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Abstract—In this paper, we consider a class of single-input–mul-
tiple-output (SIMO) underwater acoustic communication chan-
nels, where each propagation path can be characterized by a
complex-valued Gaussian block-fading model. The capacity of
such channels is computed and analyzed using three power alloca-
tion strategies: waterfilling, uniform, and ON–OFF uniform power
allocation across the signal bandwidth. Our analysis considers the
effects of imperfect channel estimation, delayed feedback, and
pilot overhead, which are found to contribute to about 1 (b/s)/Hz
loss from 4 (b/s)/Hz at 20-dB signal-to-noise ratio (SNR) for the
experimental channel. We find that given the long feedback delays
associated with acoustic channels, all-ON uniform power alloca-
tion, which does not require feedback and is simple to implement,
emerges as a justified practical solution that outperforms the
other strategies. Furthermore, when considering acoustic-specific
propagation effects, such as frequency-dependent attenuation
and colored noise, considerable gain can be achieved by selecting
the frequency band according to the attenuation pattern and the
available transmit power, e.g., at least 6-dB gain for a 10-km link
when compared to transmission over a preselected frequency
band of 10–15 kHz.
Index Terms—Channel capacity, information rate, lower bound,

orthogonal frequency-division multiplexing (OFDM), power allo-
cation, Rician fading, underwater acoustic communications, wa-
terfilling.

I. INTRODUCTION

I N contrast to radio communications, where capacity issues
are well understood for point-to-point links (see, e.g., [1]

and [2]), the fundamental question of acoustic channel capacity
has been an elusive one, mainly because of the lack of well-es-
tablished statistical channel models. Early work [3] provided a
theoretical analysis using time-invariant channel model and fo-
cused on low-power applications. The analysis was extended to
include a Rayleigh fading channel model in [4], which demon-
strated that the channel capacity is limited in that case even if
the transmit power is unlimited.
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The theoretical work was further advanced in [5] where the
channel capacity for multiple-input–multiple-output (MIMO)
underwater acoustic channels was studied through decomposing
the channel response as the superposition of a time-invariant,
and a time-varying, channel. This model is based on the idea
that some components of the channel vary slowly over time,
and therefore may be assumed known to both the transmitter
and the receiver, while the fast channel variations (whose statis-
tics are known to the transmitter) can only be assumed known
to the receiver. Kilfoyle et al. [5], [6] used experimental data to
support this channel model, and showed that spatial modulation
can provide up to 5-dB gain compared to temporal modulation
only (depending on the channel model).
A similar channel model was used in [7] (both Rayleigh

and Rician fading were considered, as well as a model based
on experimentally measured scattering function) to analyze
the channel capacity and compare it with a lower bound de-
rived for phase-shift keying (PSK) modulation. The analysis
in [7] also considered the acoustic-specific frequency-depen-
dent path loss and colored noise, showing that optimal power
allocation is based on waterfilling according to the attenua-
tion–noise spectrum if the transmitter only knows the channel
statistics.
A Rician channel model has also been used more recently

in [8]–[11], where it was supported by experimental measure-
ments. Specifically, Socheleau et al. [10] consider a doubly
dispersive, wide-sense stationary and uncorrelated scattering
(WSSUS) channel, both synthetic and experimental, and
specify the channel capacity as a function of the channel
scattering function in the presence of intercarrier interference
(ICI) and interblock interference (IBI). Motivated by these
results, we also use the per-path Rician channel model for the
present analysis, and for comparison between simulation and
experimental results [12].
Approaching the Shannon channel capacity requires three el-

ements: adaptive power allocation (spectrum shaping), adaptive
modulation, and forward error correction (FEC) coding. The ef-
fects of power allocation and adaptive modulation on uncoded
bit error rate (BER) have been analyzed for underwater acoustic
channels in [13], where it was shown that adaptive modulation
plays a critical role in achieving a desired BER, and adaptive
power allocation reduces the required transmit power notice-
ably. An alternative, or additional, approach is the use of adap-
tive FEC coding, which was shown in [14] to be effective in
cases when only the signal-to-noise ratio (SNR) information is
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fed back to adjust the code rate, while the power and modula-
tion level are kept constant across the carriers.
In this paper, we focus on calculating the ergodic and

outage capacity of orthogonal frequency-division multi-
plexing (OFDM) systems for single-input–multiple-output
(SIMO) channels, emphasizing the theoretically achievable
rate rather than FEC coding.1 We show that when considering
the short-term channel variations, there is very little difference
between waterfilling and uniform power distribution in terms
of the achievable rate.
Our present work has four objectives. First, we wish to revisit

the fundamental question of acoustic channel capacity and the
rate achievable when the channel is not known but only esti-
mated/predicted at the receiver/transmitter. We do so within the
framework of OFDM. We perform two types of analysis, one
based on the experimental data collected during the 2010 Mo-
bile Acoustic Communications Experiment (MACE'10) [16],
and another based on a recently developed channel model [12],
where each propagation path is described as a non-zero-mean,
first-order autoregressive complex-Gaussian random process.
Second, we investigate different power allocation strategies
based on short-term fading statistics, including: 1) waterfilling;
2) ON–OFF power allocation [17], [18], where power is allo-
cated in equal amounts but only to those carriers whose SNR is
above the waterfilling threshold; and 3) all-ON uniform power
allocation, where power is allocated equally to all subcarriers.
Third, we address the issue of imperfect channel knowledge
in light of: a) pilot overhead needed to estimate the channel
at the receiver and the associated channel estimation errors;
and b) fundamental propagation delay that affects feedback,
limiting the transmitter to operate only with outdated channel
estimates. Finally, we consider a channel model which includes
acoustic-specific propagation with frequency-dependent atten-
uation and colored noise. In this case, we introduce two new
power allocation strategies: waterfilling based on the atten-
uation–noise profile only, and uniform power allocation, but
across a favorable frequency band only. We show that judicious
power allocation based on acoustic propagation effects can
increase the data rate and is robust in the presence of delay
and channel estimation errors. Our results reflect the actual
throughput after taking the guard intervals and pilot overhead
into account.
The paper is organized as follows. In Section II, we formally

define the power allocation strategies, their respective capaci-
ties, and the corresponding lower bounds on themutual informa-
tion rate achievable in the presence of channel estimation errors
(to which we briefly refer as “rate”). In Section III, we discuss
channel estimation and feedback strategies, and the impact of
delay. We extend the findings to channels with frequency-de-
pendent attenuation in Section III-C. Section IV is devoted to
numerical results that quantify the achievable rate for the con-
sidered class of acoustic channels. Conclusions are summarized
in Section V.

1Given the limitation on the length of codewords, there will be a sacrifice
on the achievable rate (e.g., see [15] for bounds on applicable code rates when
codeword length is limited).

II. ACHIEVABLE RATE

We consider a channel with receiver elements
described by the instantaneous transfer functions

, whose values at carrier frequencies
are denoted by

and assumed to be constant over a subband of
width . Defining the vector of channel responses

, and assuming that the channel
variations during the signaling interval are insignificant, the
signal received on the th carrier frequency is modeled as

(1)

where is the power allocated to the th carrier, is the
unit-variance information symbol transmitted on this car-
rier, and is zero-mean, circularly symmetric Gaussian
noise of variance for each receiver element. The noise
is assumed to be independent across the receiver ele-
ments.2 The total power allocated to the system is , and the
total bandwidth is .
The capacity of this system is given by (see [2] for details)

(b/s) (2)

where denotes the -norm of a vector. Note that this ca-
pacity results from maximum ratio combining (MRC) at the re-
ceiver. The capacity can also be expressed as in bits per
second per hertz [(b/s)/Hz].
The power allocation policy which maximizes the capacity is

specified by the waterfilling rule

when

otherwise
(3)

where the parameter is determined such that

(4)

The power allocation used here requires both the transmitter
and the receiver to know the channel. In practice, estimates
can be formed at the receiver and passed back to the transmitter,
where they are used to implement a power allocation policy.
We will consider two such policies: one based on waterfilling,
and another based on an ad hoc “ON–OFF” rule. In both cases,
channel estimation is accomplished using known pilot symbols,
for which carriers are reserved in advance. The remaining

carriers are used for data (information), and indexed by
the set . Setting aside a fraction of the total power for the
pilots, is left for distribution across the data carriers.
The two power allocation policies are specified below.

2If the receiver elements are too closely spaced, such that the noise is corre-
lated with some correlation matrix , we can whiten it by premultiplying the
received signal with .
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TABLE I
TIME TABLE OF THE ACTUAL CHANNEL, RECEIVER ESTIMATES AND PREDICTED VALUES, AND FEEDBACK INFORMATION

USED AT THE TRANSMITTER FOR POWER ALLOCATION

A. Imperfect Waterfilling
Power is allocated to the data carriers according to the rule

(3), but with channel estimates replacing the unknown
values

when

otherwise
(5)

and the water level is determined such that

(6)

Note that waterfilling may render some carriers with no
power. These are the carriers whose frequencies are not favored
by the channel. We refer to them as “bad carriers,” while the
remaining carriers that are used to send data are called “good
carriers.”

B. ON–OFF Uniform Power Allocation
Using the value of found under the previous policy, the

available power is allocated in equal amounts
to the good carriers, while nothing is given to the bad carriers
[17], [18]

when
otherwise

(7)

The bit rate achievable when only the channel estimates are
available can be gauged from the lower bound on mutual infor-
mation [2]3

(8)

where is the variance of the
channel estimation error which is as-
sumed to be the same across all receiver elements, and the
factor accounts for the multipath guard time in-
serted between successive blocks of carriers. The above ex-
pression is valid when the channel estimation error is orthog-
onal to the estimate , e.g., when the estimator is a min-
imum-mean-squared error (MMSE) estimator.
When the channel is randomly varying, so are the capacity

and the rate . To account for different channel realizations, one

3We will refer to this quantity briefly as “rate.”

can use the notion of average capacity , or outage
capacity , which is defined for a given outage probability

through . Similar definitions apply
to the average rate and the outage rate .

III. CHANNEL ESTIMATION AND DELAY

For time-varying channels, we distinguish between two ef-
fects of delay, one occurring at the receiver and another at the
transmitter (outdated feedback). The first effect is present when
the receiver does not compute a new channel estimate in every
block, but uses one block's estimate to predict the channel for
several blocks. This approach may be taken in practice to re-
duce the total pilot overhead. Delayed feedback causes the trans-
mitter's channel estimate (which is used to allocate the power) to
be outdated even if the receiver conveys its instantaneous esti-
mate. Propagation delay thus presents a fundamental limitation,
and one expects it to play a dominant role in an acoustic channel
due to the low propagation speed.
To specify the rate, let us denote by the number of blocks

over which the receiver makes channel predictions (we will as-
sume that predictions are made to the left and to the right of
a pilot block, so a total of predictions are made for each
pilot block), and let be the number of blocks involved in
the delayed feedback. At the receiver, a new estimate
is made at times , etc., while the predictions

are made in between, for . Hence,
and , etc., are derived from

. The channel estimate is also known to the
transmitter, but with a delay. The power received during
the th block has thus been allocated based on .
Note that while the receiver forms a new channel prediction for
every block, the transmitter may or may not do the same, i.e.,
it can either perform MMSE prediction based on the most re-
cent estimate available from feedback, or keep this estimate as
is, and use it for power allocation until the next one becomes
available. Since MMSE prediction relies on temporal channel
correlation, and this correlation decays over time (e.g., expo-
nentially for a first-order autoregressive model), the predicted
channel values tend to diminish, putting the transmitter in an
SNR-starved strategy mode where all of the power is assigned
to only a few carriers. Therefore, we focus on the case where
the transmitter assigns power based on the most recent feedback
of the receiver's channel estimate. Table I shows the timing for
channel prediction at the transmitter and the receiver, reflecting
our choice for power allocation at the transmitter.
Looking at a given frame of blocks, pilots are as-

signed to the middle block , while the remaining blocks use
all the carriers for data. Channel mismatch is thus due to both
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the noise-induced estimation error made in the pilot block and
the subsequent change in the channel.
From (8), we now have that the rate during a given block is

(9)
where is the
variance of the channel estimation error that contributes to the
overall noise, and the set is the set of data carriers, which
equals when , or all the carriers when . Averaged
over OFDM blocks with a pilot block in the middle,
the instantaneous rate is4

(10)

This rate is a random variable whose statistics indicate the cor-
responding outage rate , or average rate ,
taken over multiple channel realizations.

A. Channel Model

To assess the impact of delay on the achievable rate, time evo-
lution of the channel has to be modeled.We focus on a statistical
channel model with propagation paths where the th path of
the th receiving element is characterized during the th block
by a random gain and delay . The corresponding
transfer function is

(11)

where the factor accounts for frequency-dependent attenu-
ation due to energy spreading and absorption. For the moment,
we will set . In Section III-C, however, we will consider
wideband channels in which dependence on will have a sig-
nificant effect on the achievable rate.
The path gains within each receiver element are modeled as

independent, first-order autoregressive processes that obey the
following model [12]:

(12)
where is the mean value of the gain,
the variance of the gain is ,
and is the process noise which is un-
correlated with as well as across and . We
also assume a normalization of the path gains such that

for , which is justified
for scenarios where the receiver elements are separated by a
few wavelengths, such that fading is independent among them,
yet the average field power is similar (with high communication
frequencies, this typically corresponds to apertures that are
much smaller than the water column). This assumption holds
approximately for the experimental data from the MACE’10

4An additional loss factor should be included for half-duplex channels.

experiment which we use in Section IV to discuss the results.
Independence of path gains follows from the fact that reflection
points at which scattering occurs are sufficiently far apart [12].5
The one-step correlation coefficient is related to the

Doppler spread of the th path to the th receiver element
via [12]. Time evolution of the path delays
is modeled as

(13)

where is the Doppler factor that captures motion-induced
time scaling on the th path to the th receiver element. Note
that our focus is on conventional OFDM systems, in which
Doppler scaling results only in channel variation from one block
to the next, while intercarrier interference remains negligible.
The statistics of the Doppler factor affect the MMSE channel
prediction, as we will discuss in Section III-B.6
Depending on the particular circumstances, Doppler scaling

factors can be treated as deterministic or random, time invariant
or time varying, known or unknown. Here, we assume that the
residual Doppler factors (after initial resampling) are unknown,
independent across paths, and follow a Gaussian distribution.
Such an assumption is supported by the fact that the determin-
istic Doppler scaling due to transmitter/receiver motion may be
removed during initial frame synchronization by resampling the
received signal, and the residual Doppler is mainly caused by
the random variations in the medium.

B. Channel Estimation and Prediction

We assume that the receiver finds the MMSE channel esti-
mate using pilot carriers, and predicts the channel for the OFDM
blocks which do not contain pilots. Denoting by the
input to the th channel estimator which contains the values

observed on the known pilot carriers, the es-
timate is given by

where denotes the Hermitian operator. The variance of the
corresponding error is

(14)

We assume equispaced pilot carriers, each with equal power.
We also assume an MMSE channel estimator. The variance of
the resulting channel estimation error can be expressed as (see
[19] for details)

(15)

5Independence of path gains does not imply independence of equivalent
sample-spaced taps (an assumption that is often made in the literature, e.g., [1]).

6A similar observation is made in [7], where it is shown that for the exper-
imentally measured channel scattering function, the carrier spacing can be se-
lected such that the variance of ICI for frequencies below 30 kHz (after initial
resampling) would be smaller than that of the noise, without exceeding the co-
herence bandwidth of the channel.
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where , is the multipath spread, and is a
scaling constant [19].7
Given the channel model specified by (12) and (13), if the

Doppler factors follow a zero-mean Gaussian distribution
with variance (the same statistics across channel taps and re-
ceiver elements), and amplitudes fade at the same rate ,
MMSE channel predictions at the receiver are made as (see Ap-
pendix A)

(16)

where , and
is a vector of length , whose th element is

. With equal noise
power across carriers, this channel prediction contains an error
whose variance is (see Appendix A)

(17)

The first term in the above expression reflects the noise-induced
channel estimation error made in the pilot block, while the
second and third terms reflect the prediction error caused by
the channel dynamics.
The variance (17) can be substituted directly into (9) and (10)

for the rate. The tradeoff between the number of pilots and the
channel estimation errors then becomes clear: as increases,
the total overhead decreases ( pilots cover
data carriers), but every new channel prediction, made farther
away from the pilot block, brings a stronger error.

C. Frequency-Dependent Attenuation

In wideband underwater acoustic channels, frequency-depen-
dent attenuation represents another source of frequency selec-
tivity. Unlike the multipath, whose structure changes with the
motion of the transmitter and the receiver, nominal characteris-
tics of the frequency-dependent attenuation–noise spectrum can
be assessed a priori. That knowledge can be used at the trans-
mitter to perform spectrum shaping in a manner similar to wa-
terfilling [20].
The key difference between the multipath-induced frequency

selectivity and the frequency-dependent large-scale attenuation
is that the latter changes much more slowly (or not at all). Re-
ferring to the channel model (11), the factor can thus be
regarded as a statistical parameter of the channel, and we will
consequently refer to the related spectrum shaping as “statis-
tical waterfilling” (for lack of a better term). We also define a
second strategy, analogous to uniform power allocation, where
the power is allocated uniformly, but only over a limited band-
width favored by the attenuation–noise profile. We refer to this
strategy as bandlimited uniform.

7Depending on the channel estimation technique, the estimation error vari-
ance may be different, but it will be proportional to (15) regardless of the tech-
nique. For example, if the channel impulse response is sparse, the estimation
noise can further be reduced to , where is the number of
active channel taps [19].

Fig. 1. Frequency-dependent attenuation–noise profile . Normalization
is performed such that the 0-dB level corresponds to the minimum point at 1
km. The noise profile is generated as in [20] with the parameters set to no wind
( ) and moderate shipping activity ( ). The spreading is assumed
to be spherical.

Given the parameters and , which we assume to be
the same for all receiving elements (receiver elements are sepa-
rated by several wavelengths), statistical waterfilling is applied
as follows:

when
otherwise

(18)

where water level is selected as before, according to (4) or (6).
This expression is equivalent to the optimal power allocation
derived in [7].
The frequency band for bandlimited uniform policy is se-

lected using the value of from statistical waterfilling to iden-
tify the carriers for which . Power is allocated
uniformly to those carriers, while nothing is given to the rest.
Fig. 1 illustrates the relevant attenuation–noise characteristic

.

IV. RESULTS
Given the candidate power allocation policies, the question

arises as to what performance can they deliver in terms of the
rate, and how does this performance compare with the channel
capacity. On the one hand, we have the imperfect waterfilling
which aspires to achieve the optimum (but ignores the penalty
of channel estimation errors), while on the other hand, we have
ON–OFF power allocation which does not follow any optimiza-
tion incentive, but is simpler to implement and operate. Finally,
we have the unknown-channel feedback-free policy in which
power is allocated equally to all carriers.
The results presented below are obtained using simulation

and experimental data. The experimental data were recorded in
a 100-m-deep, 3–7-km-long mobile channel, with 256 carriers
occupying 10–15-kHz acoustic band (for details of deployment,
see [16]). The results are based on 1664 OFDM blocks trans-
mitted over a period of 3.5 h. The channel impulse response, es-
timated for each OFDM block by treating all carriers as pilots, is
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Fig. 2. Ensemble of measured channel impulse responses from ten consecutive OFDM blocks for four receiver elements, demonstrating the evolution of the
channel impulse response over time. The length of each OFDM block and the guard interval are 51 and 16 ms, respectively.

taken as the true channel and used for the results corresponding
to the perfect channel knowledge. For the rest of the results, a
fraction of the carriers are assigned as pilot carriers and artificial
noise is added to form the noisy channel estimates. Fig. 2 shows
an ensemble of channel impulse responses measured from ten
consecutive OFDM blocks.
The guard interval is 16 ms and the block duration is

51 ms for both the experimental data and the simulation.
The simulated channel follows the model of Section III-A,
where the average path gains and path delays are selected ac-
cording to the channel geometry that matches the experimental
one.8 We select 50 different channel responses (which vary
slightly in the placement of transmitter and receiver) and add
random time variation over the duration of 100 OFDM blocks
(5000 blocks in total). To describe the variation, we use the
notion of the average Rician -factor as introduced in [21],

, which is assumed to be the same
for all receiver elements. The results are based on
channel estimation pilots and pilot power ratio , except
for the benchmark cases labeled “ideal channel knowledge,”
where the channel is assumed to be known to the receiver
perfectly and no pilots are needed (data on all carriers).
Fig. 3 shows the cumulative distribution function of the rate

(8) calculated using simulated, as well as experimentally mea-
sured channels, based on the channel estimation error (15). We

8The average multipath profile is characterized by the mean gain magnitudes,
equal for all receiver elements, , , , , , , , and
nominal delays 0, 0.4, 1.7, 3, 5.5, 7.6, 11.5 ms. The corresponding variances are
, , , , , , , and the factors and are selected

such that the normalization is
satisfied and the average Rician -factor equals
a desired value. Doppler scaling factors are generated independently for each
path and receiver element, as Gaussian distributed with zero mean and standard
deviation which varies between 0 and 5 10 .

note that the experimental channel matches closely with .
Different curves on this plot can be used to determine the outage
rate for different .
Next, we compare the power allocation strategies in terms of

the average rate and the outage rate . Fig. 4(a) shows
and Fig. 4(b) shows versus SNR, calculated from ex-

perimental data. Similar results are obtained in simulation. Dif-
ferent power allocation strategies are seen to perform with neg-
ligible difference on this channel, providing about 4 (b/s)/Hz at
the SNR of 20 dB under ideal channel knowledge. Channel esti-
mation errors impact all the strategies in a very similar manner,
causing a loss of about 1 (b/s)/Hz at 20-dB SNR.
Fig. 5 extends these results to the case of multiple receiving

elements for experimental [Fig. 5(a)] and synthetic data [Fig.
5(b)]. The rate now increases linearly with the logarithm of
the number of receiver elements, while the loss of rate due to
channel estimation errors remains almost unchanged. Similarly,
the difference between the average rate and the 1% outage rate
remains at about 0.5 (b/s)/Hz regardless of the number of re-
ceiver elements.
The benefits of waterfilling and ON–OFF uniform power allo-

cation policies are investigated in Fig. 6(a). This figure shows
the increase in rate over that achieved by the uniform power al-
location policy . The maximum
gain of 0.15 (b/s)/Hz (and 0.13 (b/s)/Hz for ON–OFF uniform) in
the rate occurs at about 0-dB SNR for the single receiving ele-
ment case ( ). The gain of waterfilling and ON–OFF uni-
form power allocation also decreases with multielement com-
bining, but eventually saturates as the aperture remains fixed and
the signals received by different elements become correlated. To
establish a benchmark, we compare this result to a hypothetical
channel [Fig. 6(b)] whose transfer function for each receiver ele-
ment follows an independent Rayleigh distribution over carriers
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Fig. 3. Cumulative distribution function of the rate (8). The average -factor takes values 0, 0.5, 1, 2, 4, 8 , 16, and 64.

Fig. 4. (a) Average rate and (b) 1% outage rate, calculated using experimental
data for single-element receiver. This result corresponds to instantaneous feed-
back.

with SNR. Note that this
distribution refers to the channel coefficients in the frequency
domain, not the time-domain path gains. The channels are
assumed to be independent and MRC is applied at the receiver.
The gain of waterfilling for this hypothetical channel closely
matches that of the experimental channel for up to four receiver
elements, but beyond that, the results differ as the assumption

Fig. 5. Average rate calculated using (a) experimental data and (b) simulation
versus the number of receiving elements. This result illustrates the effect of
noise-induced channel estimation errors, and the difference between average
and outage rate. Pilots are inserted into every OFDMblock, feedback is assumed
to be instantaneous, and the average SNR is 10 dB for each receiver element.

of independence among receiver elements no longer holds for
the experiment. Nevertheless, this observation corroborates the
general conclusion that the frequency-domain channel coeffi-
cients may be modeled as Rayleigh distributed, and that MRC
closes the performance gap between uniform power allocation
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Fig. 6. Increase in the average rate of waterfilling and ON–OFF uniform power
allocation policies over all-ON policy for (a) experimental channel and (b) hy-
pothetical channel. This result demonstrates the reduction in the benefits of wa-
terfilling when the SNR or the number of receiver elements is increased.

and waterfilling, even for SNR-starved channels with instanta-
neous feedback.

A. The Impact of Feedback Delay

The results of Figs. 4–6 take into account only the imperfect
channel knowledge at the receiver, i.e., they assume an instan-
taneous feedback. In the presence of feedback delay, the per-
formance of all-ON uniform allocation will be the same, while
the other two strategies can only perform worse. This fact is
illustrated in Fig. 7(a). In the absence of feedback delay, water-
filling and ON–OFF policies offer a small advantage; however,
the situation is equalized and eventually reversed with outdated
feedback, as the “good” and “bad” carriers are no longer iden-
tified correctly. These facts speak strongly in favor of using the
simple, feedback-free, all-ON uniform power allocation.
The effect of receiver's prediction window is illustrated

in Fig. 7(b). As increases, the pilot overhead is reduced, but
the penalty of prediction errors become significant [cf., (17)],
eventually reducing the average rate. Thus, there exists an op-
timal choice of for a given channel (e.g., when

and ).
Channel estimation plays a key role in the achievable rate

(with uniform, or any other power allocation policy). In practice,

Fig. 7. Average rate as a function of (a) feedback delay and (b) receiver's pre-
diction window. Multiple values of the one-step correlation coefficient and
the standard deviation of the Doppler factor are used for simulation. These
figures also include the results from the experimental channel.

the tradeoff between accurate channel estimation and pilot over-
head can additionally be negotiated by employing decision-di-
rected tracking algorithms, whose implementation is much sim-
plified under uniform power allocation.

B. Frequency-Dependent Attenuation

Figs. 8–12 demonstrate the effect of frequency-dependent at-
tenuation on the average rate. These results are based on nor-
malized transmit power, where the 0-dB level corresponds to the
power required to sustain an average SNR of 0 dB over a band-
width of 1 Hz at the optimal carrier frequency and a distance
of 1 km. Frequency-dependent channel parameters are calcu-
lated from Fig. 1. To establish a benchmark, we also include the
all-ON uniform policy, where power is assigned uniformly to all
of the carriers within the frequency band 10–15 kHz, which is
the same as the band used in the experiment.
Figs. 8 and 9 compare four power allocation policies as a

function of distance, assuming ideal channel knowledge and
instantaneous feedback. Waterfilling provides the most signif-
icant gain at lower transmit powers (10–30 dB), doubling the
rate compared to other methods. The achievable rate for SNR
starved channels is studied in further detail (e.g., inclusion of
channel estimation errors at the receiver) in Appendix B. As the
power increases (e.g., to 70 dB), all methods except the all-ON
uniform policy will eventually load all of the carriers within
the favorable frequency range and therefore perform similarly.
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Fig. 8. Average rate versus distance between the transmitter and the receiver
for multiple values of transmit power (10, 30, 50, and 70 dB), and four power al-
location policies. Channel parameters ( and ) are calculated from Fig. 1.
Ideal channel knowledge is assumed both at the transmitter and the receiver,
and the all-ON uniform policy is applied across the frequency band 10–15 kHz
regardless of the distance and transmit power.

Fig. 9. Ratio of the average rate for statistical waterfilling, bandlimited uni-
form, and all-ON uniform power allocation policies to waterfilling versus the
distance between the transmitter and the receiver. System parameters are the
same as in Fig. 8, and ideal channel knowledge is assumed both at the receiver
and the transmitter.

Fig. 10 shows a guideline for selecting the optimal frequency
band for various distances and transmit powers.
While the results of Figs. 8 and 9 promote application of wa-

terfilling in SNR-starved channels, they assume instantaneous
feedback. Fig. 11 shows how the benefit of waterfilling van-
ishes with the introduction of feedback delay. For example, as-
suming a residual Doppler factor with standard deviation of

(equivalent of motion at the speed of about
0.07m/s) and one-step correlation coefficient , and feed-
back delay as long as 20 OFDM blocks (which is equivalent to
the roundtrip propagation delay of a 1-km link), waterfilling is
outperformed by the other strategies. The performance of all-ON

Fig. 10. Optimal frequency band versus distance for different values of
transmit power. Bandlimiting is based on large-scale channel parameters
(attenuation–noise profile) and the transmitter frequency response is assumed
to be flat.

Fig. 11. Achievable rate versus transmitter feedback delay for multiple power
allocation policies. Distance between the transmitter and the receiver is 1 km,
normalized transmit power is 30 dB, , and . The
receiver is assumed to have ideal channel knowledge (no noise-induced channel
estimation error). The rest of the parameters are the same as in Fig. 8.

uniform policy depends on the preselected frequency band. For
example, the frequency range between 10 and 15 kHz is a good
choice for a 3-km link if an achievable rate of no more than
10 kb/s is desired, while it is far from optimal for higher transmit
powers or longer distances.

V. CONCLUSION
A capacity analysis was presented for acoustic chan-

nels in which each path is modeled as an autoregressive,
non-zero-mean complex-Gaussian process. Numerical results,
obtained via simulation and experimentally measured channels,
indicate the average achievable rate (lower bound) on the order
of 3 (b/s)/Hz at the SNR of 20 dB [1% outage rate is lower by
0.5 (b/s)/Hz] in the presence of channel estimation errors. This
achievable rate increases almost linearly with the logarithm of
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Fig. 12. Achievable rate versus normalized transmit power for estimated chan-
nels compared to perfect channel knowledge (distance is 1 km). This figure com-
pares the capacity of estimated channel to the ideal channel knowledge scenario,
and also shows that allowing for a flexible duty cycle at the transmitter improves
the channel capacity significantly at lower SNRs.

the number of receiver elements. On comparing three power
allocation policies—waterfilling, ON–OFF uniform, and all-ON
uniform—the first two were found to offer little or no advantage
on this channel. The simple, feedback-free policy which does
not require any knowledge of the channel and allocates the
power uniformly to all the carriers of an OFDM signal thus
emerges as a justified choice for practical implementation. Its
throughput can be maximized by judicious pilot allocation
across blocks that strikes a balance with the channel estimation
accuracy which remains the priority of an acoustic receiver.
We also considered the frequency-dependent attenuation pro-

file and colored noise, showing that while uniform power alloca-
tion remains the favorable choice, selecting the frequency band
based on the channel parameters and available power becomes
crucial for optimizing the rate. Future work will address the ef-
fect of ICI (with and without ICI mitigation techniques), and
long-term channel variation with the attendant methods for rate
maximization via power control.

APPENDIX A
MMSE CHANNEL PREDICTION IN PRESENCE

OF DOPPLER SHIFTS

This appendix contains the derivation of MMSE channel pre-
diction [see (16)] and the associated prediction error variance
[see (17)] based on the channel model introduced by (12) and
(13).
To find theMMSE channel prediction for OFDMblocks into

the future (or the past), we need the correlation between
and

(19)

The first expected value above, , can be
simplified as

(20)

and the second expected value is as-
sumed to be zero for .9 For , this expected value is

(21)

where the Doppler factors are modeled as independent
across the paths and receiver elements, and follow a Gaussian
distribution with variance for all paths and receiver ele-
ments.
Substituting (20) and (21) into (19), we have

(22)

where the correlation has two terms, one for the average path
gains and another for the randomly varying part of the path
gains, , which has the variance of . These terms
fade at rates and , respectively. The correlation
(22) suggests the following MMSE prediction:

(23)

which can be presented as (16) in vector form. It is straightfor-
ward to show that this prediction satisfies the MMSE criterion
when is itself MMSE channel estimate.
The variance of the prediction error is

(24)

Note that since all the receiver elements are assumed to have the
same statistics, the right-hand side of the above expression is not
a function of . Therefore, in the text, we omit the superscript

in for simplicity.

APPENDIX B
FLEXIBLE DUTY CYCLE FOR SNR STARVED CHANNELS
This appendix contains additional results, showing that there

is a significant loss in rate due to channel estimation error in
low SNR regime, as demonstrated in Fig. 12. One method of

9This assumption holds true when the difference between the arrival times
and is greater than , which is the case in the majority of practical

scenarios.
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reducing the estimation error is to transmit at a higher power
for of the time, where is the gain factor.

This transmission strategy keeps the average transmit power un-
changed while allowing for a degree of freedom in optimizing
the tradeoff between the power consumption and the penalty of
imperfect channel estimation. Fig. 12 shows that a flexible duty
cycle can increase the capacity significantly for channels whose
capacity is less than about 5 kb/s (for the distance of 1 km).
This observation agrees with the results of [3] where an optimal
symbol energy maximizes the rate to power ratio for differen-
tially coherent detection. However, we observe this effect for
coherent detection as well which is due to channel estimation
errors.
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