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Abstract—We address multiple object tracking in a system that
has feedback from the fusion center to a wireless sensor network,
where nodes transmit to the fusion center using random access.
The feedback is used to adapt the sensing rate and, assuming that
the sensors can move, to modify their positions. The variation
in the position and the sensing rate of the sensors has the
goal of providing higher accuracy of tracking and lower energy
consumption. Simulations results are presented to demonstrate
the benefits of feedback, which are notable when the network
suffers from congestion. When the number of nodes is high the
variable-rate approach is shown to provide a reduction of 2 dB in
the location error and 44% less power consumed by the sensors.
With mobile sensors, the accuracy of tracking is improved as the
network is able to zoom in on the objects of interest.

Index Terms—Wireless sensor networks, object tracking, adap-
tive tracking.

I. INTRODUCTION

Advancements in micro-electronics, wireless communica-
tions and sensor technology have made possible the evolution
of Wireless Sensor Networks (WSNs). WSNs are formed
by distributed, multi-functional sensor nodes that work in a
collaborative manner. The sensors form an ad-hoc network
through wireless communication, and they are used to collect
data in order to monitor some phenomenon. The advantages
over traditional sensing, that involves the use of one or few
powerful sensors with centralized computation, include higher
accuracy and greater coverage area.

The potential applications for WSNs are multiple. WSNs
can be used for environmental applications, such as habitat
monitoring or agriculture research. In addition, WSNs can be
used in health monitoring topics, such as to control, in a non-
invasive way, blood pressure, heart rate or concentration of
oxygen in blood. WSNs also have military applications, such
as detection of chemical or biological weapons or being part
of command, control and communications. Underwater WSNs
can be used to monitor water characteristics, to count animal
life or to communicate with submarines and divers [1], [2].

One of the most studied applications for WSNs is tracking.
The events to track range from moving bodies to changes in
light, temperature or acoustics. A widely researched tracking
method involves using the Received Signal Strength Indica-
tion (RSSI) [3], although alternative methods have also been
studied, such as a cooperative vision-based system [4] or the
use of binary proximity sensors to track the objects by sending
only one bit of data per node [5].

Energy efficiency is one of the most important factors in the
study of tracking methods as the sensors are usually battery
powered. In [6] the authors proposed a tracking method based
on waking up the nodes only when an object is present,
which is detected by sentry nodes that are always on. In [7]
a cluster approach was proposed where the next sampling
interval and the next working cluster are calculated by a
cluster head using predictions from the current interval. In [8]
a protocol to minimize the redundancy of the data sent and
the transmission of low quality measurements was studied.
The reduction of redundancy was achieved by having the
sensors decide whether to send the object’s estimated position
(computed by triangulation using beacons from other sensors)
to the cluster head depending on the position of neighboring
nodes in the sensing range.

To improve the energy efficiency of the nodes and the
accuracy of tracking, network congestion has to be controlled.
Network congestion is more likely to appear in the upstream
direction as a result of the high number of nodes communi-
cating to a sink station. Congestion is especially critical in
WSNs due to the limited computational power and wireless
communication capabilities of the nodes, as well as the large
network scale. There are two types of congestion: buffer
overflow and link-level congestion. Buffer overflow causes loss
of packets due to the limited buffer capacity in the nodes. Link-
level congestion results in collisions when multiple sensor
nodes try to use the channel at the same time, reducing the
general transmission performance of the network and also its
lifetime. Over the past years, researchers have studied several
congestion detection and control methods [9], [10].

Radio or optical methods cannot be used underwater due to
the high absorption and dispersion of electromagnetic waves.
The underwater nodes are usually connected by wireless
links based on acoustic communication. Some of the major
challenges experienced in underwater acoustic networks are
limited bandwidth, long propagation delays (acoustic signals
propagate at 1500 m/s), fading and multi-path problems,
Doppler effect and battery limitations. The battery limitation
and the difficulty to recharge the batteries in the underwater
environment makes energy efficiency critical. In addition, the
communication issues of underwater acoustic networks makes
congestion control necessary to save scarce resources [2].

In [11] adaptive object tracking was considered in a cen-
tralized topology where distributed nodes transmit to a Fusion
Center (FC) using random access. The measurements were



used in a stochastic gradient descent algorithm to track the
objects present in the sensing area, which emit an exponen-
tially decaying signature. In this paper, we extend that work
by adding feedback by which the FC can instruct the sensors
to increase/decrease their sampling rate, and, when mobile,
to adjust their position. The goal in doing so is to improve
both the accuracy of tracking and the energy efficiency of the
system.

The paper is organized as follows. We present the system
model in Section II. In Section III, we propose a variable-rate
approach to the tracking problem. In Section IV, a scenario
where the sensors can move is studied. In Section V, simulation
results are presented to assess the performance of the system.
Finally, we provide concluding remarks in Section VI.

II. SYSTEM MODEL

We consider a one-dimensional track populated by N sen-
sors. We assume that each sensor knows its location and that
the nodes are deployed homogeneously along the track, with
a fixed separation ∆ between them. We assume that there
are M objects in the sensing area, each characterized by an
exponentially decaying signature g(z) = Ae−α|z|, where A
specifies the amplitude of the signal and α is the decay rate.

At time t the sensor i collects data from the field generated

by the objects, ui(t) =
M∑
m=1

g(cm − ci), where cm is the

position of the object m and ci the position of the sensor i.
The node encodes the measurement ui(t) in a data packet and
sends it to the FC over a single-hop link. The sensing times of
the sensor i obey a continuous Poisson process with rate λi.

The FC collects the measurements during an observation
window T . As a sensor may send more than one packet in a
window, the FC discards all the repeated packets, the colliding
packets and the erroneous packets due to communication
noise. Following the treatment of [12], the rate of useful
packets (those that did not collide and are not a repetition
of the same packet) at the FC is modeled as a Poisson process
with aggregate arrival rate

λFC =

N∑
i=1

(1− e−psλiT )

T
(1)

where ps is the probability of successful reception of the
packet at the FC. Assuming that a packet is successfully
received if no other packet arrives during (t−Tp, t+Tp) and
if the packet is not erroneous due to communication noise, we

have that ps = (1−pe)e
−2

N∑
i=1

λiTp

, where pe is the probability
of a packet being lost to communication noise

With the measurements gathered during T , the FC updates
the estimates of the objects’ locations, ĉm, and amplitudes,
Am, using a gradient descent approach.

The nodes in the network can be in four states: wake-up
mode, reception mode, sleep mode, and transmission mode.
The wake-up mode is a low-powered receiving state that is
used when the nodes are awaiting an incoming transmission. In

(a) Fixed rate (b) Variable rate

Fig. 1. Recovered field at the FC as it evolves across a one-dimensional track
over time in a fixed-rate scenario and a variable-rate scenario. The length of
the track is 1000 m and the number of sensors is 100. There are three objects
with unit amplitude and a decay rate of 0.002 m−1. The objects start at
midpoints with velocities 3 m/s, -4 m/s and -5 m/s.

the wake-up mode it is possible to wake up a node by sending
a special tone [13]. After the node has been woken up, its
modem switches to the reception mode to receive the incoming
transmission. The sleep mode is used when a node does not
expect to receive a packet. In the sleep mode, the node does
not sense the channel and no power is consumed. Finally, the
node switches to a transmission mode when sending packets.

Feedback from the FC is introduced to the network as
follows. The estimated positions of the objects are fed back
from the FC to the nodes every Tb seconds. Before transmitting
the data, the FC sends a signal to wake the nodes up and
transmits the information afterwards. The FC can adjust Tb
depending on the speed of the object being tracked. After
transmission, the FC does not wait for any response. The
sensors include the feedback information and a time-stamp
when transmitting to the FC; hence, any sensor that does
not receive the updated positions from the FC will eventually
receive them from another node. In a system without feedback,
the nodes stay in the sleep mode until they need to transmit.

The average power consumed by the sensor i in a network
without feedback is

PNF = PtλiTp (2)

where Pt is the transmit power.
In a network with feedback, the power consumed by the

sensor i is
PF = PtλiTp + Pw(1− λiTp) (3)

where we are neglecting the power used to receive the packet
from the FC. We assume that the number of broadcasts is much
smaller than the number of transmissions, and that the power
consumption due to the reception of the feedback information
is negligible.

III. VARIABLE TRANSMISSION RATE

The feedback from the FC is used to instruct the nodes
to vary their sensing rate. Rate-adaptation provides better
accuracy of tracking and higher energy efficiency. With rate-
adaptation, the nodes that sense a stronger signal, which is
more useful for the tracking process, send more packets than
the nodes that pick up a weaker signal, improving the accuracy



(a) Fixed sensors (b) Mobile sensors

Fig. 2. Recovered field at the FC as it evolves across a one-dimensional
track over time in a fixed-sensors scenario and a mobile-sensors scenario.
The length of the track is 100 m and the number of sensors is 10. There are
three objects with unit amplitude and a decay rate of 0.002 m−1. The objects
start at midpoints with velocities 0.3 m/s, -0.4 m/s and -0.5 m/s.

of the process. The reduction of the number of transmissions
from sensors that are far from the objects also improves the
power consumption of the nodes, provided that the power
consumed in the wake-up mode is low enough.

Assuming that the sensors transmit at a rate λ′ initially,
and that di is the distance from the sensor i to the closest
object being tracked, we propose the following rate-adjustment
strategy:

λi = λ′ · e
− d2i

2σ2 (4)

where σ is a parameter that determines the rate of adaptation
(low values produce a fast reduction of the sensing rate
depending on the distance of the sensor to the estimated object
location).

The motivation for using (4) is to provide a gradual adap-
tation of the sensing rate depending on the distance to the
estimated position of the objects, as the sensors closer to any
of the objects receive a stronger signal that is more useful for
tracking. To reduce transmissions from nodes that pick up a
weaker signal, σ is varied depending on (a) the decay rate of
the signal emitted by the object and (b) the density of nodes.

Fig. 1 shows the field seen by the FC in each of the
observation windows T . In the fixed-rate scenario, the sensors
transmit packets with the same rate independently of the
objects’ position, making the number of collisions high due to
the large amount of transmissions. In the variable-rate scenario
only the closest sensors to the objects send data, hence the
FC receives information from a small portion of the track. As
the number of collisions is lower, the FC receives a higher
number of packets from the sensors that pick up a stronger
signal, which are more useful for the tracking process.

IV. MOBILE SENSORS

Sensor mobility can improve the distribution of the nodes
in a network, which in turn can result in better tracking
and coverage, higher channel capacity, and longer network
lifetime.

In our system model, the feedback from the FC can be used
to instruct the sensors to change their positions, assuming that
they can move. By moving the sensors, the density of nodes in

a specific area can be augmented, thus lowering the tracking
error as the signal that they sense is stronger. The ability to
move the sensors is especially useful when the signal that
the object emits decays fast and can thus be picked up only
by close sensors. We assume that the sensors always have a
perfect knowledge of their own position.

After receiving the feedback from the FC, each sensor
moves at a fixed speed, vs, to different positions around the
estimated location of the object, effectively compressing the
sensing area around the object by reducing the inter-node
spacing ∆. The nodes keep a homogeneous deployment, where
all the nodes have the same separation between them. The
sensors remain at their positions until the next update from
the FC arrives.

Fig. 2 shows the field seen by the FC in both the fixed-
sensors scenario and the mobile-sensors scenario. In the
mobile-sensors scenario we note the zoom-in effect: when
the objects get closer together, the sensing area is effectively
reduced; when they get further apart, the effective sensing area
is enlarged. In the fixed-sensors approach, the FC receives
weak measurements from some nodes, whereas in the mobile-
sensors approach the measurements sent by all the nodes are
stronger.

V. SIMULATION RESULTS

In the simulations performed, the effective SNR used is
the one defined in [11], SNR = ρA2/σ2

w, where σ2
w is the

variance of the sensing noise, ρ =
∑
i∈Rn

ġ2(ci − c), Rn is the

collection of useful measurements received in the collection
interval n, c is the position of the object and ci is the position
of the sensor i. Assuming presence of a target at all times,
and sufficient spatial resolution, ρ ∼ (p/∆)

∫ +∞
−∞ [ġ(z)]2dz

and p is the probability that a sensor is contributing a useful
measurement.

The power values in the simulation are taken in
the range of the usual power consumption of the
EvoLogics S2C R 48/7 Underwater Acoustic Modem [14],
with Pt = 18 W (for 1000 m range, we assume that all the
nodes use the same transmission power) and Pw = 20 mW.

Fig. 3 shows the number of packets sent and the number of
useful packets received (colliding packets and repeated packets
are discarded) obtained in simulation using the variable-rate
and fixed-rate approach. In this simulation, the objects are
placed randomly along the track, and the initial rate λ′ is
the same for all the cases considered. When the number of
objects in the sensing area is reduced and the number of nodes
is increased, the difference in the number of measurements
sent in the two approaches is increased. When N = 100 and
M = 3, the nodes send 55% fewer packets in the variable-
rate scenario than in the fixed-rate scenario, and this difference
is increased to 79% when M = 1. The lower number of
transmissions translates into a higher ratio of non-colliding
packets, making it easier to scale the sensing area by adding
more nodes. The ratio of useful packets received at the FC to
packets transmitted by the nodes is close to 0.05 in the fixed-
rate scenario when N = 100, making the rate of useful packets
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Fig. 3. Number of transmissions sent and useful packets received per sensor
and T , and ratio of useful packets to packets transmitted in a fixed-rate
scenario and a variable-rate scenario. The objects are placed randomly along
a 100 m track. The simulations parameters are SNR= 0 dB, α = 0.02 m−1,
λ′ = 20 packets/s, T = 0.1 s, Tp = 0.5 ms, Pt = 18 W, and Pw = 10 mW.

received at the FC, λFC , lower than in all of the variable-rate
scenarios, despite the fact that more packets are transmitted.

To assess the performance of the rate-adaptation strategy
in terms of location error and power consumption, we av-
erage the results from a single scenario over multiple noise
realizations, random sensor activation and collisions. In the
chosen scenario, three objects are placed in the midpoints
of a 100 m track with velocities 0.3 m/s, −0.4 m/s and
−0.5 m/s. The squared location error is averaged over all
targets and all collection intervals within the simulation time.
Fig. 4 shows the results of the simulation. The variable-rate
scenario has lower energy consumption than the fixed-rate
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Fig. 4. Power consumption and location MSE in a fixed-rate scenario and
a variable-rate scenario. The simulations are performed with three objects
placed at midpoints of a 100 m track with velocities 0.3 m/s, -0.4 m/s and
-0.5 m/s. The simulations parameters are SNR= 0 dB, α = 0.02 m−1,
λ′ = 20 packets/s, T = 0.1 s, Tp = 0.5 ms, Pt = 18 W, and Pw = 10 mW.

scenario for all N . The power consumption difference is the
result of reduced number of measurements sent per sensor.
The difference in power is more noticeable for large N : with
N = 100, the difference between the two scenarios is close to
80 mW per sensor. Furthermore, when N ≥ 15, the error in
the location estimates in the variable-rate approach is lower.
With N = 100, the difference between the two approaches is
almost 2 dB. This difference is a result of reduced network
congestion: in the fixed-rate scenario, the packets sent by
sensors far from the object are colliding with those sent by
sensors that are closer. As the nodes that are closer measure
a stronger signal, their data is more useful for the tracking
process.

Next, we investigate the same scenario used in Fig. 4
to compare the performance of a network with static and
mobile sensors. Fig. 5 shows that with α = 0.02 m−1 both
approaches are able to track the object. The mobile-sensors
approach performs better when the number of sensors is low,
whereas the fixed-sensors approach provides higher accuracy
when N ≥ 20. When the density of nodes is low, the tracking
process benefits from compressing the sensing area around
the objects. When the density of sensors is high, the location
MSE is higher in the mobile-sensors approach for two reasons.
Firstly, as the density of nodes is already high, compressing
the area is not as beneficial as when the number of nodes
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Fig. 5. Location MSE in a fixed-sensors scenario and a mobile-sensors
scenario. The simulations are performed with three objects placed at midpoints
of a 100 m track with velocities 0.3 m/s, -0.4 m/s and -0.5 m/s. The simulation
parameters are vs = 1 m/s, λ′ = 20 packets/s, T = 0.1 s, Tp = 0.5 ms .

is low. Secondly, in the mobile-sensors approach, the sensors
may move further away from the actual positions of the objects
when the estimates are not accurate enough due to collisions
and sensing noise.

The performance improvement of the mobile-sensors ap-
proach is more noticeable with higher decay rates. Fig. 5
shows that objects that originally were not possible to pursue
due to high exponential decay rate can be tracked using this
approach. In the scenario with α = 0.1 m−1 the fixed-sensors
approach is not able to track the position of the objects. The
location MSE exceeds 20 dB for all the SNR cases considered.
In this scenario, the mobile-sensors approach performs better
than the fixed-sensors approach, as it is able to track the
position of the objects.

VI. CONCLUSION

The presented work has the intention to improve the en-
ergy efficiency and tracking capabilities of a wireless sensor
network by using feedback information. The fusion center
transmits the data and does not wait for any response from
the node. The feedback information is used to adjust the
transmission rate of the sensors or move them towards the
objects of interest. The proposed variable-rate method has a

lower power consumption than the fixed-rate approach when
the number of sensors is sufficiently high due to the reduced
number of transmissions. Moreover, when the number of
sensors is increased, the localization error is also lower in
the variable-rate scenario, as the number of useful packets
received in the variable-rate scenario is higher despite the fact
that fewer transmissions are made. In addition, mobile sensors
provide lower tracking error in scenarios with low node density
because the sensing area is compressed around the object being
followed. Mobile sensors are also capable of following objects
with high decay rate that are not possible to follow with fixed
sensors.

Future research will focus on improved variable-rate solu-
tions, in order to adapt the rate depending on the speed of
the moving object. Future work will also extend the study of
mobile sensors and the problems derived from its use, such as
self-localization and collision avoidance problems.
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