can only fit 7 boxes
causes the same end result, namely, the warehouse is full). Thus,
the case concentrates the probability of or more events
occurring.

IV. RANDOM LINEAR NETWORK CODING FOR ONE-TO-ALL

BROADCAST IN TDD CHANNELS

We now analyze the problem of one-to-all broadcast and
provide simple, useful heuristics to estimate the number of
coded data packets to be transmitted. We compare the proposed
schemes to optimal scheduling policies.

A. Model

A sender wants to broadcast data packets at a given data
rate [bps] to receivers. We assume an independent packet
erasure channel from the sender to each of the receivers, where

and represents the erasure probability of a coded
packet and of an ACK packet for receiver , respectively.
We assume only single-hop transmissions and no cooperation
amongst receivers. Nodes have a TDD constraint. Each trans-
mitted RLNC coded packet contains a linear combination of
the data packets of bits each, as well as the random coding
coefficients used in the linear combination. Each coefficient is
represented by bits. For encoding over a field size , we have

bits. Also, consider an information header of size
. Thus, the total number of bits per packet is .

The transmission time of a coded packet is .
constitutes the transmission time of each ACK packet,

where , and is the number of bits in the
ACK packet. We define as the round trip time to receiver

and and represent the energy per coded and ACK
packet, respectively. Note that connectivity amongst receivers
is not specified, thus allowing for any number of topologies to
be mapped into the current single-hop broadcast scenario. The
only requirement is that the connection between each receiver

and the sender is characterized by .

Fig. 1. Suboptimal selection of coded packets in our network coding TDD
scheme for one-to-all broadcast. (a) The transmitter initially generates
� -coded packets from the � packets in its queue and sends them to the
receivers before stopping to wait for the ACK packets. (b) Each receiver � send
an ACK packet indicating that � dofs are needed to decode. (c) Upon reception
of the ACK packet, the transmitter updates its knowledge of the receivers’
requirements and generates � -coded packets, where � � ��� � ,
and sends them to the receivers.

We assume that the field size is large enough so that the ex-
pected number of successfully received packets at the receiver,
in order to decode the original data packets, is approximately
[9]. This is not a necessary assumption for our analysis, as we
show in Section VI.

B. Description of Time-Division Duplexing Scheme

The sender can transmit coded packets back-to-back before
stopping to wait for an ACK packet from each receiver. Each
ACK feeds back the number of dofs that are still required to
decode the data packets at a given receiver.

The process is modeled as an absorbing Markov chain. The
states are defined by the number of dofs re-
quired at receiver to successfully decode the packets.
Thus, the states range from to .
This is a Markov chain with transient states and
one recurrent state (state ).

The optimal scheme would require us to associate one
variable, representing the number of coded packets to
be transmitted, to each state in our Markov chain (i.e.,

-coded packets should be transmitted if the
system is in state . Due to complexity, we
propose a suboptimal scheme that requires only variables to
be optimized.

Thus, we consider that the transmitter sends coded
packets, where . If an ACK is lost, the
transmitter assumes the previous state for the corresponding
receiver. The communication process is illustrated in Fig. 1.
At the beginning, each receiver requires dofs to decode
the information. The transmitter starts by sending -coded
packets before stopping to listen for ACKs [Fig. 1(a)]. Each
receiver then sends an ACK packet indicating how many dofs it
requires to decode, say for receivers ,
respectively [Fig. 1(b)]. Then, the transmitter sends -coded
packets before stopping [Fig. 1(c)]. This process is repeated
until all packets have been decoded successfully by all
receivers.

We expect the choice of to minimize the completion time
for: 1) the case of one channel has a much larger erasure prob-
ability as the others, since it constitutes the bottleneck of the
system, and 2) very high latency channels, because our scheme
will aim to ensure completion after the first transmission, thus
making the most important variable to determine system
performance.
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The transition probabilities from state to
state are

where is the number of dofs required at receiver at the
end of transmission . For simplicity of notation, let us say that

and that
. If we consider indepen-

dent packet erasure channels for each of the receivers and that
the dependence on the previous state can be
translated into a dependence on the state with maximum number
of required dofs (i.e., ), because deter-
mines , then

(13)

For , this can be translated into
. For , the expression

for the transition probability reduces to
. Finally, .

C. Completion Time

The completion time is determined by the time to absorption
of the Markov chain. The transition time each state
with is , which corresponds to the time to
transmit RLNC packets and receive ACKs from all receivers
(i.e., ). The waiting time between stopping
transmission and reception of the ACKs is . Reference [29]
provides more details as to how to coordinate transmissions
of the ACKs to reduce . If , , then

.

Remark: The MGF of the completion time for one-to-all
broadcast is of the form of Theorem 1.

Only small modifications are needed to characterize
the problem of completion energy, namely

will represent the transition cost at state
.

D. Estimating the Number of Coded Packets to Transmit

Let us first consider the case of a single receiver. We exploit
the structure of the problem to provide a simple, iterative op-
timization mechanism. Theorem 3 summarizes this mechanism
and shows it is optimal.

Theorem 3: Let , be the optimal values of
for our RLNC TDD scheme with a single receiver in terms of

the completion time . Finding can be determined by
first optimizing , . Finding ,
can be solved iteratively by one-variable searches. The op-
timal value depends only on system parameters.

Proof: The mean completion time when the system is in
state is given by . Since

, and the transition probabilities of each state depend only
on , then for any

Thus, the problem can be solved iteratively by first computing
and then using this result to find , and so

on.

The problem of one receiver has a simple solution. However,
the structure of the problem for receivers does not yield
such a simple optimization mechanism. Thus, we consider a
simple heuristic to estimate the values of , .

Our heuristic, named the ’Worst Link Channel’ heuristic, ap-
proximates the system as a link to the receiver with the worst
channel (i.e., ). Then, we compute ,

to minimize the mean completion time with the net-
work coding scheme studied for a link using the current values
of , , and .

Remark: The ’s do not need to be computed in real time.
They can be precomputed for different channel conditions (e.g.,

, , and/or system settings, for example, , , , ) and
stored in the receiver as lookup tables, thus making the compu-
tational load on the nodes negligible during normal operation.

E. Performance Analysis and Numerical Results

This subsection provides numerical examples and compar-
ison schemes for our proposed TDD network coding scheme.
We consider first some comparison schemes for the case of a
single receiver and then for the case of multiple receivers.

1) Link: We focus on large latency cases inspired by con-
straints of satellite communications, although examples with
other large latency cases (e.g., underwater communications)
could also be analyzed.

2) Network Coding for TDD Optimized for Mean Comple-
tion Time (TDD-T): This is our TDD scheme when we choose
the ’s to optimize the mean completion time given channel
characteristics and system parameters.

3) Network Coding for TDD Optimized for Mean Completion
Energy (TDD-E): This is our TDD scheme when we choose
the ’s to optimize the mean completion energy given channel
characteristics and system parameters.

4) Network Coding in Full-Duplex Channel: This scheme
assumes that nodes can receive and transmit simultaneously.
The sender transmits coded packets back-to-back to the desti-
nation. Once the packets have been decoded, the receiver
transmits ACK packets back-to-back, each of duration . The
sender keeps transmitting until an ACK packet for correct de-
coding of all information has been received. This scheme is
optimal in light of minimal delay and shall be used for illus-
trating the gap of other schemes to the best achievable comple-
tion time for a link. This scheme can be modeled as a Markov
chain where, as before, the states represent the number of dofs
received. The time spent in each state is the same . The
mean time to complete the transmission and get an ACK is

(14)
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Fig. 2. Mean energy and time to complete transmission. Parameters used:� �

10, packet size � � ������ bits, � � 1.5 Mb/s, � � 80 bits, � � 20 bits,
� � 100 bits.

where is the time to complete transmission of packets. The
mean energy to complete the transmission and get an ACK is

(15)

5) Go-Back-N ARQ for TDD (GBN): This is an ARQ scheme
developed for a TDD duplex channel in [16]. Each transmis-
sion contains data packets sent back-to-back, where is
the window size. The for this scheme is given by

(16)

6) Selective Repeat ARQ for TDD (SR): This is an ARQ
scheme developed for a TDD duplex channel in [16]. Each trans-
mission contains data packets, where is the window size.
Using results from [16], we provide the equivalent for this
problem

(17)

Let us now present some numerical results comparing these
schemes. Fig. 2 studies the mean completion time and energy
of 10 data packets with different in a GEO satel-
lite link with a propagation delay of 125 ms. We have consid-
ered that coded packets and ACK are transmitted with the same
power, and that this value is normalized (i.e., 1). The re-
maining parameters are specified in the figure. TDD-T and the
network coding full-duplex optimal scheme have similar perfor-
mance over a wide range of block erasure probabilities. For the
worst case , TDD-T requires only 29% more time to
complete than the full-duplex scheme. This is surprising as the
transmitter in the full-duplex scheme sends coded packets non-
stop until an ACK packet is received. The explanation for this

Fig. 3. � versus data packet erasure probability with two TDD non-network
coding schemes (GBN and SR) and our TDD-T scheme, with different �
values. We used as parameters � � 20 bits, � � 100 bits, � � 10000 bits,
� � 80 bits, � � 10 Mb/s, 	
 � 0.

behavior is that our scheme is sending enough coded packets,
given the channel conditions, so that the number of stops to
listen is minimized.

Fig. 2 shows that TDD-T and TDD-E have much better per-
formance with respect to the full-duplex scheme (i.e., energy
consumption of the full-duplex scheme is considerably higher
than the TDD schemes given the high latency characteristic of
this channel).

Fig. 2 shows that the performance of TDD-T and TDD-E re-
mains similar over a wide range of . When is low, the
performance is the same both in energy and delay. For high ,
the performance of both TDD versions is similar in terms of
energy, although we observe a clear advantage of TDD-T over
TDD-E in mean completion time.

Remark: Our TDD-T scheme provides a good tradeoff be-
tween energy and time to complete transmissions.

Let us now compare the throughput performance of our
scheme to that of TDD ARQ schemes 4 and 5. Fig. 3 shows
for a fixed data rate of 10 Mb/s and different . We use the
parameters in the figure, with a window size of 10 for the
ARQ schemes and 10 for TDD-T. The performance of
our scheme is the same as both GBN and SR at low . Since
the data rate is kept fixed, at higher , we get higher latency.
For low latency, of our scheme is very close to that of the
SR ARQ scheme for all values of , and better than the GBN
scheme for high . As latency increases, our scheme shows
much better performance than the SR scheme for high . The
case of 2.5 s and 0.8 shows that of our scheme is
more than five times greater than that of SR. These results are
surprising since our scheme relies on completely transmitting
one batch of packets before going to the next batch, which
is not the case for GBN or SR.
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Remark: TDD-T transmits reliably one block of data
packets before transmitting a new one, guaranteeing in-order
delivery of the original packets. In contrast, SR does not provide
such guarantee of delay for any single data packet, which is
unacceptable in many applications. Thus, our comparison to SR
is not fair, as it favors SR. Nonetheless, our scheme provides
similar or better throughput than SR. The comparison is based
under similar ACK signaling strategies.

7) One-to-All Broadcast: We first extend the work in [9]
to determine the mean completion time for optimal scheduling
policies for one-to-all broadcast in order to compare them to
our RLNC scheme, which we identify as broadcast TDD. These
policies consider no coding of the data packets, no channel-state
information, and nodes that only send ACK when they have re-
ceived all data packets.

8) Broadcast With Round Robin in Full-Duplex Channel (RR
Full Duplex): Since the channels are independent and identi-
cally distributed over time and users, Round Robin (RR) con-
stitutes an optimal policy. Thus, packet in the block is trans-
mitted every time units for until
all the receivers get all packets [9]. Using a similar analysis
as in [9]

(18)

where is the number of transmissions of packet needed
to reach node , , and

(19)

where . An upper and lower bound on
is given by 1 and 1/2, respectively.

9) Broadcast With Round Robin in TDD (RR TDD): This
scheme assumes limited feedback due to the TDD constraint.
The transmitter broadcasts all packets back-to-back, then
stops to receive ACK packets that indicate completion of the
entire file. If there are nodes that have not acknowledged the
block of packets, the transmitter repeats the process (i.e., sends
all packets and stops to listen for ACKs). The mean comple-
tion time of this scheme is

(20)

We now provide numerical examples that compare our net-
work coding scheme to these scheduling schemes in a satellite
example. For simplicity, we consider that there are no erasures
of ACK packets and that the distance between the transmitter
and each receiver is the same. The latter is a good approximation
in many satellite scenarios. We compare our broadcast scheme
with RR TDD and RR Full Duplex.

Fig. 4 compares the Broadcast TDD scheme with ’s com-
puted optimally and with the ’Worst Link Channel’ heuristics,
and compares it to the performance of RR TDD and RR Full
Duplex. For the range of packet erasures considered, our coding
scheme performs at least as well as the RR TDD, and consid-
erably better at high erasures. Broadcast TDD has similar per-
formance to RR Full Duplex for low erasures. However, our

Fig. 4. Mean completion time for Broadcast TDD with the optimal choice of
� ’s, Broadcast TDD with the “Worst Link Channel” heuristic, RR Full duplex,
and RR TDD. We use as parameters� � 2 receivers at the same distance from
the transmitter � � 5, �� � �� � �� , � � 1.5 Mb/s, � � 80 bits, � �
20 bits, � � 50 bits.

coding scheme performs better at high packet erasures
0.3). In fact, at 0.8, RR Full Duplex takes

20% more time to complete transmissions.

Remark: Broadcast TDD for one-to-all broadcast performs
better than RR Full Duplex for an important range of by
tailoring coding and feedback appropriately. Any RR TDD
scheduling scheme will not outperform RR Full Duplex be-
cause: 1) the feedback shares the channel with the data and
2) feedback is sent sporadically, delaying the time to stop
transmission.

V. RANDOM LINEAR NETWORK CODING FOR ALL-TO-ALL

BROADCAST IN TDD CHANNELS

Section IV considered the case in which only one node has in-
formation to transmit. We now analyze the problem of networks
of nodes in which all nodes want to share disjoint informa-
tion on a single TDD channel. Although we focus on completion
time, the analysis extends easily for completion energy. We pro-
vide a simple algorithm to determine the number of coded data
packets to be transmitted back-to-back before stopping to allow
transmission from other nodes.

A. Model

Each node has data packets to share with all other nodes.
Nodes transmit following a round robin assignment, where the
order of transmission has been predefined. Node can transmit
at a rate (b/s). We assume an independent, memoryless
packet erasure channel with a probability of erasure for trans-
missions from node to node , . Any transmission from
a node can be received by all other nodes. Finally, we assume
that the next node to transmit waits for all nodes to receive
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the previous transmission. is the propagation time from
node to the node that is farthest from it.

Each node is both a sender and a receiver. When node op-
erates as the sender, it transmits RLNC coded data packets of
its data packets back-to-back before stopping. The ACKs to
node come piggybacked in the header of each coded packet
sent from the other nodes and are assumed to suffer no erasures.
We consider a large .

The process is modeled as an absorbing, periodic Markov
chain where a transition occurs every time that a batch of
back-to-back coded packets is received by all nodes. The
vector represents the dofs that other
nodes require from node in order to decode its informa-
tion (i.e., constitutes the dofs required by node to
decode all packets from ). We define ,
so that represents a state of the Markov chain with
the node acting as a transmitter in this state. There are

tran-
sient states and recurrent states.

An optimal solution requires a variable per state (i.e.,
, , ), which increases exponen-

tially with . Since this becomes computationally infea-
sible, we reduce the number of variables to optimize to

by considering only the max-
imum dofs that the receivers of node need.
We rename the variables to optimize as . The
transition probabilities from state to state are
given by

if ,

o.w.

where is the probability of tran-
sitioning from to when node has transmitted

-coded packets, and represents the
next node that should transmit after node has transmitted. For
independent channels

where represents the transition prob-
ability related to the knowledge of node with respect to the
data of , when node sends -coded packets. For
ease of notation, we substitute for . For

, .
Finally, .

B. Completion Time

The time for completing the sharing process of all data
packets to all of the nodes constitutes the time of absorption,
that is, the time to reach any state
for some for the first time, given that the initial state is

for some which
starts the transmission process. We consider that the transmis-
sion time of a packet from node is given by .

We define as the time it takes to transmit coded
data packets and reach the node that is farthest away from ,
that is, , and as the mean
completion time given starting state .

Remark: The MGF of the completion time for all-to-all
broadcast is of the form of Theorem 2.

The optimization is computationally prohibitive even after re-
ducing the number of variables to optimize. We consider that the
round-trip time that depends on the physical round-trip time and
the transmissions of other nodes in the system, by observing that

(21)

where

(22)

and constitutes the probability of transi-
tioning from to through the path given by states

, and . Also

(23)

where

We propose an algorithm that leverages this structure and the
one-to-all broadcast heuristics to obtain good estimates. The key
intuition behind the algorithm is that each node perceives the
problem as a one-to-all broadcast problem, where the effect of
other nodes’ transmissions are coupled in the random waiting
time of each one-to-all broadcast problem.

Let us define as the estimate for
at step of the algorithm. Then, our al-

gorithm can be written as follows.

Algorithm 1 Search Algorithm for nodes.

-Set , , and .

-Set , .
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Compute , to
minimize the completion time of a TDD link with

, and with transition cost

(24)

where .

Compute ,
to minimize the completion time of a TDD link with

, and with transition cost

(25)

where .

,
, STOP

, and go to Step 1.

C. Performance Analysis and Numerical Results

We now compare our TDD RLNC scheme to: 1) a full-du-
plex RLNC scheme and 2) scheduling schemes for TDD and
full-duplex channels. We focus on the case of two nodes to pro-
vide simple, optimal scheduling policies. The scheduling poli-
cies consider no coding across data packets, no channel state in-
formation, and nodes that only ACK when they have received all
information. We analyze the different schemes and provide nu-
merical results to illustrate the advantages of our approach. All
schemes piggyback the ACK to the header of each transmitted
coded packet. As in [9], we restrict the analysis to independent
symmetric channels (i.e., and )
and no erasures in the ACKs for tractability of the scheduling
schemes.

1) Data Sharing With Network Coding in the Full-Duplex
Channel (DSNC Full Duplex): Each node generates random
linear combinations of its original data packets, and sends
those coded packets back-to-back through the channel to the
other node. We assume that both nodes start transmitting at the
same time to reduce the completion time of the sharing process.

This problem can be modeled through a Markov chain with
states , where and represent the dofs required to decode
at nodes 1 and 2, respectively. Since both nodes start transmit-
ting at the same time, and we assume the packets take the same
time to be transmitted , then transitions occur every arrival
of a coded packet. The transition probabilities are modeled as

where we assume independence of
the channels, and . Using
techniques from Section III, the mean completion time is

(26)

where ,
, and . repre-

sents the delay to send the ACK because it is piggybacked to
the header of the coded packets. The function returns
the remainder of .

2) Round Robin Data Sharing in the Full-Duplex Channel
(DSRR Full Duplex): We consider the simpler problem of

and assume that both nodes start transmitting
at the same time. The th packet of each node is transmitted
every for until the other node
gets all packets. The sharing process is completed when
both nodes have received all information. Thus

(27)

where is the number of transmissions of packet
needed to reach node from the other node, ,

, ,

, and .
An upper and lower bound on the mean completion time is
given by 1 and 1/2, respectively.

3) Round Robin Data Sharing in TDD Channel: This ap-
proach is similar to DSRR Full Duplex but considers a TDD
channel. Each transmitter sends all packets before stopping
to listen for a transmission of the other. The data packets also
contain feedback indicating if the node should keep transmit-
ting or if all packets have been received successfully at the other
node. The mean completion time is bounded using the
same definitions as in DSRR Full Duplex as follows:

(28)

(29)

We provide now numerical results assuming symmetric up-
link and downlink channels (i.e., ,

1.5 Mb/s, and packets. We
choose the ’s using the proposed search algorithm under
different packet erasure probabilities .

Fig. 5 shows the mean completion time for our RLNC TDD
scheme, two full-duplex schemes, and a TDD scheme with
no coding. Fig. 5 illustrates that choosing ’s using the
proposed search algorithm provides very good performance
in terms of mean completion time for a wide range of . In
general, our scheme outperforms the TDD with no coding,
although this is more noticeable for large . For low , our
TDD scheme is only 1 dB away from the performance of the
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Fig. 5. Mean completion time for the TDD scheme choosing the � ’s
through the search algorithm proposed in Section V-B, two full-duplex schemes,
and a TDD scheme with no coding. We use the following parameters: � � 1.5
Mb/s, � � 80 bits, � � 20 bits, and a block size per node of � � 15.

DSNC full-duplex scheme, which is optimal in mean comple-
tion time. Since we have packets to be transmitted from both
nodes, we expected the difference between these two schemes
to be around 3 dB. This result is explained because the is
larger than the time for transmission of the coded packets. For
very high , this relationship is reversed and the gap is closer
to the expected 3 dB.

Fig. 5 also shows that for 0.4, our TDD scheme clearly
outperforms SDRR full duplex. However, it may do so as early
as 0.2, considering the upper bound on SDRR full duplex.
For 0.8, our TDD scheme outperforms SDRR full duplex
by about 1.1 dB.

Finally, Fig. 5 shows that if we have a full-duplex system for
two nodes to share data, they clearly should do so using network
coding, especially for high . Note that for 0.8, SDNC
full duplex is more than 4 dB better in terms of the completion
time performance than the scheduling scheme SDRR full du-
plex. We emphasize that for low , the lower bound on SDRR
full duplex is loose while the upper bound is tight. In fact, the
performance of SDRR full duplex is always equal to or worse
than that of SDNC full duplex.

VI. PRACTICAL CONSIDERATIONS

A. Effect of Field Size

Let us consider the effect of the field size from a receiver’s
perspective. This allows us to model the effect of the field size
separately from other effects, such as, the channel or the network
topology. We only assume that: 1) data packets are combined
using RLNC and that the network also uses RLNC at interme-
diate nodes and 2) the coded packets traverse a channel/network
in which packets can suffer erasures. Thus, our model is useful
to any RLNC network in which packet losses occur, regardless

of the nature of the network (e.g., time-dependent losses, single
or multihop network).

Using RLNC arguments, the process of decoding packets
at a receiver is modeled as a Markov chain . A transition oc-
curs when a new coded packet is received, while the states in
the Markov chain represent how many dofs are needed in order
to decode all data packets. The arrival of a new coded packet
can cause either: 1) a transition to the next state, when it pro-
vides a new dofs or 2) a self-transition otherwise. The transition
probability matrix for this problem is

Theorem 1 can be used to provide a full characterization of
the number of coded packets that need to be received before
successfully decoding the information.

Clearly, at least -coded packets must be received before
being able to decode. The following theorem provides an upper
bound on the average number of coded packets that need to be
received before decoding the original packets.

Theorem 4: Let be the number of data packets encoded
using RLNC with a field size , then the mean number of coded
packets that have to be received before decoding the original
packets is upper bounded by

(30)

Proof: If represents the minimum number of coded
packets needed to decode, then . Since

for and , then
which shows the first bound. The second bound comes

from

where we have used the
fact that for and .

Remark: One important conclusion of Theorem 4 is that
, (i.e., on average, the number of

coded packets needed to decode the original packets will
be between and for any field size). If , we
expect that a scheme using and one using larger will
have a small difference in their performance.

B. Systematic Network Coding: Reducing the Decoding
Complexity

Systematic network coding consists of sending the original
packets initially, and transmitting RLNC packets in subsequent
transmissions. Essentially, systematic network coding intro-
duces some structure to the code. However, it does cause a
loss in performance from a delay or throughput perspective
in a one-hop network, because the first transmissions of each
original packet constitute new dofs to every receiver. System-
atic network coding can also provide benefits from a decoding
complexity perspective, because a fraction of the packets do not
require any decoding [30]–[32]. However, previous work has
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not mathematically characterized the benefits on the decoding
complexity.

We study the gains in average decoding complexity of sys-
tematic network coding as an alternative to pure RLNC. Al-
though we focus our analysis on the case of an erasure channel
in which packets can suffer erasures independently from other
packets (IID Bernoulli with parameter ), the results apply to
more general networks which can be translated into an equiva-
lent erasure channel. Also, the techniques and mechanisms used
to derive our results can be extended to characterize time-depen-
dent erasure channels.

1) Model: A source node transmits the original packets fol-
lowed by RLNC packets. RLNC packets are transmitted until
the receivers have enough dofs to decode. We assume a packet
erasure channel where erasures are IID Bernoulli with param-
eter . We also assume that the decoder can recognize un-
coded packets and use this knowledge to speed up the decoding
process.

A receiver with -uncoded packets can decode the
remaining -coded packets in operations
if it uses Gaussian elimination. We show this by considering that
the matrix of coefficients can be reordered as

where constitutes the vector of (coded) packets received,
and is the vector of original packets in the appropriate order
to have the adequate matrix structure. Uncoded packets are used
to perform a forward elimination only in the coded packets that
are received and not in the other uncoded packets. Furthermore,
the operation is restricted to a single column in the matrix
corresponding to the equivalent uncoded packet. Finally, no
backward substitution step is needed for the uncoded packets.

2) Decoding Complexity: Considering the characteristics of
the channel, the following theorem characterizes the average
decoding complexity of systematic network coding.

Theorem 5: The average number of operations required
to decode using Gaussian elimination on a full-rank matrix
when systematic network coding is used to transmit original
data packets, where each transmitted coded packet undergoes
erasures that are IID Bernoulli with parameter , grows as

.
Proof: The number of uncoded packets that are received

depends only on the channel and the number of original data
packets that are transmitted, and it is given by a binomial distri-
bution with probability .

The number of operations for Gaussian elimination on a
matrix is , for some constants ,

, . The number of operations required to decode the
original data packets is given by two effects: 1) elimination
of contribution of uncoded packets in the linear combinations

of coded packets, which requires operations,
where is a constant, and 2) a full Gaussian elimination in
the remaining matrix, which requires

operations. Then,
and

(31)

(32)

The average number of operations is obtained by adding these
two terms, which is .

This result shows that systematic network coding allows us
to reduce computational complexity by a factor of , on av-
erage, with respect to pure RLNC. Note that decoding RLNC-
coded packets using Gaussian elimination on a full-rank matrix
takes operations.

Remark: In a channel with 0.1, on average, system-
atic network coding requires 1000 times fewer operations than
RLNC in order to decode, for large enough .

Let us consider the case in which Gaussian elimination is
used not just to decode the information but also to determine if a
newly received coded packet is useful (i.e., new dofs). The fol-
lowing theorem shows that the scaling is preserved
regardless of field size.

Theorem 6: The average number of operations required to
decode, when systematic network coding is used and Gaussian
elimination is performed on every new packet to determine
linear independence, is upper bounded by a function that is

, regardless of field size , when the erasures are
IID Bernoulli with parameter .

Proof: We shall provide the proof for the case of multipli-
cation operations (# Mult). We can use the Markov chain model
that considers the effect of field size to solve this problem, but
considering a different cost to the transitions. The number of op-
erations required to process a newly received packet depends on
whether the packet is uncoded (no operations) or not, how many
uncoded packets were received , and how many linearly in-
dependent coded packets were previously received . The
number of multiplication operations to process a newly received
packet are given by

(33)

where represents the number of information symbols of size
bits per packet and is 1 when and zero

otherwise. Let us determine the average number of operations
conditioned on -uncoded packets being received

where ,
and the factors come from an RLNC argument. We have
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shown in Section VI-A that for any
integer and . Using similar manipulations, we can
show that .

Finally, , which is a well-
known series.

Let us compute ,
using the fact that is characterized by a binomial
distribution. After some manipulations, it can be shown that

. The proof concludes by
noting that the operations related to the backward substitution
step in Gaussian elimination grow as and are per-
formed only once after enough dofs have been received, regard-
less of field size .

Remark: For RLNC performing Gaussian elimination at a
cost of operations, the term , becomes
the dominant effect after a certain value of . For packets with

data symbols, typical values are , ,
and . Thus, for to be dominant, we
require . As an example, if 1000
symbols per packet, then . Since

, the term is dominant for
1500.

The average number of multiplications in system-
atic network coding in the same example is given by

operations, where
, , and

. For our example, the cubic term is
dominant if . Note
that if we fix , this means that the cost will grow
essentially as up to . Many applications rely
on coding within this region. Since the scaling in systematic
network coding is actually dependent on the pair rather
than on alone, this causes the cubic increase in complexity
effect to be dominant at much larger values of . Finally, for

, the average complexity of systematic network
coding increases linearly.

C. Example of Systematic Network Coding in TDD Channels

We study the case of one source and one receiver to illus-
trate: 1) the model modifications to characterize systematic net-
work coding and 2) the effect of field size. The general struc-
ture of the scheme and the ACK packets is preserved. The first
transmission contains packets, with original data
packets followed by RLNC packets. We incorporate
this structure in the Markov chain model by including a “sys-
tematic” state (State ). This state is the first to be visited and
is only visited once. The remaining states are the same as our
TDD RLNC scheme.

We consider now the transitions from the systematic state
to all other states. There is no self-transition to . The transition
probability to go from state to state is given by

for . Finally, .

Fig. 6. Mean completion time for the TDD scheme with different� and field
sizes � � 2 and � � 1048576. We use the following parameters� � 1.5 Mb/s,
� � 80 bits, � � 100 bits, � � 10,000 bits.

We define the probability that dofs are correctly re-
ceived, given that the system is in state and uncoded packets
have been received as

which is equivalent to the probability of -coded
packets being received. The term
can be found by computing , using the transition probability
matrix computed in Section VI-A, and searching in the
appropriate column and row corresponding to starting state
and end state .

For starting from states other than the systematic state , we
assume that . For , we have

where represents the number of coded packets that have been
received. represents the probability of starting at state

and transitioning to state in transitions or hops. This can
be found by computing , and searching in the appropriate
column and row corresponding to starting state and end state

. For the case of

and that .

D. Numerical Results

Fig. 6 shows the mean completion time for the RLNC TDD
scheme for a single receiver for and for various
block sizes and from to 0.8. It illustrates that the gap
between field sizes and is very small. The com-
pletion time is increased by, at most, 15% and 10% on average
for and , respectively. Clearly, the degradation
in performance is small even for small and .
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Fig. 6 shows that the performance of systematic network
coding with is essentially the same as RLNC with a large
field size for moderate , while their difference at high is
very small. RLNC with field size constitutes an upper
bound to the mean completion time of the systematic network
coding scheme with the same . Since increasing closes the
gap between RLNC with large and with , then the gap
between our systematic approach and RLNC with high also
closes.

VII. OPERATION UNDER RANDOM ARRIVALS

The assumption up to this point is that the source had
data packets in its buffer before starting transmission. We now
consider that this buffer may sometimes be empty or contain
fewer than packets awaiting transmission. Then, the source
node must choose to either wait for additional packets to arrive,
or take those packets in the buffer and start performing RLNC.

We first study an online network coding scheme for TDD
channels under Poisson arrivals. This problem is modeled as a
bulk service queue with a general service process that depends
on the batch size, but where packets that are being serviced can
be fed back into the queue. Second, we present the necessary
changes to the queuing model derived for online network coding
in order to analyze our RLNC scheme for TDD channels de-
scribed in Section IV. This problem requires a similar queue
model but feeding back packets into the queue.

A. Online Approach

1) Preliminaries: We can think of packets as vectors over a
finite field. Since we focus on linear network coding, we can
think of the state of knowledge of a node as a vector space
over the field. Reference [26] showed that with the proper use
of feedback, it is possible to perform network coding in an on-
line manner. The authors relied on acknowledging every new
dof that was successfully delivered to a receiver. Reference [26]
showed that using the feedback on dofs required the queue to
store a basis for a coset space with respect to the subspace of
knowledge common to all of the receivers. The authors defined
a specific way of computing this basis using the notion of a node
“seeing” a data packet, which we define in the following text.

Definition: Index of a packet: For any integer , the th
packet that arrives at the sender is said to have index .

Definition: Seeing a packet: A node is said to have “seen”
an original packet , with index , if it has received enough
information to compute a linear combination of the form

, where is itself a linear combination involving only packets
with an index greater than that of (i.e., of an index greater
than ). Note that decoding a packet implies seeing that packet,
which corresponds to .

Our feedback scheme is inspired by [26]. However, the TDD
constraint requires us to use feedback more sporadically (i.e.,
we cannot send an ACK for every received dofs). Instead, we
determine the number of coded packets to transmit before the
sender stops to listen for an ACK. This ACK will report the last
consecutive “seen” packet, say of index , to allow the sender
to remove all packets with index or less.

Fig. 7. Bulk queue model with feedback for online network coding for TDD
channels.

We do not guarantee that the seen packets will be decoded im-
mediately, similar to the decode-when-seen algorithm in [26]. In
general, there is a delay in decoding the data packets, because
the receiver has to collect enough dofs involving the unknown
packets. We shall characterize how often a decoding event oc-
curs, which will be defined.

Definition: Decoding event: For any positive integer , if
random combinations at the sender have involved up to the th
packet, it is said that a decoding event occurs if the receiver de-
codes the th packet and all packets before it after a transmis-
sion of a group of coded packets by the sender. In other words, it
constitutes the decoding at the receiver of all packets that were
involved in random linear combinations up to that moment.

2) System Model: We consider the case of one sender and
one receiver, with similar assumptions as in previous sections.
The key difference is that the packets included in a linear com-
bination at a given time are determined by the ACK packets re-
ceived up to that time, the packets in the queue, and the window
of coding . We consider that the data packets arrive to a source
node through a Poisson process with rate packets/s. Upon ar-
rival, the data packet is placed in a buffer to await encoding and
transmission to the receiver, as in Fig. 7. The buffer forms a
first-in-first-out (FIFO) queue. However, some of the packets
will be fed back to the queue because they were not successfully
delivered. That is, the ACK packet from the receiver contains an
index number that is lower than the index of some of the packets
used in the generation of the previous batch of coded packets.

The size of the coding window of packets is variable, where
. The pair constitutes the range of the bulk

size or the size of the coding window used to perform RLNC. If
the buffer has fewer than data packets, the system will wait
until packets arrive before providing service. If the buffer
contains more than packets, the system will service exactly
packets. Finally, if the buffer has packets with ,
then the system will service packets.

Since we are potentially mixing a different number of data
packets, we assume that the coded packet contains space for
the maximum number of coefficients allowed by the window
(i.e., for simplicity). Therefore, the number of bits in each
coded packet is . The ACK packet feeds back the
index of the last consecutive seen data packet also indicating
the number of dofs that are still required to decode. The number
of coded packets sent back-to-back depends on the value of
(i.e., the number of packets that will be included in the linear
combinations). The service time depends on the number of data
packets taken from the queue at any time (i.e., the service time
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distribution is general but it depends on the size of the batch
being transmitted).

Transmission begins after an ACK packet is received and
packets are in the queue. At this point, informa-

tion packets are taken from the queue, which are encoded into
-coded packets, and transmitted. The ACK informs the

transmitter about the index of the last consecutively seen packet.
At this point, the source may have received new data packets.
If packets will be used to generate linear combinations in the
next round of transmission, then the transmitter sends -coded
packets. If the number of packets in the queue exceeds , then
only packets are involved in the linear combinations
of the next transmission. The time between a transmission of
packets and receiving an ACK packet is for

. For , the transmission time is .
3) Queueing Model: This bulk queueing model considers

Poisson arrivals and a general service time that depends on the
bulk size. We consider a minimum batch size that could be
different from 1 (which was the assumption in [33]). Also, the
system model is very similar to the bulk queue model studied
in [34] but considering a nonzero probability of packets being
fed back to the queue. Thus, our work generalizes [33] and [34].
The transition probability of the number of packets in the queue
is given by

where is the probability of having arrivals plus fed-back
packets during a service of type .

4) MGF of Transition Probabilities: The MGF of the tran-
sition probabilities is determined by considering that the new
state of the queue depends on the previous state of the
queue ), the Poisson packet arrivals , and packet
departures (taken out of the queue) given the ACK information

. More specifically, .
The distribution of packet departures given a previous state , a
set of values of ’s given by , and an erasure probability

is given by

if
if

while their MGF is

(34)

(35)

Using basic MGF properties, the MGF of the transition proba-
bilities when the system is in state is given by

(36)

5) Stationary Probabilities: We define the z-transform of the
transition probabilities as

where

We define as the corresponding gener-
ating function of the stationary probabilities, where is the sta-
tionary probability of state . Reference [34] showed that
can be expressed as

which provides an expression for in terms of its first
coefficients . Determining these coefficients
provides a full characterization of the stationary probabilities
[34].

Using the same techniques as [34], we can prove that
has exactly zeros satisfying assuming

that has a radius of convergence greater than one.
Denoting the roots as and assuming that they
are different, then the numerator of (37) has to vanish for

which gives us linear equations

(37)

(38)

for . Also, the numerator vanishes trivially for
for the numerator and the denominator in (37). We use

l’Hôspital’s rule to exploit the fact that to derive an
additional linear equation given by

(39)

where we have defined . The final linear equa-

tion to fully characterize is given by

We can use techniques developed by [35] to compute the roots
of . In fact, a simple solver is sufficient to find the

root of with , for every
value of , which provides us with the
required roots.

6) Queue of Finite Capacity: The general solution requires
the calculation of the roots of , which can result in
numerical inaccuracies and becomes increasingly difficult when
the decision variable assumes a larger value. For these rea-
sons, we simplify the problem considering that the system has
a capacity of packets waiting to be serviced. The transition
probability matrix for this case has a similar structure as but
with 1) finite dimensions , and 2) a final
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column that aggregates the probability of transitioning to states
larger than .

The stationary distribution is computed by solving ,
with , under the constraint that .

7) Mean Delay: We define the mean delay of a packet
as the time that elapses since a packet arrives to the queue to
the time it is “seen” at the receiver. For this purpose, let us first
define the mean queue size as for the case in
which the queue capacity is . Let us also define as the
transmission time for a choice of . Then

where . Using Little’s law

(40)

Remark: In our case, is a constant value. If it were
random, the expression for would remain the same,
but with representing the mean time for a service of type .

8) Mean Time Between Decoding Events: Since data packets
can be seen without being decoded, we now characterize the
time between decoding events, which provides a worst case
metric for the time between a packet is seen until it is decoded.
We analyze this for the case of and for a finite capacity
queue, but an extension to general and infinite follow
naturally.

The time between decoding events is calculated
by modeling the problem as an absorbing Markov chain.
The absorption state (State 0) indicates that a decoding
event occurred. Other states correspond to the number
of packets in the queue. A transition to the absorbing
state may take place from any other state. We define

, , and

for

. Finally, we define . The
transition probability matrix is of the form

The time between decoding events depends on the starting
state. The probability of starting at state in this absorbing
Markov chain depends on the state of the queue and the fact
that the previous transmission resulted in packets being seen but
not decoded. We determine the probability of starting in state
by using the stationary probabilities of Section VII-A-VI. Each
state in Section VII-A-VI, inherently contains two states:
and , where and indicate if the last transmission caused
a decoding event, respectively. We define and as the

stationary probabilities associated with the inherent states
and , where . Let be the tran-
sition probability from state to state , with ,

. We also define for
as the transition probability from state (or rather

from both and ) to state .
The mean time between decoding events is

(41)

where represents the mean time to absorption
in the Markov chain given that the system started in
state , where the transition time is . Note that for

.
We are interested in determining . For simplicity, we
determine through , which is given by

if
if

and then determine . After some manipulations,
we show that for

(42)

B. Batch-by-Batch Approach

Only small changes are required to analyze the queuing per-
formance of our batch-by-batch TDD RLNC scheme. The ser-
vice time of the queue is given by the time it takes to transmit a
group of packets taken from the queue using RLNC for TDD
channels, as studied in previous sections, but with no packets
being fed back to the queue. The service time is general and it
depends on the number of data packets taken from the queue at
any time. This constitutes a bulk queueing model
[34] and is studied in detail in [36]. Changes are necessary from
our discussion of the online mode as follows.

• The parameter represents the probability of arrivals
during a service of type .

• The z-transform of the stationary probabilities
and is the MGF

of the completion time for the case of one sender and one
receiver.

• The parameter can be easily computed as

• The system is stable if and only if , where
is the mean service time when the bulk size is ,
where .

• In this case, since

in general, and the denominator of (39) will not become
zero as . In fact, if the system is stable, this condition
will be satisfied.
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C. Performance Analysis and Numerical Results

We present different policies to choose the values of ’s in
our online approach to illustrate the performance of the system
and its relationship to the choice of ’s.

a) Optimizing for Mean Delay: Computes ’s following an
exhaustive search method in order to minimize .

b) Optimizing for Mean Time between Decoding Events:
Computes ’s following an exhaustive search method in
order to minimize .

c) Heuristics 1: This heuristics computes .
d) Heuristics 2: This heuristics computes .
e) Heuristics 3: This heuristics computes ’s so that a min-

imum criteria for the probability of generating a decoding
event in the next transmission is achieved. We specify
as the minimum acceptable probability of decoding in the
next transmission and compute ’s so
that .

Fig. 8(a) and (b) shows the performance of the different
schemes in terms of mean delay and mean time between de-
coding events, respectively, when the arrival rate has changed.
A good mean delay performance does not necessarily imply
a poor mean time between decoding events performance,
or vice-versa. For example, Heuristics 1 for small shows
that it is possible to have poor performance in both metrics.
Fig. 8(a) and (b) also illustrates that the optimal choice of

’s also depends on arrival rate for both metrics. However,
Heuristics 2 shows a good tradeoff between mean delay and
mean time between decoding events, while choosing ’s
independently from . For Heuristics 2, the mean time between
decoding events is an order of magnitude smaller than its mean
delay performance (i.e., is the main contributor to the
overall delay of a packet) from being received to being decoded.

Fig. 8(a) also illustrates that all schemes change smoothly
with in terms of mean delay, except the optimizing for mean
time between decoding events scheme, which shows a jagged
curve. The main reason for this behavior is that the optimal
values of ’s in terms of change considerably with re-
spect to . For small , there might be numerical inaccuracies in
computing the values of ’s that minimize , due to the
very small values reported in Fig. 8(b). These effects translate
into a smooth change in the [Fig. 8(b)] but with non-
smooth behavior in mean delay.

Finally, choosing the ’s to increase the probability of de-
coding in the next transmission, as in Heuristics 3, shows poor
performance in both metrics and depends on .

The optimal values of depend not only on system and
channel characteristics, for example, , , , but also
on .

VIII. CONCLUSIONS

We considered the role of network coding with feedback in
TDD channels and proposed a new paradigm for delay-driven
coding, which is key to the design of efficient systems with
large latency. By providing full characterization of simple and
adaptive RLNC schemes for one-to-all broadcast and all-to-all
broadcast, we were able to identify key parameters and develop
estimation techniques to tailor coding and feedback. One of the

Fig. 8. Mean delay (a) and mean time between decoding events (b) of different
schemes for choosing � ’s for the case of ����� � ��� ��. Parameters �� �
���, propagation time of 12.5 ms, data packets of 10 000 bits, � � 20 bits, 	 �
1.5 Mb/s, 
 � 80 bits, � � 30 packets, and the ACK packet has 100 bits. For
Heuristics 3, � � 0.99999.

most striking results is that our TDD schemes achieved the same
or close to the same performance as the delay-optimal full-du-
plex scheme. Another key observation is that RLNC needs on
average, at most, -coded packets at any receiver to decode
the original packets, regardless of the field size. Clearly, the
overhead is negligible for large .

Perhaps the most important practical implication is that sys-
tematic RLNC using provides a free lunch by: 1) pro-
viding close to optimal performance; 2) relying on simple oper-
ations, that is, XORs, for encoding/decoding; and 3) reducing the
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decoding complexity by a factor of with respect to using an
RLNC with the same field size.

Our analysis was given for the case of one-hop communica-
tion, but the procedures and insights can be translated to more
complex networks, even for systematic RLNC. For the latter, a
key problem is to identify the equivalent for each receiver.
For example, a daisy chain with an erasure probability of
for link will have an equivalent . Future
research will extend systematic RLNC efficiently to more com-
plex networks. The main challenge is to determine which nodes
and/or links should preserve the systematic structure.

Coding for delay is a topic that warrants further study. This
work has identified important facets, for example, latency, lim-
ited feedback, and TDD channels, but many open problems still
remain. One interesting example is to consider packets with
deadlines, as in real-time applications.

Finally, studying the impact of half-duplex constraints on
existing theoretical results and on practical schemes is a rele-
vant aspect for future research on wireless networks. Although
the conclusion for some of our work is that a half-duplex
system could reach close to or have the same performance as a
system operating in full duplex, we emphasize that it required
a channel-adaptive coding scheme to achieve this. Any given
scheme is not guaranteed to have this trait.
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