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Abstract—This article addresses the problem of coherent de-
tection of acoustic orthogonal frequency division multiplexing
(OFDM) signals using a sparse channel estimation method based
on a physical model of multipath propagation. Unlike the conven-
tional sample-spaced and subsample-spaced methods, such as least
squares and orthogonal matching pursuit (OMP), which target
the taps of an equivalent discrete-delay channel response, the path
identification (PI) method targets the physical propagation paths
in a continuous-delay domain, and focuses on explicit estimation
of delays and complex amplitudes of the channel paths in an
iterative fashion. When multiple receive elements are available,
two situations are possible: one in which the array elements see
uncorrelated channel responses, and another in which the channel
responses are correlated. In the first case, channel estimation must
be accomplished element-by-element. This is done simply by ap-
plying the PI algorithm to each element individually. In the second
case, correlation between the elements can be exploited. In doing
so, our goal is to reduce the signal processing complexity without
compromising the performance. Toward this goal, an adaptive
precombining method is proposed. Without requiring any a priori
knowledge about the spatial distribution of received signals, the
method exploits spatial coherence between receive channels by lin-
early combining them into fewer output channels so as to reduce the
number of subsequent channel estimators. The algorithm learns the
spatial coherence pattern recursively over the carriers, thus effec-
tively achieving broadband beamforming. The reduced-complexity
precombining method relies on differential encoding that keeps
the receiver complexity at a minimum and requires a very low
pilot overhead. Using synthetic data as well as 210 experimental
signals transmitted over a 3–7-km shallow-water channel in the
10.5–15.5-kHz acoustic band during a 3.5-h experiment, we study
the system performance in terms of data detection mean-squared
error (MSE), symbol error rate, and bit error rate (BER), and
show that the PI algorithm achieves excellent MSE performance
while its complexity is considerably lower than that of the OMP
algorithm. We also demonstrate that the receiver equipped with the
proposed reduced-complexity precombining scheme requires three
times fewer channel estimators while achieving the same MSE and
BER performance as the full-complexity receiver.

Index Terms—Multichannel acoustic orthogonal frequency di-
vision multiplexing (OFDM), path identification (PI), recursive
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least squares (RLS), sparse channel estimation, spatial correlation
learning, stochastic gradient descent.

I. INTRODUCTION

H IGH data rate coherent transmission over acoustic chan-
nels is a challenging problem due to the combined effects

of long multipath and Doppler fluctuations. To account for
these effects, we design a coherent receiver based on multi-
carrier modulation in the form of orthogonal frequency division
multiplexing (OFDM). OFDM is an attractive method for data
transmission over frequency-selective channels due to its ability
to achieve high bit rates at reasonably low computational loads.
This fact motivates the use of OFDM in mobile acoustic com-
munications where the channel exhibits long multipath delays
but each narrowband carrier only experiences flat fading, thus
eliminating the need for time-domain equalizers [1]–[4].

Reliable coherent data detection requires the channel state
information (CSI) at the receiver. Pilot-assisted channel esti-
mation is used as a standard method to obtain the necessary
CSI for reliable coherent communications [5]–[11]. In [5], a
pilot-aided channel estimator based on 2-D Wiener filtering,
which is optimal in the mean-squared error (MSE) sense, is
proposed. In [6], a low-rank channel estimator for OFDM sys-
tems was proposed based on the singular-value decomposition
(SVD) or frequency-domain filtering. While these channel es-
timators are optimal in the MSE sense, they require a priori
information about the channel statistics, which is not usually
available in practice, and have high computational complexity.
The conventional least squares (LS) algorithm targets estimation
of sample-spaced channel taps, with sampling at the basic rate
equal to the system bandwidth [7]. Although the LS method has
low complexity, its performance suffers when the channel is not
sample-spaced, as is the case in most practical situations.

Detection of OFDM signals requires the knowledge of chan-
nel coefficients in the frequency domain. However, channel is
typically estimated in the impulse response domain (delay do-
main), where fewer delay-domain coefficients suffice to describe
it [10]. With the advent of sparse estimation, focus has come to
the sparse nature of physical multipath channels, as it can be
leveraged to further improve channel estimation to either work
with fewer pilot symbols or to achieve better noise suppression.

Sparse channel estimation for acoustic OFDM systems has
been studied extensively in recent years [12]–[14]. These studies
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have put forth a number of channel estimation algorithms that
take advantage of this fact. In [12] and [13], a channel estimator
based on the greedy matching pursuit and its orthogonal variant,
orthogonal matching pursuit (OMP), using dictionaries with
finer delay resolution (subsample spacing) has been addressed.
This method can approximately reflect the fact that the physical
path delays have a continuum of values. However, the im-
provement in the performance of channel estimation that results
from using finer dictionaries comes at increased computational
complexity, and further studies revealed an effect of strongly
diminishing returns for finer dictionaries [13].

To address these issues, we focus on a physical, path-based
channel model, which is amenable to explicit channel estima-
tion, where the channel is parametrized by a number of distinct
paths, each characterized by a delay and a complex amplitude.
We target a continuum of path delays, eliminating the sample-
spaced model and focusing instead on processing a transformed
version of the signal observed over all the carriers spanning the
system bandwidth. We draw on the ideas of the work in [15],
where we proposed the basic approach of path identification (PI)
for a single-element receiver. Unlike the sparse identification
methods, the resolution and coverage in delay that the PI method
provides can be increased arbitrarily without a prohibitive cost
to complexity. In a digital implementation, the path delays are
of course discretized, but the resolution can be arbitrary, i.e.,
it is not constrained by the algorithmic complexity. The PI
algorithm focuses on explicit estimation of delays and complex
amplitudes of the channel paths. Not only does it operate in
a continuous estimation space, but it also eliminates the need
to know the statistics of the channel, which is crucial for the
channel estimation proposed in [5] and [6].

In addition to temporal fluctuations, spatial variability of the
underwater channel presents a major problem for single-channel
receivers and motivates the use of multiple spatially distributed
receivers that offer robustness to fading [16]. However, mul-
tichannel processing of high rate underwater acoustic (UWA)
communication signals requires computationally expensive re-
ceiver algorithms, and an increase in the number of receiving
elements significantly increases the receiver complexity. When
multiple receiving elements are available, two situations are
possible: one in which the array elements see uncorrelated chan-
nel responses, and another in which the channels responses are
correlated. In the first case, channel estimation must be accom-
plished element-by-element. This is done simply by applying
the PI algorithm to each element individually. In the second
case, correlation between the elements can be exploited so as to
reduce the number of channel estimators.

In this paper, we propose a precombining method that exploits
spatial coherence between receiving elements and provides the
desired reduction in signal processing complexity. The approach
is motivated by time-domain equalization in single-carrier sys-
tems [16], which we reformulate in light of multicarrier systems.
The proposed scheme exploits spatial correlation between the
input channels by linearly combining them so as to reduce the
number of channel estimators in a coherent receiver. The method
makes no assumptions about the spatial distribution of signals,

relying only on the fact that some coherence will exist between
the signals received on different elements when the elements
are spaced closely with respect to wavelength. The algorithm
learns spatial coherence between the channels adaptively, and
allows the precombiner coefficients to change from one carrier
to another, thus effectively accomplishing broadband process-
ing. The adaptive precombining method relies on differential
encoding, which keeps the receiver complexity at minimum and
requires only a very low pilot overhead. The proposed algorithm
has lower complexity than the method proposed in [17] at the
cost of negligible degradation in the MSE performance.

The techniques are demonstrated on experimental data from
the Mobile Acoustic Communication Experiment (MACE’10),
showing excellent results. In the MACE’10 experiment, the
transmitter moved at a relative speed of 0.5–1.5 m/s with re-
spect to the receiver, and OFDM blocks containing up to 2048
QPSK/8-phase shift keying (8-PSK) modulated carriers occu-
pied the acoustic frequency range between 10.5 and 15.5 kHz.
The proposed method achieves excellent performance in these
challenging conditions.

The rest of this paper is organized as follows. In Section II,
we introduce the system and channel model. Section III dis-
cusses the conventional (sub)sample-spaced channel estimation
algorithms and details the PI algorithm. Section IV presents the
precombining algorithm. Sections V and VI contain the results
of synthetic and experimental data processing. Conclusions are
summarized in Section VII.

II. SYSTEM AND CHANNEL MODEL

A. OFDM System

We consider an OFDM system with Mr receivers and K car-
riers within a total bandwidth B. Let f0 and Δf = B/K denote
the first carrier frequency and the carrier spacing, respectively.
The transmitted OFDM block is then given by

s(t) = Re

{
K−1∑
k=0

dke
2πifkt

}
, t ∈ [0, T ] (1)

whereT = 1/Δf is the OFDM block duration. The data symbol
dk, which modulates the kth carrier of frequency fk = f0 +
kΔf , belongs to a unit amplitude PSK alphabet.

After synchronization, carried out using the method pro-
posed in [18],1 and overlap-and-add procedure (or cyclic-prefix
removal), the lowpass equivalent received signal on the mth
receiving element is modeled as

vm(t) =
K−1∑
k=0

Hm
k dke

2πikΔft + wm(t), t ∈ [0, T ] (2)

whereHm
k is the channel frequency response at the kth carrier of

themth receiving element, andwm(t) is the equivalent baseband

1Synchronization includes frame synchronization, initial resampling, and
frequency offset compensation.
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Fig. 1. Spillage between taps for the physical channel h(τ) = δ(τ −
2.5 T

K ) + δ(τ − 42.5 T
K ). Note that the number of taps required to describe

the channel is greater than the number of physical propagation paths.

noise. Fast Fourier transform (FFT) demodulation yields the
observations

ymk =
1

T

∫
T

vm(t)e−2πikΔftdt

= dkH
m
k + zmk , k = 0, 1, . . . ,K − 1 (3)

where zmk is the corresponding noise.

B. Channel Model

In this section, we introduce the physical, path-based chan-
nel model as an alternative to the conventional discrete-delay
(sample-spaced) channel model. In the path-based channel
model, the channel is parameterized by a pair (τp, hp), p =
1, . . . , Np where the path delays τp have a continuum of values,
the coefficients hp represent the path amplitudes, and Np is
the number of channel paths. At the carrier frequency fk =
f0 + kΔf , the channel frequency response is given by

Hk = H(fk) =

Np∑
p=1

hpe
−2πifkτp =

Np∑
p=1

cpe
−2πikΔfτp (4)

where cp = hpe
−2πif0τp .

A baseband discrete-delay model with delay spacing Δτ is
given by

Hk =
∑
l

χle
−2πikΔflΔτ (5)

where χl is the channel tap. If Δτ = T/K and T = 1/Δf , then
χl is given by

χl =
1

K

Np∑
p=1

cpe
−πi(K−1)

(
τp
T
− l

K

)

× sin
(
πK(

τp
T − l

K )
)

sin
(
π(

τp
T − l

K )
) , l = 0, . . . ,K − 1. (6)

From (6), it follows that if the channel path delay τp is not
an integer multiple of the delay spacing, then the channel path
amplitude hp will leak to all the taps χl. Fig. 1 illustrates such
leakage for a special case of a two-path equal-amplitude channel.

Alternatively, the “superresolution” models are based on
using Δτ = T/KI , where I > 1 accounts for an increased
resolution in delay. Using a resolution higher than the basic
T/K reduces the power spillage among adjacent taps of the
estimated impulse response, ultimately aiming for a minimal
channel representation where the number of taps tends to the
number of physical propagation paths.

III. CHANNEL ESTIMATION

A. Channel Estimation Based on the Discrete-Delay Model

Conventionally, channel estimation is based on the discrete-
delay model. When Δτ = T/K, with T = 1/Δf we have the
usual discrete Fourier transform relationship between the vector
H of channel coefficients Hk in the frequency domain and the
vector χ of channel taps χl in the impulse response domain

H = FKχ (7)

where FK is the K ×K Fourier matrix. If the multipath spread
Tmp < T is within LT/K where L < K, i.e., the support of χ
is limited to L < K, then we can also write

H = FK×LχL (8)

where only the first L columns of the Fourier matrix FK and the
firstL elements of the model vectorχ are kept. Alternatively, the
superresolution discrete-delay model and attendant sparse esti-
mators are based on using Δτ = T/KI , where I > 1 accounts
for an increased resolution in the delay domain.

Assuming without the loss of generality that all K data sym-
bols are available for channel estimation (e.g., correct symbol
decisions, or all-pilots in an initial block), the input to the channel
estimator is given by xk = yk/dk, k = 0, . . . ,K − 1, i.e.,

x = H+ z (9)

where z is the noise vector. If the data symbols are available
only on pilot carriers, the vector x is formed using those carriers
only.

The conventional LS estimate is then given by2

χ̂L =
1

K
F′K×Lx (10a)

Ĥ = FK×Lχ̂L. (10b)

In many practical applications, including UWA communica-
tions, the multipath channel can be considered as sparse, as the
number of significant paths is small even when the channel delay
spread is long. Based on this assumption, greedy algorithms,
such as OMP, can be used to estimate the channel response. The
OMP algorithm identifies the dominant channel taps sequen-
tially. At each iteration it selects one column of the dictionary
that correlates best with the approximation residual from the
previous iteration and recomputes the coefficients by solving a
constraint LS problem to optimally fit the observations [19]. The
OMP algorithm is summarized in Algorithm 1.

2Conjugate transpose is denoted by (·)′.
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Algorithm 1: OMP Algorithm With MGS.
Input: K-dimensional noisy channel observation vector x,

K × IL dictionary FK×IL (FK×IL obtained by keeping
the first K rows and the first IL columns of a DFT
matrix of size IK × IK), and sparsity level Nt ≤ IL of
χ (or threshold η)

Output: channel frequency response estimate Ĥ
1: Φ0 = ∅, Φ⊥,0 = ∅, I0 = ∅, and t = 1
2: rt = x
3: while t ≤ Nt (or |rt(τ)| > ηmaxτ |r(τ)|) do
4: it = argmax1≤i≤IL |F′K×ILrt|
5: It = It−1 ∪ {it}
6: φt = [FK×IL]it
7: Φt =

[
Φt−1 φt

]
8: for k ∈ {1, . . . , t− 1} do
9: φt = φt −

(
([Φ⊥,t−1]k)

′ φt

)
([Φ⊥,t−1]k)

′

10: end for
11: φt =

φt

‖φt‖2
12: Φ⊥,t =

[
Φ⊥,t−1 φt

]
13: χ̌t = Φ′⊥,tx
14: rt+1 = x−Φ⊥,tχ̌t

15: t← t+ 1
16: end while
17: χ̌Nt

= (Φ′Nt
ΦNt

)−1Φ′Nt
x

18: [χ̂]it = [χ̌Nt
]t, t = 1, . . . , Nt

19: return Ĥ = FK×ILχ̂

The running time of the OMP algorithm is dominated by
step 1, whose total cost is O(NtILK).3 At iteration t, the LS
problem can be solved with marginal cost O(tIK). To do so,
we maintain a QR factorization of FK×IL. Our implementation
uses the modified Gram–Schmidt (MGS) algorithm. Extensive
details and a survey of alternate approaches can be found in [20].

B. Channel Estimation Based on the Physical Model

The physical model is based on the expression (4), which can
be written as

H =

Np∑
p=1

cpsK(2πΔfτp) (11)

where sK(2πΔfτ) =
[
1 e−2πiΔfτ · · · e−2πi(K−1)Δfτ

]T
is re-

ferred to as the steering vector at an arbitrary delay τ .
Consider now the following operation performed on the noisy

channel observation x:

r(τ) =
1

K
s′K(2πΔfτ)x

=

Np∑
p=1

cpgK(2πΔf(τ − τp)) + w(τ), τ ∈ τobs (12)

3Note that step 4 can also be implemented using FFT whose complexity is
O(IK log2 IK). This will reduce the computational cost if log2(IK) < L in
limit.

where the interval τobs is a preset interval that captures the
multipath spread,4 w(τ) is the corresponding noise, and

gK(ϕ) =
1

K

K−1∑
k=0

eikϕ (13)

is a known signature function. This operation corresponds to
steering across the carriers. Fig. 2(a) shows the signature wave-
form (magnitude) and Fig. 2(b) illustrates the signal r(τ) corre-
sponding to the physical channel shown in Fig. 1.

The fact that the signature waveform is known can be exploited
to estimate the channel parameters explicitly. When we say ex-
plicitly, we mean that we are targeting directly both the path gains
cp and the path delays τp, unlike in the conventional estimation
where the delay axis is discretized to avoid the nonlinear problem
of delay estimation.

Joint estimation of the parameters cp and τp can be performed
as follows. We start by setting

r1(τ) = r(τ) (14)

and evaluate this function for a preset range of delays τ with
an arbitrary resolution Δτ in the delay domain. The range can
be determined in accordance with the multipath spread Tmp.5

An iterative procedure now follows over the path indices p =
1, . . . , Np. In the pth iteration, we estimate the path delay as

τ̂p = argmax
τ
|rp(τ)| (15)

and the path coefficient as

ĉp = rp(τ̂p). (16)

We then subtract this path’s contribution from the current signal,
so as to form the signal for the next iteration (next path)

rp+1(τ) = rp(τ)− ĉpgK(2πΔf(τ − τ̂p)). (17)

The procedure ends according to a predefined criterion such
as an a priori set number of paths Np, or when the power in
the residual reaches a certain threshold η or stops to change
significantly.

An extension to the above algorithm can also be applied to
improve the quality of the estimates ĉp. Once the algorithm has
been executed, the path coefficients ĉp generated in the process
are discarded, but the delay estimates τ̂p are kept. The delay
estimates are used to form the matrix

Ŝ =
[
sK(2πΔf τ̂1) · · · sK(2πΔf τ̂Np

)
]
. (18)

This matrix represents an estimate of the true matrix S, which
relates the vector H with the vector of path coefficients c =[
c1 · · · cNp

]T
as H = Sc, i.e., it defines the observed signal as

x = Sc+ z. (19)

4For example, the observation interval can be chosen as τobs = [0, Tg ]. To
counteract the effect of time synchronization in non-minimum phase channels
such as underwater channels [21], the observation interval τobs can be chosen
as [− 1

4Tg ,
3
4Tg ] assuming that multipath spread Tmp is within τobs.

5In a digital implementation, an arbitrary resolution is used, e.g., Δτ =
T/IK, where I represents the resolution factor, i.e., the increase in resolu-
tion over the standard sample spacing 1/B = T/K. The total length of the
observation interval is L = 
TgB�, where Tg is the guard interval which is at
least as long as the multipath spread.
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Fig. 2. (a) Signature waveform. (b) Signal for channel estimation corresponding to the physical channel shown in Fig. 1.

Algorithm 2: PI Algorithm With LS Refinement Step.
Input: K-dimensional noisy channel observation vector x, a

preset interval τobs, and number of channel paths Np (or
threshold η)

Output: channel frequency response estimate Ĥ
1: p = 1
2: rp(τ) = r(τ) = 1

K s′K(2πΔfτ)x, τ ∈ τobs

3: while p ≤ Np (or |rp(τ)| > ηmaxτ |r(τ)|) do
4: τ̂p = argmaxτ |rp(τ)|
5: ĉp = rp(τ̂p)
6: rp+1(τ) = rp(τ)− ĉpgK (2πΔf(τ − τ̂p))
7: p← p+ 1
8: end while
9: Ŝ =

[
sK(2πΔf τ̂1) · · · sK(2πΔf τ̂Np

)
]

10: ĉ =
(
Ŝ′Ŝ

)−1
Ŝ′x

11: return Ĥ = Ŝĉ

The corresponding LS estimate is ĉ = (S′S)−1S′x. For lack
of true S, assuming that the delay estimates are accurate,
we replace S by Ŝ. The channel coefficients are thus finally
estimated as

ĉ = (Ŝ′Ŝ)−1Ŝ′x. (20)

Unlike the estimates (16), which are obtained sequentially
(one after another), these estimates are obtained jointly, and
hence offer a potential improvement. The formal steps of the
PI algorithm are summarized in Algorithm 2.

The running time of the PI algorithm is dominated by the
initialization step (line 2) which takes ILK floating point opera-
tions (flops) assuming that the observation interval τobs contains
IL delay samples. Capitalizing on the fact that the signature
function gK(·) is known, the operations within the loop take
only IL flops per iteration. The (optional) LS refinement step
(line 10) takesKN2

p flops [22], [23]. The total complexity of the
PI algorithm is thus O(ILK) +O(NpIL) +O(KN2

p ). Com-
pared to O(NtILK) +O((5/2)KN2

t ) for the OMP algorithm,
where Nt is the sparsity level of the channel tap vector, this

represents an improvement, which we will illustrate numerically
in Section III-C.

C. Multichannel Processing

In a conventional coherent receiver with Mr spatially dis-
tributed elements, one FFT demodulator is associated with each
input channel. Using the model (3) then yields the Mr-element
received signal vector

yk = dkHk + zk, k = 0, . . . ,K − 1 (21)

where yk contains the demodulator outputs ymk , m =
1, . . . ,Mr, Hk and zk contain the relevant channel and noise
components, respectively. Using maximum ratio combining
(MRC), the data symbols are then detected as

d̂k =
Ĥ′kyk

Ĥ′kĤk

(22)

where Ĥk is an estimate of the channel coefficients Hk. If there
is no spatial coherence, the Mr channel estimates Ĥm

k , m =
1, . . . ,Mr are formed independently. However, if there exists
a correlation between the Mr channels, this correlation can be
exploited to reduce the receiver complexity.

In Fig. 3, we illustrate the PI algorithm operation on an OFDM
block of experimental recordings with K = 1024 carrier modu-
lated by QPSK data symbols. The signal for channel estimation,
channel impulse response, and channel frequency response as
well as the last block’s scatter plot are shown.

IV. SPATIAL COHERENCE LEARNING

In this section, we propose a precombining method for mul-
tichannel OFDM systems. The proposed technique reduces the
complexity of coherent OFDM receivers through linearly com-
bining the Mr input channels into Q ≤Mr output channels,
so as to reduce the number of channel estimators needed. The
technique makes no assumption about the spatial distribution of
signals, and relies on differential encoding that keeps the receiver
complexity at a minimum. Fig. 4 shows the block diagram of
the receiver.
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Fig. 3. Performance illustration for a ZP-OFDM block with K = 1024 carriers modulated by QPSK data symbols. Shown are the signals for channel estimation
across the array with 12 receive elements spaced at 12 cm, estimates of channel impulse response and channel frequency response, and the scatter plot of detected
data symbols. The elements are numbered left to right and top to bottom, and each signal is shown as a function of delay. Estimates are obtained by applying the PI
algorithm terminated based on a predefined threshold η = 0.1 and the resolution factor I = 2. Channel estimation is based on 136 pilots. In the scatter plot, the
data detection MSE is −19 dB and there are no symbols errors. (a) Signal for channel estimation in space and time. (b) Channel impulse response. (c) Channel
frequency response. (d) Scatter plot.

Fig. 4. Block diagram of the receiver with precombining. The precombiner
A consisting of columns αq , q = 1, . . . ,Q, linearly combines the Mr input
channels into Q ≤Mr output channels. FFT demodulation is then applied in
each of the Q channels, followed by differential maximum ratio combining
(DMRC). Alternatively, the order of precombining and FFT demodulation can
be changed. FFT demodulation can be performed first on all Mr input channels,
followed by precombining as indicated by the second equality in expression (23).

Let αq denote the precombiner weights for the qth output
channel, and let the vector v(t) contain the Mr input signals
vm(t). FFT demodulation then yields

ỹqk =
1

T

∫
T

α′qv(t)e
−2πikΔftdt = α′qyk, q = 1, . . . , Q

(23)

where the vector yk, k = 0, . . . ,K − 1, contains the Mr FFT
outputs corresponding to theMr input channels. Expression (23)

above shows that the receiver structure of Fig. 4, which employs
pre-FFT combining, is equivalent to one that would employ post-
FFT combining by applying theQweightsαq to the FFT outputs
yk. We use this fact to develop a method for computing the
weights recursively over the carriers.

Stacking the FFT outputs ỹqk into a column vector ỹk, the
differentially encoded data symbols bk = d∗k−1dk are estimated
by DMRC over the Q channels as6 [24]

b̂k =

∑Q
q=1(ỹ

q
k−1)

∗ỹqk∑Q
q=1(ỹ

q
k−1)∗ỹ

q
k−1

=
ỹ′k−1ỹk

ỹ′k−1ỹk−1
. (24)

Here, we implicitly assume that the channel frequency response
changes slowly from one carrier to the next.

A. Linear Error Algorithm (L-Algorithm)

Differentially coherent detection (24) introduces a particular
type of nonlinearity into the data estimation problem, namely
a quadratic dependence on the precombiner weights. In [17],
we proposed a recursive linear squares method by treating
ỹk−1 as independent of the precombiner weights, and retain-
ing only the dependence of ỹk on the precombiner weights.7

Such an approach leads to linear minimum mean-squared error
(MMSE) estimation, and also allows for explicit amplitude
normalization [25].

6Complex conjugate is denoted by (·)∗.
7This assumption is based on the fact that the channel frequency response

does not change much from one carrier to the next.
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The estimated data symbol is now expressed as

b̂k =

∑Q
q=1(ỹ

q
k−1)

∗ỹqk∑Q
q=1 |ỹqk−1|2

=

Q∑
q=1

(¯̃yqk−1)
∗α′qyk (25)

where ¯̃yqk−1 = ỹqk−1/
∑Q

q=1 |ỹqk−1|2. The expression (25) can be
written in a vector form as

b̂k =
[
α′1 · · · α′Q

]
︸ ︷︷ ︸
a′=(vec(A))′

⎡
⎢⎣
(¯̃y1k−1)

∗yk

...
(¯̃yQk−1)

∗yk

⎤
⎥⎦

︸ ︷︷ ︸
uk=¯̃y∗k−1⊗yk

= a′uk (26)

where the vec(A) operator creates a column vector a from the
matrix A by stacking columns of A one below another, ¯̃yk =[
¯̃y1k · · · ¯̃yQk

]T
, and ⊗ denotes the Kronecker product.

To arrive at the weights a without a priori knowledge of the
channel, we use the error

ek = bk − b̂k = bk − a′uk (27)

to formulate the MMSE solution for the precombiner coeffi-
cients a, which are computed recursively over the carriers as

a(k) = a(k − 1) +A(uk, ek) (28)

where A(uk, ek) represents a particular algorithm’s increment
computed for the input uk and the error ek. Since the error is
a linear function of the precombining weights, the algorithm
is termed linear error algorithm. For instance, if LMS is used,
then A(uk, ek) = μuke

∗
k, where μ is the LMS step size, and

if the recursive LS (RLS) algorithm is used, then A(uk, ek)
is the RLS increment given in Algorithm 3, line 12. Clearly,
the choice of the adaptive algorithm always presents a tradeoff
between computational complexity and speed of convergence.
In the RLS algorithm, the stochastic gradient e∗kuk (line 12) is
premultiplied by an estimate of the inverse of the covariance
matrix Pk−1, which has the effect of decorrelating the inputs
to the adaptive filter. This decorrelation, along with the learning
rateμk (line 11), enhances the convergence rate of the algorithm,
thus requiring fewer pilots then in the LMS algorithm at the
cost of more computations. O((QMr)

2) operations are required
for each weight update of the RLS, whereas only O(QMr) are
necessary with LMS.

B. Quadratic Error Algorithm (Q-Algorithm)

In this approach, we take into account the fact that ỹk is also
dependent upon the precombining weight. Assuming that the
precombining weights remain unchanged from one carrier to
the next, the estimated data symbols can be expressed as

b̂k =

∑Q
q=1(ỹ

q
k−1)

∗ỹqk∑Q
q=1(ỹ

q
k−1)∗ỹ

q
k−1

=

∑Q
q=1 α

′
qyky

′
k−1αq∑Q

q=1 α
′
qyk−1y′k−1αq

=

∑Q
q=1 α

′
qYkαq∑Q

q=1 α
′
qYk−1αq

. (29)

Algorithm 3: L-Algorithm.
Input: Number of carriers K, number of blocks Nb,

post-FFT observations
yk(n), ∀k = 0, . . . ,K − 1, n = 1, . . . , Nb, pilot set
Kp(n), forgetting factor λ, initial variance σ2

Initialization: Initialize A0(1) to the Q maximally spaced
receiving elements, initialize the inverse covariance matrix
P0(1) = σ−2IQMr

where IQMr
is a QMr ×QMr identity

matrix.
1: x0(1) = A′0(1)y0(1)
2: C1 = {1, 2, . . . ,K − 1},
C−1 = {K − 2,K − 3, . . . , 0}

3: for n = 1, . . . , Nb do
4: d = (−1)n−1 (d = ±1 depending on the direction

of iteration [See Fig. 5.])
5: for k ∈ Cd do
6: uk(n) =

x∗k−d(n)
‖xk−d(n)‖2 ⊗ yk(n)

7: ak−d(n) = vec(Ak−d(n))
8: b̂k(n) = a′k−d(n)uk(n)

9: b̃k(n) =

{
bk(n) k ∈ Kp(n)

decision(b̂k(n)) otherwise

10: ek(n) = b̃k(n)− b̂k(n)
11: μk(n) = [λ + u′k(n)Pk−d(n)uk(n)]

−1

12: ak(n) =
ak−d(n) + μk(n)Pk−d(n)uk(n)︸ ︷︷ ︸

Gk(n)

ek
∗(n)

13: Pk(n) =
λ−1 [IQMr

−Gk(n)uk
′(n)]Pk−d(n)

14: xk(n) = A′k(n)yk(n)
15: end for
16: Ak(n+ 1) = Ak(n)
17: xk(n+ 1) = A′k(n)yk(n)
18: Pk(n+ 1) = σ−2IQMr

19: end for

The error that is used to determine the precombining weight
αq according to the MMSE criterion is then given by

ek = bk −
∑Q

q=1 α
′
qYkαq∑Q

q=1 α
′
qYk−1αq

= bk − Nk

Dk
. (30)

Differentiating the MSE E = E{|ek|2} with respect to the pre-
combining vector αq gives the error gradient

∂E

∂α′q

= E

{
− e∗k
Dk

[
Yk − b̂kYk−1

]
αq − ek

D∗k

[
Y′k − b̂∗kY

′
k−1

]
αq

}

= E

{
−2�

{
e∗k
Dk

[
Yk − b̂kYk−1

]}
αq

}
= E{γq(k)}.

(31)

Because the error (30) is a quadratic, rather than a linear func-
tion of the precombining weights, there is no apparent closed
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Fig. 5. Progression of the algorithm. Shown is a frame containing Nb OFDM blocks. The algorithm forms the error using the pilot data symbols bk, k ∈ Kp =
{0, . . . ,Kp − 1} in the training mode, shown in yellow (lighter). Thereafter, it switches into decision-directed mode where the decisions are made on the composite
estimate (24). The red-dashed line shows the direction of the algorithm’s iteration. In the first block, the iteration goes from the lowest carrier to the highest carrier
(d = 1, k ∈ Cd=1). At the end of the first block, the obtained precombining weights for the highest carrier are used to initialize the precombining weights for the
highest carrier of the second block, in which the iteration goes from the highest to the lowest carrier (d = −1, k ∈ Cd=−1).

Algorithm 4: Q-Algorithm.
Input: Number of carriers K, number of blocks Nb,

post-FFT observations
yk(n), ∀k = 0, . . . ,K − 1, n = 1, . . . , Nb, pilot set
Kp(n), step size μq, ∀q = 1, . . . , Q

Initialization: Initialize A0(1) and A1(1) to the Q
maximally spaced receiving elements
1: ỹ0(1) = A′0(1)y0(1)
2: C1 = {1, 2, . . . ,K − 1},
C−1 = {K − 2,K − 3, . . . , 0}

3: for n = 1, . . . , Nb do
4: d = (−1)n−1 (d = ±1 depending on the direction

of iteration [See Fig. 5.])
5: for k ∈ Cd do
6: ỹk(n) = A′k(n)yk(n)
7: Nk(n) = ỹ′k−d(n)ỹk(n)
8: Dk(n) = ỹ′k−d(n)ỹk−d(n)
9: b̂k(n) =

Nk(n)
Dk(n)

10: b̃k(n) =

{
bk(n) k ∈ Kp(n)

decision(b̂k(n)) otherwise

11: ek(n) = b̃k(n)− b̂k(n)
12: Yk(n) = yk(n)y

′
k−d(n)

13: Yk−d(n) = yk−d(n)y′k−d(n)
14: for q = 1, . . . , Q do
15: γq(k;n) = −2�

{
1

Dk(n)

[
Yk(n)−

b̂k(n)Yk−d(n)
]
e∗k(n)

}
αq(k;n)

16: αq(k + 1;n) = αq(k;n) + μqγq(k;n)
17: end for
18: end for
19: Ak(n+ 1) = Ak(n)
20: Ak−d(n+ 1) = Ak(n)
21: ỹk(n+ 1) = A′k(n)yk(n)
22: end for

form solution for the vector which sets the gradient to zero.
Nonetheless, the solution can be obtained numerically, using
the stochastic gradient approach. Specifically, the precombining
weights are obtained recursively over the carriers as

αq(k + 1) = αq(k) + μqγq(k), ∀q = 1, . . . , Q (32)

where μq is the step size. Algorithm 4 summarizes the Q-
Algorithm.

The L/Q algorithms form the error using the pilot data symbols
bk, k ∈ Kp = {0, . . . ,Kp − 1} in the training mode. Thereafter,
they switch into decision-directed mode where the decisions are
made on the composite estimate (24). As shown in Fig. 5, the
process can continue into the next block, where recursion will
evolve in reverse order (from the highest carrier to the lowest)
and require fewer (or no) pilots [4].

The initial value A0 =
[
α1(0) · · · αQ(0)

]
needs to be cho-

sen carefully. A possible choice corresponds to selecting Q
out of Mr channels and passing them through the precombiner
intact. For example, the initial channels can be chosen as equally
spaced, starting with the first channel. It is important to set
the initial conditions such that the algorithm is allowed enough
freedom to form the best Q outputs that have as little correlation
as possible.

Recursive computation of the combiner coefficients across
carriers requires Mr FFTs but allows the precombiner to change
from one carrier to another, thus effectively accomplishing
broadband processing. If the channels are slowly varying, where
the precombiner computed in one block could be preserved
for use in the next block, precombining could be implemented
before FFT demodulation, thus simultaneously reducing the
total number of channel estimators as well as the total number
of FFT operations. If the spatial coherence does not change
significantly from one block to the next within an OFDM frame,
the precombining weights calculated in the first block can be
used for linearly combining the input channels in the rest of
the blocks in the frame; thus, further reduction in the receiver
complexity can be accomplished.

Relying on differential encoding allows the L/Q algorithms
not only to be used as stand-alone, but also to be used in a
coherent receiver. In a coherent receiver, the precombined FFT
outputs ỹqk, k = 0, . . . ,K − 1 given by

ỹqk = α′q(k)yk = dk α
′
q(k)H︸ ︷︷ ︸
H̃q

k

+ z̃qk, q = 1, . . . , Q (33)

are fed into the PI channel estimator, described in Section III, to

form the Q ≤Mr estimates ˆ̃Hq
k , of the precombined channel
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Fig. 6. (a) Sound-speed profile measured during the MACE’10 experiment (left). Gaussian beam incoherent acoustic transmission loss (TL) of a 13-kHz signal
emitted at a depth of 55 m (right). (b) Geometric eigenrays for the MACE’10 sound-speed profile with the source at 55 m and the receiver at 40-m depth. In (b),
the solid red curves show the “direct paths” while dotted black curves and dashed blue curves illustrate rays that hit both top and bottom boundaries, and the
bottom boundary only, respectively. The amplitude and length of the swelling surface waves are 1.5 and 350 m, respectively. The seabed boundary is modeled as
an acoustic-elastic half-space having a sound speed of 1400 m/s (soft seabed) and density of 1.8 g/m3. This plot provides an insight into the propagation paths over
the course of the MACE’10 experiment.

coefficients H̃q
k . Using a Q-channel configuration instead of

the full-complexity configuration reduces the total number of
channel estimators by Mr/Q. This feature brings a significant
reduction in complexity when the value of Q at which saturation
is reached is low. Using MRC, the data symbol estimates are then
obtained as

d̂k =
ˆ̃H′kỹk

ˆ̃H′k
ˆ̃Hk

(34)

where ˆ̃H =
[
ˆ̃H1
k · · · ˆ̃HQ

k

]T
.

V. SIMULATION RESULTS

In this section, we assess the average performance of the PI
algorithm through simulation and compare it to the conventional
channel estimation methods. We use the Bellhop ray-tracing
program [26] to obtain the nominal state of a UWA channel for
a given geometry and signal frequency. The Bellhop program
provides an accurate deterministic channel impulse response
over a 2-D grid in space, which covers the region of the receiver.
However, it does not take into account random channel variation.
To consider the effects of inevitable random fluctuations of the

TABLE I
SIMULATION PARAMETERS

The guard interval is Tg = 16 ms. The number of pilots is |Kp| = 128.

environment, as well as changes in the receiver position, we
feed the nominal channel impulse response obtained from the
Bellhop program into the statistical channel simulator based on
the model proposed in [27].

We choose simulation geometries similar to those of
MACE’10, which are summarized in Table I (see [17] for further
details). Specifically, we use the recorded sound-speed profile
shown on the left of Fig. 6(a), and a moored vertical receive
antenna array with four equally spaced receiving elements that
are spaceddrx = 12 cm apart and submerged at 40-m depth from
the surface. The height of the swelling wave is 3 m peak-to-peak
and the receiver is 3 km away from the transmitter. Fig. 6 also
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Fig. 7. (a) Bellhop nominal multipath structure for the channel with geometry given in Table I. (b) Impulse response and (c) transfer function for the nominal
channel geometry corresponding to the multipath structures shown in (a), as seen in B = 5 kHz of bandwidth centered at fc = 13 kHz. In (a), those paths whose
absolute value is above one tenth of the strongest paths are shown. As shown in (b), there are multiple arrivals of similar amplitude that span approximately 12 ms.

Fig. 8. (a) Average correlation coefficient between noise from receiver elements. (b) Noise power spectral density (PSD) averaged over all measurements and
receive antenna elements. The result in (a) illustrates significant correlation between adjacent elements while the element spacing drx = 12 cm is on the order of
the wavelength λc = 11.5 cm at the operating frequency fc = 13 kHz. As shown by the black-dashed line in (b), the noise PSD decays at a rate of approximately
18 dB/decade [21]. This plot also suggests a highly colored noise spectrum (more than 4-dB change over the frequency band).

shows the acoustic TL at 13 kHz, as well as the eigenrays
connecting the source to the receiver. Clearly, it is difficult to
identify a single ray as the direct path as shown in Fig. 6(b) [28].

Fig. 7(a) shows the nominal multipath structure seen by the
four receive antenna elements. In an acoustic communication
system, the channel can be observed only in a limited band
of frequencies. As a result, the observable response will be
smeared, as illustrated in Fig. 7(b). It is important to make the
distinction between the propagation paths [see Fig. 7(a)], and
the samples of the observable response [see Fig. 7(b)], which
are the so-called channel taps. To simulate the UWA channel,
we utilize the multipath structure shown in Fig. 7(a) as an input to
the statistical channel simulator [29] that generates independent
complex Gaussian channel path amplitudes.

In the simulation, one OFDM block with K = 1024 carriers
modulated by data symbols from three constellations, namely
QPSK, 8-PSK, and 16-quadrature amplitude modulation (16-
QAM),8 is transmitted through the synthesized UWA channel
with unit power and is corrupted by an additive Gaussian noise
generated based on the statistical characteristics of the recorded
noise signal during the MACE’10 experiment (see Fig. 8).

Fig. 9(a) illustrates the performances of the channel estimation
methods in terms of data detection MSE and symbol error rate
(SER) as a function of the SNR at the input to the receiver ranging

8In developing (9), we consider PSK without loss of generality, but the
treatment applies to QAM as well (any linear modulation).
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Fig. 9. Performance of the PI channel estimation and the conventional methods for 315 000 realizations of the MACE’10-like simulated UWA channel and
noise. (a) and (b) Average MSE and SER, respectively, as a function of input SNR for CP-OFDM blocks containing QPSK symbols. (c) Average SER versus input
SNR for OFDM blocks containing QPSK, 8-PSK, and 16-QAM symbols. The resolution factors I used in the PI and OMP algorithms are 1, 2, and 4. For the
case with I = 4 and η = 0.1, the PI and OMP algorithms return about 7 delay-domain coefficients. Using the PI algorithm, we achieve uncoded SER as low as
2× 10−7 at the SNR of 20 dB for QPSK symbols. Four receivers are used to perform MRC (22).

from −10 to 20 dB. The MSE is measured as follows:

MSE =
1

Nr

Nr∑
i=1

1

K

K−1∑
k=0

|dik − d̂ik|2 (35)

where d̂ik is the estimate of the kth data symbol dik in the
ith realization and Nr is the number of channel and noise
realizations. For the OMP and PI algorithms, data detection
MSE performances are shown for two stopping criteria: one
is based on a prespecified threshold η = 0.1 and the other on a
prespecified sparsity level, which is denoted by Np (number of
paths) and Nt (number of taps) for the PI and OMP algorithms,
respectively. Each point in Fig. 9 is obtained by averaging over
Nr = 5000 realizations of noise and channel.

Fig. 9 clearly shows that the PI algorithm, which terminates
based on a predefined sparsity level, outperforms the LS and
OMP algorithms by 3 and 7 dB, respectively, when the input
SNR is 20 dB and the resolution factor is I = 4. Fig. 9(a)
and (b) also shows that increasing the resolution factor I from
1 to 2 improves the performance of both the PI and OMP
algorithms. Further increase from 2 to 4 does not bring as much
improvement. In Fig. 9(c), we demonstrate the performance of
the system used for three linear modulations schemes, namely
QPSK, 8-PSK, and 16-QAM, in terms of the average SER. Using
the PI algorithm with I = 2, we obtain a 16-QAM CP-ODFM
system with data rate and bandwidth efficiency as high as 16 kb/s
and 3.2 b/s/Hz, respectively, while achieving SER as low as

2× 10−4. Note that these results correspond to an uncoded
system, while channel coding will further reduce the BER. We
will quantify the effect of coding in Section VI.

VI. EXPERIMENTAL RESULT

To assess the system performance, we focus on the experi-
mental data from the Mobile Acoustic Communication Exper-
iment (MACE’10) which took place off the coast of Martha’s
Vineyard, MA, USA, in June 2010. The experimental signals,
whose parameters are given in Table II, were transmitted using
the acoustic frequency range between 10.5 and 15.5 kHz. The
receiver array of 12 equally-spaced elements spanning a total
linear aperture of 1.32 m was deployed at the depth of 40 m, and
the transmitter was towed at the depth of 40–60 m. The water
depth was approximately 100 m, and the transmission distance
varied between 3 and 7 km. More details about the experiment
can be found in [18].

The experiment consisted of multiple repeated transmissions,
each containing all the OFDM signals listed in Table II. There
was a total of 210 transmissions spanning 3.5 h of recording.
During this time, the transmitting station moved away and to-
ward the receiving station, at varying speeds ranging from 0.5 to
1.5 m/s. The results provided in this section are obtained from
all 210 transmissions included the three different configurations;
namely, QPSK ZP-OFDM, QPSK CP-OFDM, and 8-PSK ZP-
OFDM blocks.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE JOURNAL OF OCEANIC ENGINEERING

TABLE II
MACE’10 SIGNAL PARAMETERS

The guard interval is Tg = 16 ms. The total bandwidth is B = 5 kHz and the lowest
carrier frequency is f0 = 10.5 kHz. The uncoded bit rate and bandwidth efficiency are
calculated for 8-PSK modulation. The values of the bit rate and bandwidth efficiency for
QPSK modulation are 2/3 of the corresponding 8-PSK values. The bandwidth efficiency
is obtained assuming 136 pilots per block.

We demonstrate the performance of the proposed PI algorithm
for channel estimation and that of the Q-Algorithm for learning
spatial coherence between elements of the receiver array in terms
of data detection MSE and average execution time T̄exe which
is deemed a practical indicator of the algorithm complexity. We
also report on the estimated cumulative density function (CDF)
of the MSE measured in each signal frame. Furthermore, we
show the bit error rate (BER) and block error rate (BLER) of the
system when low-density parity check (LDPC) codes are used
with various code rates.

We compare the performance of the PI algorithm with that of
the conventional LS and OMP algorithms and show that the PI
algorithm outperforms the OMP in both aforementioned criteria.
Furthermore, we make a comparison between the Q-Algorithm
proposed in this paper and the L-Algorithm proposed in [17],
showing that the Q-Algorithm outperforms the L-Algorithm
in terms of average execution time at the cost of negligible
degradation in data detection MSE and BLER, thus achieving
further reduction in complexity.

The MSE corresponding to an OFDM signal with K carriers
is measured in the nth block of the ith frame as

MSEi(n,K) =
1

K

K∑
k=1

|dik(n)− d̂ik(n)|2 (36)

and the MSE per frame is obtained as

MSEi(K) =
1

Nb

Nb∑
n=1

MSEi(n,K). (37)

The average over all Nf frames is

MSE(K) =
1

Nf

Nf∑
i=1

MSEi(K). (38)

Note that due to the random channel variation and a finite number
of measurements, each of these quantities is a random variable.

Fig. 10 illustrates the average MSE and the average execution
time of the LS, OMP, and PI algorithms as a function of the num-
ber of carriersK (log scale). This result clearly shows that the PI
algorithm terminated based on a predefined sparsity level outper-
forms the LS and OMP algorithms by 2 and 1 dB, respectively,

when log2(K) = 8, 9, and 10. When log2(K) = 11, both the
PI and OMP experience a deterioration in performance, which
can be explained by the increased block duration that nudges
the temporal coherence of the channel. Fig. 10(b) compares the
running time of the PI algorithm with the LS, OMP algorithm
and shows that the PI algorithm has lower complexity than the
OMP method. It thus enables operation with a greater number
of carriers, effectively increasing the bandwidth efficiency at
a lower computational complexity. Lower computational com-
plexity and better MSE performance make the PI algorithm
a good practical candidate for channel estimation in acoustic
OFDM systems. Fig. 10(c) provides the MSE performance for
the ZP-OFDM frames containing 8-PSK symbols. Fig. 10(d)
illustrates data detection MSE for frames containing ZP-
OFDM and CP-OFDM blocks. As expected, CP-OFDM exhibits
slightly better performance at the cost of more transmission
energy.

Fig. 11 illustrates the estimated CDF of the MSE per block
for the three different scenarios (QPSK ZP-OFDM, QPSK CP-
OFDM, and 8-PSK ZP-OFDM). This result refers to K = 1024
carries and includes all the frames, transmitted over 3.5 h. Sys-
tems equipped with the threshold-based PI and OMP algorithms
deliver MSE below −14 dB for 87% and 75% of the OFDM
blocks, respectively, for the ZP-OFDM blocks conveying QPSK
symbols. The same performance is observed for the QPSK
CP-OFDM and 8-PSK ZP-OFDM configurations.

Fig. 12 illustrates the MSE performance as a function of the
number of receiving elements Mr, which are chosen maximally
and equally spaced among the 12 available elements. Evidently,
a significant improvement is observed as the number of elements
increases and spatial diversity gain is extracted. Although the
best performance (−16 dB of MSE) is achieved by using all
the 12 elements, using 6 elements also provides an excellent
performance (−15 dB of MSE). Increasing the number of el-
ements exhibits the effect of diminishing returns as the total
array aperture remains the same. In Fig. 14, we show that using
the precombining the same performance as the full complexity
receiver can be achieved by combining the 12 available receivers
into to 4 output channels.

In Fig. 13, we demonstrate the performance of the system used
for the three configurations of signals in terms of average BER
and average BLER using regular LDPC codes with various code
rates ranging from 0.1 to 1. The codeword length isN = 2K for
QPSK orN = 3K for 8-PSK, respectively; thus, each codeword
constitutes an OFDM block. The column weight of the M ×N
parity check matrix, where M is the number of parity bits, is
wc = 3 for all the code rates considered, and the row weight
wr = wcM/N varies from 3.3 to 30 corresponding to code rates
from 0.1 to 0.9 [30]. We use soft decision decoding that takes the
likelihood ratio for each code-bit as an input [31]. Decoding is
performed based on the probability propagation algorithm which
can be seen as an instance of the sum–product algorithm [32].
Employing the PI algorithm for channel estimation enables
LDPC to work to its full potential. Using the PI algorithm and
code rate as high as 1, we achieve BER and BLER as low as
2× 10−4 and 1.5× 10−1, respectively, for ZP-OFDM frames
containing QPSK symbols. Code rates below 1 result in low
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Fig. 10. (a) Average MSE versus the number of carriers K for ZP-OFDM blocks containing QPSK symbols. (b) Average execution time as a function of the
number of carriers (log scale). (c) Average MSE as a function of the number of carriers for ZP-OFDM blocks containing 8-PSK symbols. (d) Average MSE versus
the number of carriers for ZP-OFDM and CP-OFDM. The results in (a) and (b) are obtained by averaging over 104 transmissions of ZP-OFDM frames containing
QPSK symbols. Each point in (c) and (d) is obtained from 52 transmissions made over 3.5 h of QPSK CP-OFDM and 8-PSK ZP-OFDM signals. In (a), (c),
and (d), the performance of the systems equipped with the PI algorithm is compared to that of the systems with LS and OMP algorithms. For both the PI and OMP
algorithms, two stopping criteria have been chosen, one based on the sparsity level (for PI Np = 79 and for OMP Nt = 79) and another based on the threshold
η = 0.1. The resolution factors I used in the PI and OMP algorithms are 1, 2, and 4. For the case with K = 1024, I = 4, and η = 0.1, the PI and OMP algorithms
return about 23 delay-domain coefficients. The inset in (b) shows the ratio of the execution time of OMP algorithm to that of PI algorithm as a function of the
number of carriers for I = 2, 4. The results shown in (b) rely on the FFT implementation of the step 4 in the OMP algorithm (Algorithm 1). All 12 receivers are
used to perform MRC (22).

Fig. 11. Estimated CDF of the MSE for the LS, OMP, and PI algorithms applied to the three configurations of transmitted signals, (a) QPSK ZP-OFD, (b) QPSK
CP-OFDM, and (c) 8-PSK ZP-OFDM. The CDF in (a) reflect all 104 transmissions with K = 1024 carriers during MACE’10. The CDFs in (b) and (c) are obtained
from 52 transmissions of QPSK CP-OFDM and 8-PSK ZP-OFDM signals with the same number of carriers. The resolution factor for the PI and OMP algorithms
is I = 2. The conventional LS technique delivers MSE below −14 dB for only 68% of OFDM blocks. The OMP algorithm with I = 2 improves the performance
by delivering MSE below −14 dB for 83% of the blocks. The PI algorithm outperforms both by delivering MSE below −14 dB for 93% of the blocks at lower
complexity compared to the OMP algorithm.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE JOURNAL OF OCEANIC ENGINEERING

Fig. 12. Average MSE versus the number of receiving elements Mr . The number of carriers and pilots are 1024 and 136, respectively. The PI algorithm
outperforms the LS and OMP algorithms for all the OFDM configurations considered. The Mr elements are chosen out of the 12 available elements as maximally
space. The spacing between the elements is thus equal for Mr = 2, . . . , 6 and 12, but not otherwise (hence the visible discontinuity at Mr = 7).

Fig. 13. Average BER versus the rate of the LDPC code (left). Average BLER as a function of rate of the LDPC code (right). The results in (a) and (b)
reflect all 104 transmissions with 1024 carriers during MACE’10. Using code rates as high as 1, the PI channel estimation enables excellent performance with
BER = 1.5× 10−4 and BLER = 1× 10−1 for CP-OFDM blocks. Using code rates as high as 0.8, the PI algorithm can also achieve BER and BLER as low as
4.5× 10−4 and 1.5× 10−1 for OFDM blocks whose carriers are 8-PSK modulated.
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Fig. 14. (a) Average MSE as a function of the number of precombiner outputs Q for coherent receivers with and without the precombining schemes. (b) Average
execution time as a function of the number of precombiner outputs Q. (c) Estimated CDF of the MSE for the adaptive precombining algorithms. (d) BLER as a
function of rate of the LDPC code. The conventional receivers useQmaximally spaced receivers to detect the data symbols. The forgetting factor of the L-Algorithm
is λ = 0.99 and the initial variance σ2 is set to 0.05 in all of the cases. The step size of the Q-Algorithm is μ = 0.1 in all of the cases. The L/Q Algorithms use
the first 36 carriers of the first block as pilots for training, and thereafter switches to the decision-directed mode for the entire frame.

BER values that cannot be measured with the existing data.
Using code rates as high as 0.7, the threshold-based PI algorithm
can achieve BER and BLER as low as 2× 10−5 and 10−2 for
OFDM blocks whose carriers are 8-PSK modulated. Therefore,
the PI algorithm enables higher bit rate than LS/OMP for the
same BER.

In Fig. 14, we demonstrate the performance of the precombin-
ing schemes; namely, L/Q Algorithms and their fixed variants,
where the precombining weights computed in the first block
are used for the rest of the blocks within a frame, in terms of
data detection MSE, average execution time, empirical CDF of
MSE per OFDM block, and BLER. The performance of the
receivers without precombining is also shown as a benchmark.
The results shown in Fig. 14 reflect all 104 transmission of
ZP-OFDM signals withK = 1024 carriers modulated by QPSK
data symbols. The L/Q Algorithms use the first 36 carriers of the
first block as pilots for training the precombining coefficients,
and thereafter switches to the decision-directed mode for the
entire frame, thus achieving the same bandwidth efficiency as
the full-complexity receivers, which is mentioned in Table II, on
average.

Fig. 14(a) illustrates the average data detection MSE of the
precombining schemes; namely, L/Q Algorithms, which are
used in coherent OFDM systems, as a function of the number of
precombiner outputs Q varying from Q = 1 to Q = Mr = 12.
The threshold-based PI with resolution I = 4 and threshold
η = 0.1 is used to perform channel estimation on the Q precom-
bined output channels. Clearly, there exists a form of saturation
in performance with Q = 4 the average MSE reaches a value

that remains almost constant with further increase inQ. While an
increase inQ from 1 to 4 improves the performance dramatically,
changing the number of precombiner output channels from 4
to 12 results in a total fluctuation of the average MSE of less
than 1 dB which is insignificant for the overall receiver perfor-
mance at the given values of the average MSE. However, the
corresponding change in complexity is considerable. As shown
in Fig. 14(b), the complexity (measured in terms of average
execution time) of the receiver equipped with fixed Q-Algorithm
that combines 12 input channels into 4 output channels is
2.3 times less than the complexity of the conventional
receiver.

Clearly, Fig. 14(c) and (d) illustrates that systems equipped
with the L-Algorithm achieve the same level of reliability
as the conventional receiver with full complexity. While the
L-Algorithm delivers MSE below −14 for 90% of OFDM
blocks, the Q-Algorithm delivers MSE below −13 dB for 90%
of OFDM blocks. Using a code rate as high as 1, the L/Q-
Algorithms in a 4-channel configuration achieve BLER as low
as 6.5× 10−2 and 9× 10−2, respectively.

VII. CONCLUSION

Within the framework of OFDM signal detection, we in-
vestigated a channel estimation method that operates on the
transformed version of the input signal to identify the dominant
propagation paths. Unlike the conventional methods, PI consid-
ers a continuum of delays and allows for increasing the delay
resolution without undue penalty on complexity.
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We presented a comparative performance analysis using sim-
ulation and experimental signals recorded over a mobile acoustic
channel. Simulation results, as well as experimental results
obtained from all 210 transmissions spanning 3.5 h during the
MACE’10 experiment, have clearly shown the effectiveness of
the proposed PI algorithm. Our results show that the PI algo-
rithm consistently outperforms the conventional LS and offers
a performance comparable to that OMP, albeit with much lower
computational complexity. Specifically, the PI algorithm is on
average 8 times faster than the OMP algorithm. Such an advan-
tage is of paramount importance for practical implementation of
high data rate acoustic OFDM systems. In terms of performance,
the PI algorithm delivered an average MSE below −14 dB for
93% of OFDM blocks, while the OMP and LS did so for 83%
and 68% of OFDM blocks, respectively. We also showed that
with the PI algorithm, we achieved higher bit rate than LS/OMP
with the same BER.

We also presented two precombining schemes based on dif-
ferential encoding for acoustic multichannel OFDM systems.
Without requiring a priori knowledge about the spatial distribu-
tion of signals, the scheme extracts spatial coherence between
receiving elements (if such exists) by linearly combining the
Mr available channels into Q channels, so as to reduce the
number of subsequent channel estimators. For further reduction
in receiver complexity, we also considered the fixed variants
of the presented schemes, where the precombining weights
computed in the first block are used for the rest of the blocks
within a frame. The algorithms learn spatial coherence of signal
recursively, allowing the precombiner coefficients to change
from one carrier to another, thus effectively achieving broadband
processing.

Using the experimental signals, we demonstrated the perfor-
mance of the proposed techniques. Our results show that pre-
combining the 12 input channels into 4 for subsequent coherent
processing yields the same performance in terms of average data
detection MSE and BLER at the cost of very few additional
pilots. We also showed that the 4-channel configuration delivers
an average MSE below −14 dB for 90% of OFDM blocks and
achieves BLER as low as 6.5× 10−2 using code rates as high
as 1.
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