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Abstract—Underwater acoustic channel models provide a tool
for predicting the performance of communication systems before
deployment, and are thus essential for system design. In this paper,
we offer a statistical channel model which incorporates physical
laws of acoustic propagation (frequency-dependent attenuation,
bottom/surface reflections), as well as the effects of inevitable
random local displacements. Specifically, we focus on random
displacements on two scales: those that involve distances on the
order of a few wavelengths, to which we refer as small-scale
effects, and those that involve many wavelengths, to which we
refer as large-scale effects. Small-scale effects include scattering
and motion-induced Doppler shifting, and are responsible for
fast variations of the instantaneous channel response, while
large-scale effects describe the location uncertainty and changing
environmental conditions, and affect the locally averaged received
power. We model each propagation path by a large-scale gain and
micromultipath components that cumulatively result in a complex
Gaussian distortion. Time- and frequency-correlation properties
of the path coefficients are assessed analytically, leading to a
computationally efficient model for numerical channel simulation.
Random motion of the surface and transmitter/receiver displace-
ments introduce additional variation whose temporal correlation
is described by Bessel-type functions. The total energy, or the gain
contained in the channel, averaged over small scale, is modeled as
log-normally distributed. The models are validated using real data
obtained from four experiments. Specifically, experimental data
are used to assess the distribution and the autocorrelation func-
tions of the large-scale transmission loss and the short-term path
gains. While the former indicates a log-normal distribution with
an exponentially decaying autocorrelation, the latter indicates a
conditional Ricean distribution with Bessel-type autocorrelation.

Index Terms—Channel simulation, Doppler shifting, Doppler
spreading, frequency correlation, large-scale fading, scattering,
small-scale fading, statistical channel modeling, time correlation,
underwater acoustic (UWA) communications.

I. INTRODUCTION

U NDERWATER ACOUSTIC (UWA) communication
systems have to be designed to operate in a variety

of conditions that differ from the nominal ones due to the
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changes in system geometry and environmental conditions.
To allocate the appropriate resources (power, bandwidth)
before system deployment, as well as to design appropriate
signals and processing algorithms on both the physical link
layer and the higher network layers, it is necessary to have a
relatively accurate channel model. Beam tracing tools, such
as Bellhop [1], use ray theory to provide an accurate deter-
ministic picture of a UWA channel for a given geometry and
signal frequency, but they do not take into account random
channel variation. In recent years, there has been a growing
awareness of the need to develop statistical channel models
that will lead to computationally efficient tools for numerical
simulation. New tools have been developed that address this
need to some extent. For example, the Virtual Timeseries
EXperiment (VirTEX) code [2] was developed to simulate the
effect of channel variation in a manner that is computationally
more efficient than repeated application of the Bellhop beam
tracing. This algorithm operates by tracing multiple interre-
lated beams to assess the cumulative effect on the signal of
a given frequency. However, its computational complexity
may still be an issue. For example, simulating a channel
with a Doppler distortion on the order of 15 Hz requires at
least 30 channel realizations per second which amounts to a
total of 5400 Bellhop runs for simulating a system with two
transmitters and six receiver elements over a period of 15
s. The wave front model [3] offers a deterministic approach
which provides approximations to the ray theory to efficiently
model the effects of the curvature of the surface waves and the
amplitude and arrival time fluctuations that they introduce [4].
Numerous studies have also been conducted to model the

UWA channel stochastically, e.g., [5]–[16]. These studies are
usually based on the analyses of experimental acoustic data
collected in a particular location. Some authors find Ricean
fading [5], [7] or Rayleigh fading [6], [8], [13] to provide a good
match for their measurements, while others find log-normal
distribution [9], [10], the -distribution [11], [12], or a general
class of Ricean shadowed distribution [16] to be a better fit.
The variety of proposed statistical models is due to experi-
ment-specific properties, e.g., the deployment site and the type
of signals used for probing, as well as the time intervals during
which the channel is observed.
Statistical modeling of small-scale phenomena is a subject of

ongoing research, which points to different types of fading, and
no consensus exists yet on this topic. Modeling of large-scale
phenomena has also been addressed only to a very limited ex-
tent (see, e.g., [14], which shows some evidence of log-normal
fading), while a few attempts have been made at unifying the
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small- and large-scale models (see, e.g., [5], [11], and [15]).
In [14], knowledge of the environmental conditions at an ex-
periment site was used to repeatedly run the Bellhop model
to generate an ensemble of channel responses which was then
used to estimate the statistical properties of the channel. The
changing environmental conditions which were taken into ac-
count included water temperature and salinity. The results ob-
tained through the Bellhop channel simulator showed statistical
properties similar to those obtained experimentally; however,
an accurate agreement was not observed. This mismatch may
be because only partial knowledge of the environmental condi-
tions was used, and surface variation was not taken into account.
In [17], Heitsenrether and Badiey used the environmental data
obtained from an acoustic experiment to generate varying sur-
face shapes, which were then imported into the Bellhop beam
tracer to generate the corresponding acoustic field. The simu-
lated data were compared to the experimental measurements
and a good agreement was observed for calm ocean conditions.
At high wind speeds, however, the simulation results deviated
from the experimental measurements. This deviation may be
caused by the inability of the surface shape generator to model
breaking waves which occur at high wind speeds, causing for-
mation of bubble clouds, as well as acoustic focusing by wave
curvature [18]. Formation of bubbles near the water surface was
found in [19] to be the underlying cause for the changing be-
havior of the UWA channels at different wind speeds. The radius
and the density of bubbles that are generated at different wind
conditions, as well as their acoustical properties, were studied.
Such knowledge can be used to further improve the existing
UWA channel models.
The goal of our study is to provide a mathematically rigorous

analytical model that takes into account certain physical aspects
of acoustic propagation, and to validate such a model using ex-
perimental data. In parallel, our goal is also to develop a nu-
merically efficient simulation model that describes the channel
response in a wide range of frequencies representative of an
acoustic communication system. Toward this goal, we distin-
guish two types of channel variations: those that are caused by
displacements spanning many wavelengths, and those that are
caused by displacements on the order of one or a few wave-
lengths. We refer to the former as large-scale variations, and to
the latter as small-scale variations. Large-scale variations are
modeled as a consequence of system displacements that cannot
be predicted using the nominal system geometry. Namely, while
a nominal transmitter and receiver placement within a fixed
system geometry and a fixed sound-speed profile will yield a
fixed acoustic field, the actual field will vary due to uncertainty
about the exact system geometry. Such an uncertainty is treated
as random, leading to large-scale variation in the gains and de-
lays of propagation paths. At the same time, once a particular
large-scale displacement is given, additional small-scale vari-
ation will occur in the path gains and delays. This variation
is modeled as a consequence of scattering and instantaneous
motion. Considering motion on the order of 1 m/s, and fre-
quencies on the order of 10 kHz, a wavelength is traversed
during a subsecond interval. Such short intervals of time in-
cidentally correspond to typical communication transactions (a
packet or a frame of packets). Small-scale channel variations

can thus be thought of as those variations that occur over a com-
munication transaction. They are to be distinguished from the
variations that are caused by larger system displacements that
span many wavelengths and occur on correspondingly longer
intervals of time. Small-scale variations influence the instanta-
neous channel response, and, consequently, the instantaneous
signal-to-noise ratio (SNR). As such, they are meaningful for
the analysis of signal processing algorithms and network proto-
cols, and the assessment of average bit error rate or packet error
rate, conditioned on a particular large-scale realization. In con-
trast, large-scale variations influence the SNR through its local
average, causing it to vary over longer periods of time. As such,
they are meaningful for the analysis of top-level system func-
tions such as power allocation and the assessment of outage
probabilities and statistical coverage.
The rest of this paper is organized as follows. In Section II,

we overview the basics of acoustic propagation that lead to the
notion of a nominal channel response, and we introduce a model
for the large-scale channel variation. Small-scale channel ef-
fects are modeled in Section III, while motion-induced Doppler
effects are addressed in Section IV. Section V discusses the im-
pact of these random effects on the overall channel gain. Exper-
imental results are presented in Section VI, and conclusions are
summarized in Section VII.

II. NOMINAL CONDITIONS AND LARGE-SCALE UNCERTAINTY

A. Nominal Conditions: Decoupling Path Filtering
From Path Gains

Nominal channel geometry, along with a specified sound-
speed profile, gives rise to the nominal response of an acoustic
channel. This response characterizes a time-invariant system,
and it can be assessed by beam tracing for typical acoustic com-
munication frequencies.
The basic path loss experienced by a signal of frequency

traveling over distance affects the received signal energy and
is given by [20]

(1)

where is a scaling constant, is the spreading factor, and
is the absorption coefficient, which can be obtained in

decibels per kilometer using the Thorp’s empirical formula
[20, Ch. 1] as

where is in kilohertz. Considering multiple propagation paths
of nominal length , , each path will act
as a lowpass filter, whose transfer function, which affects the
amplitude of the received signal, can be modeled as

(2)

where is the cumulative reflection coefficient encountered
over surface and bottom reflections along the th path.
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For example, an ideal surface can be modeled by a reflection co-
efficient , while each bottom reflection can be modeled
by [20, Ch. 3]

otherwise
(3)

where is the grazing angle associated with the th propaga-
tion path, and are the density and the speed of sound in water
( 1000 kg/m and 1500 m/s, nominally), and and
are the density and the speed of sound in bottom. For soft

bottom, , so that critical reflection never occurs.
Given the transfer function of each path, the overall transfer

function of the multipath channel is obtained as

(4)

where is the propagation delay associated with the th path,
i.e., for constant sound speed, measured in ref-
erence to some , e.g., .
In general, each path is characterized by an impulse response

of a different shape, and this fact prevents one from obtaining a
tractable, simple channel model. To explore simplified versions,
we examine an approximation to the function . In partic-
ular, let us express this function so as to include the dependence
on the reference path

(5)

Fig. 1 shows the reference function for 1 km and
.

The frequency-dependence that distinguishes the th path
from the reference path is embodied in the term
in (5). If this term could be approximated as constant, one could
model all the paths by an impulse response of the same shape,
and just a different gain. The fact that the absorption factor

has a value very close to 1 for a broad range of acoustic
communication frequencies may justify an approximation of
the form

(6)

where is the absorption factor corresponding to a frequency
within the signal bandwidth . We examine the via-
bility of such an approximation in Fig. 2. This figure shows the
factor as a function of frequency, for several path
length differences . While the dependence on

is exponential, the spacing between the curves appears to
be linear because is very close to 1, i.e.,

The values shown range only between about 0.9 and 1, indi-
cating that the approximation (6) may indeed be valid, espe-

Fig. 1. Reference path transfer function .

Fig. 2. Verifying the approximation (6). Note that one needs to focus only on
the frequency range occupied by a given system. For example, if a system op-
erates in the 10–20-kHz acoustic band, the factor varies only be-
tween 1 and 0.98 for up to 40 m.

cially for small path length differences. The smallest path length
difference shown, 15m, corresponds to the relative path delay of
10 ms, a value that is within the multipath spread of the majority
of shallow-water channels. Note also that it suffices to judge the
validity of our approximation only within the frequency range
occupied by a given system. For example, if a system operates
in the 10–20-kHz acoustic band, the factor varies
only between 1 and 0.98 for up to 40 m.
Using the approximation (6), we model the channel transfer

function as

(7)

where the path gain is given by

(8)

The constant may be taken as the absorption factor at any
frequency within the operational bandwidth, e.g., the center fre-
quency , or the lower/upper band-edge frequency, resulting
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in maximal/minimal path gain, respectively. Any choice should
be fine, since the assumption is that does not change much
over a typical bandwidth of an acoustic communication system.
From our discussion so far, it seems reasonable to adopt a

channel model in which the effects of path filtering and multi-
path are decoupled such that each path contributes with a gain
and delay , while the filtering effect is the same for all the

paths, and described by the function . The overall channel
transfer function is thus given by

(9)

B. Large-Scale Displacements (Location Uncertainty)

Transmitter/receiver displacements within a nominal channel
geometry, as well as changes in the surface height (e.g., due to
tides) or shape of the bottom, lead to an uncertainty about the
exact system geometry. These displacements effectively cause
the path length to deviate from the nominal as ,
where the variation is regarded as random.
The path delays are easily calculated for the lengths ,

while the path gain is obtained by using instead of in (8),
which yields

(10)

Noting that for a typical system geometry we have that
, and that , where is expressed in meters, we

proceed to make the following approximation:

(11)

Fig. 3 illustrates the validity of this approximation for a given
set of parameters.
With theapproximation(11), thepathgain can be expressed as

(12)

where

(13)

and the approximation follows from the fact that . Note
that the linear approximation in (11) could also be used; how-
ever, we prefer the exponential one since it guarantees that the
gain will be positive. Note also that if the path length varia-
tion (location uncertainty) can be modeled as Gaussian, the path
gain will be log-normally distributed. We will use this notion
in Section V, when we discuss the overall channel gain. The
overall transfer function is now given as

(14)

where location uncertainty is captured by the large-scale param-
eters and .

Fig. 3. Verifying the approximation (11). Both linear and exponential approx-
imations yield error below 0.5% for the range of , shown.

III. SMALL-SCALE CHANNEL CHARACTERIZATION

The channel transfer function (14) captures only the large-
scale effects, i.e., it does not provide any information about
fine-scale phenomena such as scattering. Scattering is a major
contributor to signal variations that typically appear as random.
A signal of frequency undergoes scattering on rough sur-
faces and objects whose dimension is on the order of a few
signal wavelengths . For example, the wavelength cor-
responding to an acoustic frequency component of 15 kHz is
0.1 m, hence the distances in question are called “small.”
Tomodel scattering in a UWAchannel, let us focus on a single

propagation path, say path . So far, we have modeled this path
as having the gain and delay . However, if scattering occurs
along this path, it is split into a number of micropaths

(15)

where are the intrapath gains, and are
the intrapath delays. Both the gains and the delays are
treated as random to account for random placement of scattering
points within a scattering field. With this fact in mind, we define
the small-scale fading coefficient as

(16)

so that the overall channel transfer function is expressed as

(17)

A. Probability Density Function of the Small-Scale
Coefficient

Since the scattering points are separated by distances on the
order of , the intrapath gains are likely to be similar, but
the phases , taken modulo , can differ substantially
between the intrapaths of the same path. These phase variations
will, in turn, cause a significant variation in .
Assuming that the constituent terms of the small-scale coeffi-

cient in (16) are independent and identically distributed,
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the central limit theorem implies a complex Gaussian distribu-
tion for when the number of micropaths is sufficiently
large (particularly, a good agreement is found already with ten
micropaths). It is also possible to consider a situation in which
there is a component whose delay is stable. In that case, the dis-
tortion is modeled by

(18)

where represents the relative coefficient of the stable path
(whose ). In general, the coefficient is complex
Gaussian with mean and variance . This distribu-
tion is conditioned on both the large-scale parameters and ,
and the small-scale path statistics and . While the
former capture location uncertainty, the latter are influenced by
the changing environmental conditions (e.g., surface roughness
that changes with the wind/wave activity). Both sets of param-
eters can thus change over prolonged intervals of time.
The path statistics and can be determined ex-

perimentally, or analytically if the distribution of the constituent
terms in (16) is known. To illustrate an analytical approach, let
us assume that the micropath amplitudes have the mean value
and variance , and that the relative intrapath delays
are zero-mean Gaussian, with variance . Gaussian-dis-

tributed delays can, for instance, result from a Gaussian-dis-
tributed surface/bottom height. In that case, if we denote the sur-
face and bottom variance by and , respectively, we have
that

(19)

The mean and variance of the scattering coefficients are then
obtained as

(20)

(21)

where is the number of intrapaths and

(22)

The last equality holds for Gaussian-distributed zero-mean in-
trapath delays. We note that the path statistics are determined
by the function , whose value depends on the parameter

, i.e., the standard deviation of the micropath delay nor-
malized by the signal wavelength. This function decays rapidly,
falling below 10 dB for . In this regime, the in-
dependent real and imaginary components of the scattering co-
efficient have (approximately) equal variances, leading to the
Ricean-distributed magnitude.
It is also worth noting that regardless of the distribution of
, for high frequencies such that , the above model

reduces to the one in which the phases are uniformly dis-
tributed. Such a model is typically used to describe radio com-
munication channels.

Fig. 4. Frequency-correlation function and its approximation, as defined
in (24), for several values of the standard deviation . The frequency is set
to 10 kHz, while is varied.

B. Correlation Between Paths

Assuming that the scattering process is independent between
different paths, i.e., that reflection points of different paths are
sufficiently far apart, we have that

(23)

Note that although the paths exhibit uncorrelated scattering, the
above function is not zero in general, due to the nonzero mean
values.

C. Correlation in the Frequency Domain

Frequency correlation of the small-scale path coefficients is
described by the function . To eval-
uate the frequency correlation, the probability density function
(pdf) of the intrapath delays has to be known. For the
Gaussian-distributed delays with zero mean and variance ,
frequency correlation is obtained

(24)

where the approximation holds well (error below 4%) for
. Fig. 4 illustrates the frequency-correlation func-

tion and its approximation for a typical range of communication
frequencies and several values of the standard deviation .We
note that depending upon the standard deviation of the path de-
lays, there may be more or less correlation between the small-
scale coefficients within the signal bandwidth. While the par-
ticular function of Fig. 4 pertains to Gaussian-distributed delays,
one can expect a similar trend for a different distribution as well,
i.e., one can expect the correlation to vary across a wide band-
width. In our analysis of experimental data in Section VI, we
will assume that full correlation exists across the signal band-
width, i.e., that a single value suffices to describe small-scale
effects. However, we note that this assumption may not always
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Fig. 5. The functions (a) effective Doppler spread, (b) time correlation and its approximation, as defined in (26), for several values of the standard deviation .
The frequency is set to 10 kHz, and 0.1 Hz.

hold. Specifically, if is on the order of , and the cor-
responding Ricean factor is low, there may be little correlation
between and in a wideband system. This fact
may have serious implications on the performance of signal pro-
cessing algorithms that rely on the assumption of frequency-in-
variant multipath coefficients.

D. Correlation in the Time Domain

Time correlation of the scattering coefficients is described by
the function . This function captures the
effect of motion within the scattering field, which influences the
coefficients through the time-varying micropath delays.
To assess the time-correlation function, power spectral density
(psd) of has to be known.
Without loss of generality, let us assume that the

Gaussian-distributed delays obey a first-order au-
toregressive process (AR-1)

(25)

where

and is the 3-dB width of the psd of . The above
relationship is not a binding one; it simply states that two values
of delay are expected to look more alike if they are more closely
spaced in time, i.e., that one does not expect the delays to vary
completely erratically, but to show some coherence. The time-
correlation function is then obtained as

(26)

where the approximation holds for , and we have
defined

(27)

as the effective Doppler bandwidth (Doppler spread) of the
path coefficient . Fig. 5 illustrates the effective Doppler
spread, the time-correlation function, and its approximation.
As one can expect, stronger temporal correlation is observed
for lower values of the standard deviation .
The complete autocorrelation function of the process

can also be expressed in closed form. Using the
relationships (24) and (26), we obtain a generalization

(28)

where stands for either of the two frequencies or
within the signal bandwidth. Setting and ,
the above expression defines the function , whose
special forms obtained for and for in (24) and
(26) were illustrated in Figs. 4 and 5, respectively.1

E. Statistically Equivalent Model for

Let us define an auxiliary AR-1 process

(29)

where is a complex Gaussian random process

1Note that this function depends on as well, although we explicitly denote
only the dependence on .
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where . Process (29) is characterized by a
Gaussian pdf

and an autocovariance function

Since its pdf and psd coincide with those of the process ,
the two processes are statistically equivalent.
The significance of the auxiliary process is that

it can easily be generated in computer simulation. To do so,
a single recursive operation needs to be applied to a Gaussian
input, as specified by (29).
To develop a full channel simulator, however, frequency cor-

relation needs to be embedded into the process . To
this end, let us discretize the frequency axis in steps of and
the time axis in steps of , and let us define the vector

Let us also define the matrix , where
.

We are now in a position to specify an AR-1 process as fol-
lows. Starting with some , e.g., an all-zero vector, gen-
erate

(30)

where

and

This particular choice of the process noise covariance matrix
ensures the desired frequency correlation

as well as the complete correlation given by (28).
The above model retains computational simplicity, thus

offering an appealing platform for channel simulation. After
executing the recursion (30) over a time interval of interest and
for frequencies corresponding to the desired signal bandwidth,
all that remains to be done is to add the mean values to
the so-obtained coefficients . The result is a dis-
crete-time discrete-frequency random process whose
statistical properties are equivalent to those of the sampled
process .
We emphasize that a channel simulator does not yield an

exact replica of an actual channel because 1) it is only statis-
tically equivalent to the process as we have defined it;
and 2) our definition of the process is itself incomplete.
Namely, while it takes into account rough surface scattering, it
does not take into account the particular shape of the surface or

the effect of breaking waves which inject bubbles into the water
column. Both of these effects can additionally alter the signal,
or even completely occlude the surface [18], [19]. The above
model should thus be regarded as a first step toward assessing
the small-scale variations. Imperfect as it may be, this model
offers a simulation platform that captures some of the acoustic
channel effects in a computationally efficient manner.

IV. MOTION-INDUCED DOPPLER SHIFTING

Motion of the transmitter/receiver or any reflection points in
the channel leads to time-varying path delays . Focusing on
the small-scale phenomena, we are interested in variations that
occur over short intervals of time (e.g., subsecond intervals).
During such intervals, say , it is reasonable to as-
sume that any motion occurs at a constant velocity, i.e., that it is
only the velocity and not acceleration that matters. When that is
the case, the path delays are modeled as where

and is the Doppler factor corresponding to
velocity .2 Note that the Doppler factors may (and likely
will) vary with time and a more general quasi-stationary model
can be introduced to address this fact. Specifically, one may
wish to divide the time axis into consecutive intervals of con-
stant velocity, and associate a Doppler scaling factor with
the th interval. We will keep this fact in mind, but drop time
indexing for simplicity where appropriate.
At least three types of motion influence the Doppler factor: 1)

unintentional transmitter/receiver motion, i.e., drifting, which
gives rise to a Doppler scaling factor ; 2) intentional trans-
mitter/receiver motion, i.e., vehicular motion, which gives rise
to ; and 3) waves, i.e., surface motion, which gives rise to
. If the Doppler factors corresponding to each of these types

of motion are fixed, the corresponding Doppler shift is always
the same. On the contrary, if the Doppler factors change ran-
domly from one time interval to another, so do the shifts. The
resulting effect is that of random Doppler shifting or Doppler
spreading. The overall small-scale path coefficient can now be
defined as

(31)

To characterize Doppler spreading, we focus on the au-
tocorrelation function of the random process , i.e.,

. Assuming independence between various fac-
tors contributing to motion, we have that

(32)
Should any one of these components be regarded as determin-
istic, its expectation is dropped.
To characterize the drifting component, we assume that the

transmitter and the receiver drift at velocities and in
directions and with respect to horizontal pointed toward
each other. The relative speed, projected onto the th path is

(33)

2It is also possible to account for a path-dependent propagation speed.
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and the corresponding Doppler factor is . If the
transmitter and the receiver drift in random directions, then

involves averaging over and . Assuming
that drifting is equally likely in any direction, and that it occurs
independently for the transmitter and the receiver

(34)

where and are uniformly
distributed on the interval , and is the Bessel func-
tion of the first kind and order zero. Assuming
and , the above expression reduces to .
Vehicular component of the Doppler effect is obtained sim-

ilarly, except that those components of motion that can be es-
timated and compensated by synchronization are not to be re-
garded as part of the channel distortion. Hence, we regard

as the residual Doppler factor after initial syn-
chronization. For example, if synchronization compensates for
the predominant Doppler factor corresponding to the projection
of the transmitter/receiver intentional velocity onto the refer-
ence path , the effective Doppler factor is

(35)

Assuming that the transmitter/receiver motion is equally likely
in any direction , the autocorrelation function corre-
sponding to vehicular motion is

(36)

Finally, to assess the surface component, let us focus on
waves that cause a point on the surface to move up and down

creating a displacement that varies sinusoidally in time, with
amplitude and frequency . Note that we are accounting
only for the vertical surface motion, and not for the horizontal
group velocity of the waves or the effect of an inclined sur-
face (a study on scattering from inclined waves can be found
in [4]). A signal impinging upon the th reflection point along
the th path catches it in a random phase, i.e., at vertical
velocity , where , and

. Projections of this velocity onto the th path,
summed over all surface reflection points, yield

(37)

Assuming that reflection points are sufficiently far apart such
that are independent, time correlation is obtained by taking
the expectation over with the angles uniformly
distributed over . The result is

(38)

where and is the number of surface
encounters along path .
Putting together (26) and (34)–(38), the complete autocorre-

lation function of the overall small-scale coefficient is
obtained as

(39)

This function exhibits an overall Bessel-like behavior, damp-
ened by the exponentially decaying correlation of the scattering
coefficient [first term in (39)]. Fig. 6 shows for two
different scenarios: one in which surface motion alone is taken
into account, and another in which surface and drifting motions
are considered. In both scenarios, the first zero crossing of the
overall Bessel-like correlation function, which indicates the co-
herence time, is determined by the maximum of the surface or
drifting velocities and the number of surface reflections. It is
also worth noting that the main lobe of the surface component,
whose behavior is dictated by the Doppler factor , narrows
with each additional surface encounter. This fact implies that
each surface encounter adds to the overall time variation of the
signal, which is intuitively satisfying. Most notably, as we will
see in Section VI, experimental results demonstrate similar be-
havior. The correlation function (39), although obtained analyt-
ically under a number of modeling assumptions, thus becomes
helpful in explaining experimental observations.
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Fig. 6. Autocorrelation of the small-scale coefficient for (a) surface motion and (b) surface and drifting motions.

V. THE CHANNEL GAIN

So far, we have developed a model that represents the time-
varying channel transfer function as

(40)

where as in (31). This function
completely describes the channel for a given set of large-scale
parameters and , the path statistics , and the
Doppler scaling factors . We recall that these parameters may
also vary with time, each at its own rate. The different time
scales at which these parameters vary give rise to the definition
of different figures of merit for a communication system design.
An important figure of merit for communication systems is

the overall channel gain, i.e., the overall energy, or power, con-
tained in the channel response at a given time. We define the
instantaneous channel gain for a system operating in the fre-
quency range as

(41)

and the corresponding locally averaged gain as

(42)

If the bandwidth is large enough such that all multipath com-
ponents are clearly resolvable, the gain will be dominated by
individual multipath components

(43)

where

(44)

We refer to the gain as the large-scale gain, and note that it
depends on both the path coefficients and the path statistics

. The large-scale gain is thus a random variable,
whose statistics are determined by those of the path gains .
The path gains, and, consequently, the channel gain, can also be
modeled as random processes, so as to explicitly take into ac-
count their time dependence . The gain will then become a
random process itself, which we denote as . We emphasize
that the time scales involved in this type of modeling are larger
than those used for small-scale effects, i.e., that changes
more slowly than . Finally, we note that the path statis-
tics can also change with time, as dictated by the environmental
conditions. These changes are likely to occur on even longer
time scales.
The distribution of the gain can be assessed analytically

if the distribution of the path gains is known. Recalling the
model (12), we have that

(45)

Assuming that the path lengths are Gaussian distributed with
mean and variance , the gain is a sum of log-normally
distributed random processes, which can be modeled as a
log-normal process itself (see [22] and the references therein).
The mean and variance of the approximate log-normal sum can
be calculated using the Fenton–Wilkinson method described
in [22] as

(46)

Thus, in the case of independent and small zero-mean
Gaussian path length displacements, the gain behaves approx-
imately as log-normally distributed. On the decibel scale, we
have that

(47)



710 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 38, NO. 4, OCTOBER 2013

where

and is zero-mean Gaussian with variance

The model (47) holds for a fixed channel geometry, which
defines the nominal attenuation for the transmission distance

. If the nominal geometry changes, e.g., due to vehic-
ular motion over a period of time, will change accordingly.
Specifically, is expected to maintain a log-distance relation-
ship

(48)

where is a reference distance, e.g., 1 m. The constant and
the effective spreading factor or path loss exponent , which
depends on operational frequency, can be estimated from en-
semble averages of the gains obtained at varying distances [9].
Experimental data, as well as numerical simulations, also show
that the variance is independent of the distance, and is in-
versely proportional to the bandwidth . To highlight this de-
pendence on distance, we rewrite (47) as

(49)

Time-correlation properties of the large-scale gain de-
pend on the actual motion pattern, and are best left to specific
examples. Experimental observations, which will be discussed
in Section VI, seem to attest to an exponential autocorrelation
of the gain , which indicates the possibility to model the gain
as an autoregressive process. If the time-varying gain in an ac-
tual channel can indeed be modeled as a simple AR process (of
order 1 or more), this fact has significant implications on the use
of adaptive power control. Namely, it implies the possibility to
predict the gain a few seconds ahead, thus allowing the trans-
mitter to cater to the receiver’s needs at the time of signal arrival,
rather than simply acting upon outdated information about the

receiver’s state. A study on the prediction of the UWA channel
impulse response was conducted in [21].
Algorithm 1 summarizes the steps for designing an un-

derwater channel simulator based on the model described
throughout the paper. We emphasize that this simulator is
designed to address multipath, rough surface scattering, mo-
tion-induced Doppler, and large-scale variation in the channel
geometry; however, it does not take into account the surface
curvature, or the effect of breaking waves which add extensive
complexity to the model. In addition, it assumes Gaussian-dis-
tributed intrapath delays of the scattered paths. Hence, we
regard this simulator as a first approximation for computa-
tionally efficient modeling of a class of underwater acoustic
channels.

VI. EXPERIMENTAL RESULTS

We present experimental data collected during four experi-
ments. Table I lists the operational frequency range used in each
experiment , the distance between the transmitter and the
receiver , the water depth , and the transmitter/receiver
height above the bottom . In the first three experiments,
the probing signals were custom designed, transmitted over the
channel, and recorded for subsequent offline processing. The
probing signals were pseudonoise (PN) sequences, periodically
repeated and binary phase-shift keying (BPSK) modulated onto
the center frequency at full rate. In the fourth experiment, fre-
quency-modulation (FM) sweep signals were transmitted and
received by the Woods Hole Oceanographic Institution (WHOI,
Woods Hole, MA, USA) micromodem [23]. Only the received
signal strength, and not the full channel response, is available
from this experiment.
The first experiment, called the Surface Processes and

Acoustic Communications Experiment (SPACE) was con-
ducted near the coast of Martha’s Vineyard in Massachusetts,
USA, in fall 2008. The carrier frequency was 13 kHz and the
transmission rate was 6.5 kb/s. The signal was transmitted for
3 min every 2 h. We refer to the active 3-min interval of each
2-h period as one epoch. The experiment lasted for 15 days. The
water depth was 10 m, and the transmitter and the receiver were
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fixed at 4 and 2 m above the seafloor, respectively. Receivers
located at distances of 60, 200, and 1000 m from the transmitter
recorded the signals.
The second experiment, Mobile Acoustic Communications

Experiment (MACE), was conducted in the Atlantic Ocean
about 100 miles south of Martha’s Vineyard in summer 2010.
The receiver was suspended at the depth of 40 m and the trans-
mitter was towed at the depth of 50–60 m. The water depth was
approximately 100 m, and the distance varied between 500 m
and 4 km. The carrier frequency was 13 kHz, and the signals
were transmitted continuously at 5 kb/s.
The third experiment, known as the Kauai AComms Mul-

tidisciplinary University Research Initiative (MURI) (KAM),
was conducted in July 2011 off the coast of Kauai Island, HI,
USA. The transmitter and the receiver were deployed approxi-
mately midway in 100-m water and were 3 km apart. The sig-
nals were modulated onto the carrier of 13 kHz and transmitted
at the rate of 6.5 kb/s during 9-min epochs every 2 h.
Finally, the fourth experiment, called the Pacific Storm (PS)

experiment, was conducted on the submerged portion of San
Andreas Fault off the coast of Northern California in September
2010. During this experiment, data packets of length 3 s were re-
peatedly transmitted every 5 s from an autonomous underwater
vehicle (AUV) to a surface ship. The signals occupied 4 kHz of
bandwidth around a center frequency of 10 kHz. The AUV was
moving at about 3 m above the bottom, at a depth of approxi-
mately 130 m. The transmission distance varied from 200 m to
1 km. In this experiment, the signals were automatically pro-
cessed by the acoustic modems mounted on the two ends of the
link. The received signal strength was recorded once a second.

A. Small-Scale Analysis

The signals from the SPACE, MACE, and KAM experiments
were used to assess the small-scale channel behavior. The sig-
nals were first resampled based on the received packet length to
compensate for the motion-induced time scaling and frequency
shifting which can be modeled by a rough Doppler factor. Re-
sampling was notably necessary for the MACE data, where the
transmitter moved at about 1 m/s, creating a raw Doppler rate on
the order of 10 . Fine Doppler compensation was then carried
out using a combined recursive least squares (RLS) estimator
and a second-order phase-locked loop (PLL). Once these steps
were completed, the orthogonal matching pursuit (OMP) algo-
rithm [24] was used for channel estimation. This algorithm is
commonly used for estimation of UWA channels as it outper-
forms conventional least squares methods when the channel is
sparse. The resulting estimate of the baseband channel response
was then used to extract the path gains.
Figs. 7–9 show the results obtained for the three experiments.

Each figure shows an ensemble of channel responses (magni-
tude), histograms of several selected paths, and their autocor-
relation functions. The channel responses are shown over the
duration of 1 min at a resolution of 1 b. Several local maxima
over the delay axis are visible in the figures, indicating channel
taps over which the impulse response is the strongest. Physical
path delays corresponding to the nominal channel geometry are
marked by arrows and labeled as , , , , etc., referring to

TABLE I
NOMINAL PARAMETERS OF THE EXPERIMENTAL CHANNELS

surface, bottom, surface–bottom, surface–bottom–surface, etc.,
reflections.
The observed path delays deviate from the nominal ones be-

cause of location uncertainty, motion-induced Doppler effect,
and intrapath delay spreading. In addition, time variability of the
channel imparts a slowly varying mean onto each path. Also, if
the geometry is such that two paths have similar lengths, path
merging will occur, i.e., their arrival times will be too close to
be distinguished given the delay resolution (finite bandwidth) of
the system. Path spreading, which is a consequence of both the
micropath dispersion and bandwidth limitation, may occur uni-
formly at a tractable rate, as in the path labeled in the KAM
experiment, or an intractable one, as in the path labeled . To
take into account the effect of all contributing taps, whenever the
phase information is not needed, several adjacent taps are com-
bined in a root mean square (rms) fashion to form the absolute
value of a given path gain. Slow variation of the mean, which is
a consequence of the changing , is then removed. For ex-
ample, such variation is evident in the path of the MACE
experiment. In this case, to extract the absolute value of the
small-scale factor , the slowly varying window average of
the observed process is removed. When the phase
information is not to be neglected, the signal statistics are esti-
mated over shorter time intervals, i.e., several seconds.
The histograms shown in Figs. 7–9 are those of the esti-

mated for several selected paths, along with a theoret-
ical Ricean curve. The magnitude is estimated as the
rms of the maximum tap and its significant neighbors, whose
time-varying mean is removed. The stationarity of the data was
tested using the Phillips–Perron test [25]. The null hypothesis
that the estimated time series has a unit root, which gives rise
to nonstationarity, was rejected for all data sets. The maximum-
likelihoodmethod is used to estimate the parameters of the fitted
Ricean curve.We have also measured the variance on individual
segments of data (sliding window average, after removing the
time-varying mean) and have found it to remain constant. This
observation also confirms the stationarity of the data in the wide
sense. The conditional Ricean distribution (conditioned on the
slowly varying mean) appears to provide a good fit in all three
experiments. The 95% confidence intervals of the histogram
bars are plotted. For almost every bar, the Ricean fit falls inside
the confidence interval, which can be interpreted as a qualitative
measure of goodness of the fits. To further quantify the goodness
of fit, the Jensen–Shannon (JS) divergence [26] was used. The
JS divergence is a symmetric measure of the difference between
two distributions and , and is defined as

(50)
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Fig. 7. SPACE experiment: (a) time evolution of the magnitude baseband impulse response; (b)–(e) histograms of selected path magnitudes; and (f)–(i) time-
correlation functions.

where and
denotes the Kullback–Leibler (KL) divergence of the fit from
the distribution . Table II lists the values of the JS divergence
between the estimated histograms and the fitted Ricean distribu-
tions (gray rows) for the different paths analyzed in Figs. 7–9.
The JS divergence values for a fitted Rayleigh distribution are
also listed in the table (white rows). Ricean distribution provides
a better fit for all path gain data sets. The Ricean -factor is in-
dicated in the figures along with its 95% confidence interval. Its
value for the direct path is greater than that of the other
paths, indicating a stable arrival as there is no surface disper-
sion.
Finally, the time-domain autocorrelation functions of the path

coefficients are plotted. We note a remarkable similarity with
the theoretical results of Section IV and the Bessel-like func-
tions developed there. For all three experiments, the autocor-

relations corresponding to the direct path show less fluctuation
and a higher coherence time. All other paths show Bessel-type
autocorrelation, and, as noted in Section III, Doppler bandwidth
that increases with the number of surface encounters.

B. Large-Scale Analysis

Fig. 10 summarizes the results of large-scale data analysis.
This analysis targets the window averaged channel gain ob-
served over longer periods of time. A rectangular window of
length 2 s is used. Included in the figure are the results of all
four experiments. The figure shows four columns, each corre-
sponding to one of the experiments. Each column contains four
plots, showing the gain versus time (for the duration of the
experiment), the gain versus distance, the histogram of the gain
deviation , and its autocorrelation.
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Fig. 8. MACE experiment: (a) time evolution of the magnitude baseband impulse response; (b)–(e) histograms of selected path magnitudes; and (f)–(i) time-
correlation functions.

In the PS experiment, the transmission distance was con-
stantly changing as the AUV moved, hence the average gain
varied noticeably [Fig. 10(a)]. A continuum of distances was
covered during this experiment, as shown in Fig. 10(e). The
solid curve there represents the log-distance model (48) whose
parameter is indicated in the figure, while the dots represent
the actual gain. Since the AUV was frequently at the same dis-
tance from the receiver, there are many values of the actual gain
for each distance. The log-distance model parameters were cal-
culated from the data as

(51)

where are the ensemble averages of gains measured at
distances , .
The MACE experiment similarly involved transmission from

an AUV. In contrast, signals in the SPACE and KAM experi-
ments were transmitted between fixed points. In the SPACE ex-
periment, the signals were recorded at three different locations
(three different transmission distances). Fig. 10(b) shows the
time series of the gain for these three locations, while Fig. 10(f)
shows the same data clustered around three points along the dis-
tance axis. Finally, in the KAM experiment, the signals were
recorded at a single location. Hence, a log-distance model is not
shown for this experiment.
The following observations are also made about the various

experiments.
• Each epoch of the SPACE experiment lasted 3 min, with
approximately two idle hours between adjacent epochs.
Similarly, 9-min epochs were transmitted every 2 h during
the KAM experiment. In Fig. 10(b) and (d), the idle hours
are shown as empty spaces between consecutive epochs,
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Fig. 9. KAM experiment: (a) time evolution of the magnitude baseband impulse response; (b)–(e) histograms of selected path magnitudes; and (f)–(i) time-
correlation functions.

TABLE II
JENSEN–SHANNON DIVERGENCE FOR RICEAN FITS (GRAY ROWS)

VERSUS RAYLEIGH FITS (WHITE ROWS)

but they are not plotted to scale. The values of the gain for
the PS experiment were quantized; hence, they appear at
discrete levels in Fig. 10(e).

• The PS and MACE experiments lasted a few hours, while
the SPACE andKAM experiments lasted several days, thus
undergoing additional time-varying phenomena on a larger

time scale. While the gain variation at each distance does
not exceed a few ( 5) dB for the PS and MACE experi-
ments, the long-lasting SPACE and KAM experiments ex-
perience gain variation of as much as 15 dB over the course
of a few days. This observation is notably important, as it
indicates that very large savings are available from slow
power control.

• In the SPACE experiment, the total (multihour) gain vari-
ation is more pronounced at longer distances (15 dB at
1 km, versus 7 dB at 60 m). There also appears to be
some correlation between the distances, notably the longer
ones (e.g., a decrease in the gain during the final epoch
or hour 30). These multihour variations are likely caused
by the changing environmental conditions. As the wind/
waves/tides change, so do the statistical parameters of the
large-scale phenomena.
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Fig. 10. Results of large-scale data analysis: PS experiment (left), SPACE (mid-left), MACE (mid-right), and KAM (right). (a)–(d) Gain versus time (dotted) and
the model (solid). (e)–(h) Gain versus distance (dotted) and the model (solid). (i)–(l) Histogram of and Gaussian approximation. (m)–(p) Autocorrelation of

(solid) and AR-1 autocorrelation (dashed).

• In Fig. 10(b), the values of the large-scale parameter
are indicated for epochs at hours 12 and 90 (highlighted in
the figure). In both of the long-lasting experiments, SPACE
and KAM, the mean value of the gain is thus calculated
separately for each epoch.

• In the MACE experiment, the variance estimated
during a calm day (evening of June 26, 2010, reported
in Fig. 10) was about three times lower than on a windy
day (4.8 dB on the morning of June 25, 2010). The corre-
sponding coherence time was twice as long during calm
conditions.

Fig. 10(i)–(l) shows the histograms of the random component
, along with a theoretical Gaussian curve with zero

mean and variance that is estimated from the data and in-
dicated in the figure. Taking into account the pseudostationary
nature of the long-lasting experiments (SPACE and KAM),
is calculated separately for each epoch. The data suggest that

is invariant for the span of distances considered. If greater
distance spans are of interest to a particular system, sectioning
may be required. Overall, a good match is observed between
the histograms and the Gaussian fit, which speaks in favor of
the log-normal model for the large-scale channel gain.
Finally, the autocorrelation of is plotted in Fig. 10(m)–(p).

Shown also in the plots is an exponentially decaying autocorre-
lation function corresponding to an AR-1 process.
A good match is observed between the experimental data and
the AR-1 model for small time differences, notably up to several
seconds. This fact implies the possibility to predict the channel
gain from past samples, the fact that bears an important impli-
cation for adaptive power control in acoustic communication
systems. Namely, if the round-trip delay is within the coherence
time of the channel gain, a feedback loop can be closed between
the transmitter and the receiver. Judging by the observations
made during the SPACE and KAM experiments, power control
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can yield substantial savings (10 dB or more) over longer inter-
vals of time.

VII. CONCLUSION

In this paper, a statistical model was developed for UWA
channels that takes into account physical aspects of acoustic
propagation as well as the effects of inevitable random channel
variations. Channel variations were classified into small scale
and large scale, based on the notion of the underlying random
displacement being on the order of a few, or many wavelengths,
respectively.While small-scale modeling treats random channel
variations over short displacements and, correspondingly, short
intervals of time (e.g., subsecond) during which the system ge-
ometry and environmental conditions do not change, large-scale
modeling treats variations caused by location uncertainty (dis-
placement from the nominal geometry) as well as varying envi-
ronmental conditions.
The proposed small-scale model describes intrapath disper-

sion caused by scattering as complex Gaussian multiplicative
coefficients with particular correlation properties in time and
frequency. Specifically, it was shown that an autoregressive
Gaussian displacement of scattering points leads to fre-
quency-dependent exponential time-correlation function of the
small-scale fading coefficients, while frequency correlation is
dictated by the variance of the intrapath delays. In addition, mo-
tion-induced random Doppler shifting, resulting from surface
waves or transmitter/receiver drifting, was shown to lead to
Bessel-type autocorrelation functions. Based on such a model,
a computationally efficient channel simulator was proposed, in
which each path’s small-scale coefficient is represented as an
autoregressive Gaussian process itself, and provision is made to
account for frequency correlation across the signal bandwidth.
Large-scale modeling focused on the channel gain, which of-

fers a measure of the received signal strength averaged locally
over small-scale phenomena. A log-normalmodel was proposed
for the large-scale gain, whose mean follows a log-distance de-
pendence. Experimental data from four deployment sites with
varying degrees of mobility were used for a statistical analysis.
Probability distributions and correlation functions of the salient
small- and large-scale parameters demonstrated a good match
with the theoretical models.
The present model is based on the Gaussian assumption for

the underlying processes, which is a starting point from a sta-
tistical point of view, although likely not the last word on this
topic. Future work will also focus on examining frequency-cor-
relation properties of the small-scale fading in wideband exper-
imental systems, as well as on extending the proposed models
to address spatial correlation properties of the acoustic channel
on both small and large scales.
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