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Abstract Marine robots communicating wirelessly is an increasingly attractive

means for observing and monitoring in the ocean, but acoustic communication re-

mains a major impediment to real-time control. In this paper we address through

experiments the capability of acoustics to sustain highly dynamic, multi-agent mis-

sions, in particular range-only pursuit in a challenging shallow-water environment.

We present in detail results comparing the tracking performance of three different

communication configurations, at operating speeds of 1.5m/s. First, when using

full-sized modem packets with negligible quantization and a 23-second cycle time,

the tracking bandwidth is 0.065rad/s. Second, a “lower bound” case with RF wire-

less communication, a 4-second cycle and no quantization has a tracking bandwidth

of 0.5rad/s. Third, using 13-bit mini-packets, we employ logarithmic quantization

to achieve a cycle time of 12 seconds and a tracking bandwidth of 0.13rad/s. These

outcomes show definitively that aggressive dynamic control of multi-agent systems

underwater is tractable today.

1 Introduction

Marine robots have played an increasing role in ocean operations during recent

years, with the proliferation of many commercial platforms and sensors. A major

trend is toward tetherless operations, for which each vehicle has to carry its own

power source and have a means of wireless communication. Over distances beyond
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about one hundred meters, underwater communication is almost exclusively accom-

plished through acoustics, and the wireless nature of this channel lends itself natu-

rally to multiple agents. Acoustic communications bring many challenges, however,

such as packet loss, low data rates, and delays; Heidemann et al. provide a recent

review [23]. These undesirable properties of acoustic communications have lim-

ited its use in high-performance, real-time tasks. Typical experiments with acoustic

modems address packet loss rates between vehicles [7, 9], distributed navigation

[1], and communication of commands or data between vehicles and ships [29].

If a capability existed, truly dynamic missions of interest would include net-

worked ocean vehicles following a submarine or a marine animal; the latter has

been a dream of biologists for decades. Major gaps exist in our understanding of the

life cycles of many important marine animals, such as jellyfish [28], sharks [31, 36],

lobsters [34], and more. Dynamic pursuit with marine vehicles and appropriate sen-

sors can help give biologists the data they need to fill in these gaps. A broader and

more challenging problem is monitoring and following a quickly-evolving plume

or other oceanic process [8, 18], where distributed measurements become critical

for assimilation with models and subsequent adaptive sampling [25]. These tasks

involve dynamic feedback control that relies explicitly on acoustic communication,

and fit into the growing field of network-based control [2]. In an effort to lay some

groundwork for exploiting advanced algorithms in a real-world ocean application,

this paper addresses with experiments an approach for joint estimation and pursuit

of a moving target using acoustic communications; see Figure 1. Needless to say,

Fig. 1 Screenshot from Team

Underwater Localization and

Pursuit (TULiP) experiment

with acoustic communica-

tions. The two vehicles jointly

estimate the target location

based on range measure-

ments, and move to stay in

formation relative to it.

the general pursuit problem has held high interest for decades; it is a canonical

mission in space and air, on land, and at sea. Probabilistic pursuit-evasion games

have been studied extensively in the robotics literature [35], and pursuer and evader

dynamics as well as nonlinear estimation are important factors in these algorithms

[26, 37]. However, the effects of communication constraints have not received much

attention [27]. These are often addressed indirectly via decentralized approaches

that require minimal exchange of information between agents [11]; see [21, 16] for

ocean-specific implementations.

There have also been, however, some recent experimental works that are related

to our pursuit scenario. Perhaps most intriguing is tracking a leopard shark in ex-

tremely shallow water, using a single autonomous vehicle with a hydrophone array

of 2.4m spread [12]. The system was successful but the shark evidently moved only

200m or so in 48 minutes reported. Bean et al. (2007) studied range-based leader–
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follower regulation with MicroModem mini-packets with 1m/s speeds [3], while

Brignone et al. (2009) study a similar problem with DSPComm modems and two

vehicles operating at 0.7 and 3m/s [6]. Both works present data from proof-of-

concept field trials with mostly straight trajectories. Soares et al. (2013) consider

a vehicle following two leaders in a triangle formation, with ranges of about fif-

teen meters, speeds around 0.5m/s, and a total loop time of four seconds [32]. In

contrast, Cruz et al. (2012) consider a complete feedback system—in the sense of

two-way communications—for which a stationary controller transmits commands

for two mobile followers, who then transmit back their positions [13]. The vehicle

speeds are slow, in the neighborhood of 10cm/s, and the cycle time is around twenty

seconds. Through analysis, Chen and Pompili (2012) addressed optimization of the

special considerations of acoustic communications in coordinated flight of ocean

gliders, where currents are especially important [10].

None of these prior works explicitly deal with designing and improving closed-

loop frequency response of an integrated multi-vehicle feedback system. This is

exactly our objective here. Our design does not rigorously account for stability mar-

gins, the multi-rate nature of acoustic communications, inherent geometric nonlin-

earities, or the fact that automous marine vehicles are not ideal actuators. On the

other hand, our approach clearly demonstrates practical closed-loop performance at

half the Nyquist rate, with little evidence of stability breakdown.

We detail the experiment setup in the following section with descriptions of the

vehicles and communication hardware used, the experimental domain, and the esti-

mation and control strategies and parameters. We then give results from three inte-

grated tests, demonstrating the performance achieved.

2 Experimental Setup

Our experiment, Team Underwater Localization and Pursuit (TULiP), has two mo-

bile agents sharing range information and commands through acoustic links. We

make scalar range measurements at each agent, and thus tracking is impossible

without their coordination. One agent is designated as the leader that coordinates

the measurements and the actions of one or more followers. This arrangement in-

volves lossy channels at both locations in the feedback loop of Figure 2. In the

general case, a centralized architecture such as this allows integration with remote

sensing, large-scale computations (such as data assimilation), and human-in-the-

loop decision-making. The mobile agents attempt to stay close to the target, and

in a formation conducive to good sensor performance. For our pursuit scenario, a

distributed mobile array that utilizes range measurements offers benefits of simpler

sensors, more maneuverable vehicles, and increased flexibility compared to systems

relying on bearing measurements. However, even when directional or gradient in-

formation is available at a single agent, e.g. through a towed array of hydrophones

or sensors, exploiting multiple vehicles should give substantial improvements.

The next five subsections detail the arrangement and operation of this complex

system.
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Fig. 2 Block diagram of a

generic multi-vehicle feed-

back system with a central-

ized estimator and controller,

and communication chan-

nels in two locations in the

loop. Vehicles act as mobile

sensors.
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2.1 Autonomous Surface Vehicles

We use autonomous kayaks as shown in Figure 3 for our experiments; they are also

described in [22]. Each craft is 1.8m long, weighs about 40kg, and has a rotating

thruster near the bow for propulsion and steering. In these tests, the vehicles operate

at a nominal speed of V = 1.5m/s. The relevant navigation sensors available on

each vehicle are a tilt-compensated compass and RTK GPS. We use Novotel GPS

antennas, uBlox GPS receivers, and the RTKlib software package [33]. With a fixed

base station on shore and communications over wifi, we have observed GPS position

variances on the order of 10−4m2. Raw compass measurements are passed through

a first-order low-pass filter with time constant 1.95s, and the noise variance on this

signal is estimated as 10deg2.

The vehicles run MOOS-IvP autonomy software [4] integrated with custom con-

trol algorithms and modem interfaces. We rely on the the MOOS heading PID con-

troller, which runs at five Hz, and the MOOS trackline controller, which runs at

two Hz. Step response experiments with the kayak under closed-loop heading con-

trol indicate a rise time of roughly four seconds, and 30% overshoot; we also note

the kayaks are able to turn 180 degrees in approximately three seconds. The MOOS

trackline controller is an inner-outer loop that modulates the desired vehicle heading

so as to steer it toward a point on the trackline, some lead distance ld ahead. When

the waypoint is closer than the lead distance, the vehicle simply drives towards the

waypoint. For longer distances the result for small errors is a proportional map for

desired heading: φ d
≃ ex/ld , where ex is the cross-track error in meters and φ d is in

radians.1 We set ld = 15m for these experiments.

Fig. 3 The Charles River

Basin in Cambridge/Boston,

MA, and the autonomous

kayak Nostromo. Water depth

is 2-12m.

1 The linear form written is based on approximation of the tangent function. For errors less than

one meter, the MOOS Trackline controller increases the lead distance proportionally, effectively

lowering the gain to limit oscillations.
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2.2 Acoustic Communications

We use the the WHOI Micro-Modem [19], a well-established and commercially

available technology for underwater acoustic communication. Modems are towed

by the vehicles, suspended at a depth of about 1.5 meters; this gives us realistic

shallow-water acoustic performance, but with direct access to GPS and RF wireless

connectivity at the surface for conducting controlled tests. Along with messaging,

we use the modem for one-way travel-time ranging [17]. The WHOI MicroModem

has six different packet types with different lengths and data capacities. In this work,

we use the FSK mini-packet (“MP”), which is regarded as the most robust of the

packet types, but contains only thirteen bits of information. Nominally, the mini-

packets take slightly over one second to transmit. We also use the full-sized Rate 0

FSK packets (“FSK0”), which carry thirty-two bytes of information and nominally

take five seconds to transmit. We have observed very large increases in packet loss

when using small guard times with both packets, and have found communications

to be most reliable with four-second slots for mini-packets and 9.5-second slots for

FSK0 packets. All MicroModem packets are sent with an acoustic source level of

190 dB rel µPa.

The Charles River Basin has fresh water 2-12m deep, a complex bathymetry, and

some hard surfaces on the boundaries (seawalls and bridges); our working space is

about 1500m long and 500m wide. Acoustic performance in this environment is dif-

ferent from an open-water deep ocean scenario, where multipath and reverberation

are much lower, but the ranges are higher. Operations in the Basin can have highly

variable acoustic performance, as shown in Figure 4. Our conditions are multipath-

limited and travel times are short.

Fig. 4 Micro-Modem performance data in the Charles River Basin, an environment limited by

multipath, not power. The left plot shows transmissions from the source to a mobile relay, and the

right plot shows transmissions from the relay to the destination. The SNR value indicates sound

pressure level relative to ambient noise.
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2.3 TULiP Physical Layout

The two-vehicle pursuit mission encompasses limited communication performance

in both the sensing and control channels. In this experiment there is a target to

be tracked, “Icarus”, and two cooperating agents “Silvana” and “Nostromo”. We

will denote these three nodes with the symbols I, S, and N, respectively. N can be

thought of as a leader, and S a follower; our basic approach extends easily to mul-

tiple followers. The sensing objective is a simple one: to maintain S and N in fixed

triangular configuration relative to the estimated location of I, so that measurements

will be of high fidelity, i.e., in the sense of a good HDOP [5], and in the sense of

a short range. Our pursuit arrangement models the general situation where range

or other target sensing degrades with distance, but a high level of tracking preci-

sion is desired. Maintaining a close pursuit formation keeps ranges near a nominal

value with small perturbations, allowing for more precise quantization as discussed

in the following section. Practically, our modems have plenty of power but a small

formation allows us to effectively study the dynamic effects of closed-loop pursuit.

However, an “unstable” situation is encountered if the target crosses the baseline

(the line in between the two vehicles acting as a moving long baseline network);

when this occurs the estimate begins to diverge from the target location. The dis-

advantage of a small pursuit formation is that it is easier for the target to cross the

baseline, bringing up a tradeoff between robustness of a larger formation and accu-

racy of a smaller formation. Closed-loop performance must be high for the accuracy

of the smaller formation to be realized.

2.4 Cycle Description, Timing and Quantization

We detail the stages of the control loop for the MP and FSK0 cases. Within a cy-

cle step, S and N each receive a measurement of range to I via the Micro-Modems

in ranging mode. After a guard period, S transmits its current location and range

data to N through acoustic communication. N combines this information with its

own location and range information to generate an estimated location of I. N cal-

culates control actions for itself and for S, and transmits the latter back to S. The

cycle includes three separate transmissions and there are no acknowledgments. We

enforce the fixed time slots with a number of timeouts, as indicated in Figure 5. We

synchronize clocks using the network time protocol; in the absence of clock syn-

chronization, we note that precision clocks are becoming increasingly practical for

use on underwater vehicles [17].

For feedback control, there is a problem-dependent tradeoff to be made between

time-averaged throughput (usually achieved with long coding blocks) and timeli-

ness of the information (shorter messages). We present data using both 13-bit mini-

packets and 32-byte FSK0 packets as an initial study of this tradeoff. The MP sce-

nario minimizes cycle time at the expense of data quantization; we achieved a total
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Fig. 5 The internal state machine used on each vehicle in the TULiP mission to maintain consis-

tent timing with respect to predefined transmission and reception slots. Thick arrows distinguish

acoustic events that initiate state changes or other actions from normal logic flow. Special opera-

tions are indicated to handle detection of erroneous multipath receptions, which frequently occur

in this environment. For example, a good reception for a time slot Ti will follow the “Receive com-

plete” path (bottom) to a good signal. A trailing multipath reception will return to the receiving

state, but the end of time slot Ti will arrive before the end of the packet. In the top right, slot Ti is

already taken by the good reception, so we return to the ready state with no action taken.

cycle time of 12 seconds in this configuration.2 With the FSK0 configuration, pack-

ets require no quantization for the data types we send, however require a 9.5sec time

slot for each transmission, resulting in a total cycle time of 23 seconds.3 The “wifi”

scenario involves a four second slot for acoustic ranging, as detailed above. How-

ever, the inter-vehicle communications are handled instantaneously via wifi, so the

estimate is available immediately upon reception of ranges.

For the message from S to N in the MP case, we used three bits for the range,

and five bits each direction for S’s location in a 32×32 discretized workspace; this

workspace had ten-meter resolution. The range data were logarithmically quantized

relative to a desired range of 50m, with seven bin edges located at [19.2 32.5 42.5

50 57.5 67.5 80.8]m, and the three-bit messages decoded as [11.5 26.8 38.2 46.8

53.2 61.8 73.2 88.5]m. This correlates with the density ρ = 0.75 [20]. For the mes-

sage from N back to S, we used five bits in x and y for the desired location in the

workspace. This left three bits unused. Note that with quantization, there is a trade-

off between range and precision. With this choice, any range larger than 80.8m is

2 When range measurements do not interfere with modem packets and the cycle consists of just

two-way communications (e.g. using GPS and wifi for ranges), we have achieved a six-second total

cycle time with mini-packets in the field.
3 As we were submitting this paper we became aware of several modifications in the operation of

the MicroModems that likely will allow for slightly faster cycle times.
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decoded as the furthest range bin, so when ranges are very large, estimation suffers.

Increasing this outer range would come at the expense of resolution of the bins near

the 50m nominal range; it is the control system’s job to keep the vehicles in the

desired formation so that small bins can be used.

2.5 Settings and User Choices

The tracking system contains a nonlinear sigma-point filter (SPF) [24], well-suited

for this type of application.4 The nonholonomic target is assumed to be moving at

constant speed in the plane of 1.55m/s, with stochastic low-pass, zero-mean turning

rate with variance Q. These values are set to be consistent with the motion of the

small motorboat that was I. The observation vector contains the two noisy ranges,

with variances RS and RN for range measurements to Silvana and Nostromo, respec-

tively. The sensor noise for range measurements was chosen based on prior char-

acterizations of the WHOI MicroModem ranging capability [19, 14] and our own

observed LBL performance. The sensor noise for the follower range measurement

(I to S) in the MP experiment was set to a higher value to account for the effects of

quantization during communication of the measurement from S to the filter running

on N. Settings for the three configurations are given in Table 1.

When a measurement is not available (either due to a missed LBL range, or

a dropped measurement packet from S to N), we take the standard approach of

setting the noise of the lost measurement to infinity [30]. In the MP and FSK0

configurations, when a control command from N to S is dropped, the previously-

received command for S remains the desired waypoint. This approach is chosen to

ensure safe operation in the case of many missed packets. In the MP case, three bits

are left unused in the command packet which could encode contingency plans.

The desired observation triangle has a sixty-degree vertex at I. For the MP and

wifi cases, the ranges to each of S and N were 50m; for the FSK0 case the ranges

were 100m due to the slower cycle time.5

Table 1 Settings and results for the three configurations. Des. Range is the length of the legs

in the desired sensing formation. The columns with R are the sensor noise variance for the range

measurements to each vehicle. Q is the target heading rate variance. BW is the closed-loop tracking

bandwidth, and Atten. is the tracking error attenuation at 0.065rad/s.

Config Cycle Time Des. Range RS RN Q BW Atten

sec m m2 m2 (rad/s)2 rad/s dB

FSK0 23 100 0.25 0.25 0.01 0.065 0

Wifi 4 50 0.25 0.25 0.05 0.5 18

MP 12 50 0.25 9 0.05 0.13 7

4 Other nonlinear, range-only filters, such as particle filters, could also be used [15].
5 The ranges are set relative to the distance the target can drive in a time step, so that the target is

unlikely to cross the baseline before the control system can react.
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3 Experimental Results

We compare the tracking performance of three different communication configura-

tions. First, we use full-sized Rate 0 frequency-shift-keyed packets (“FSK0”) with

negligible quantization and a 23-second cycle. Second, we study the case where the

two vehicles communicate with RF wireless communication (“wifi”), a 4-second

cycle and no quantization. This configuration roughly represents a single vehicle

towing a large array, as inter-vehicle communication is lossless and immediate.

Third, we use the 13-bit mini-packet (“MP”) and employ logarithmic quantization

to achieve a cycle time of 12 seconds.

The experiments we report were conducted on 8-9 July 2013, both days with

light winds.6 Figures 6, 7, 8 give results from the FSK0, wifi and MP tests, respec-

tively. In each test, I moved in a largely random trajectory, as shown in the birds-eye

view in the upper left of the plots (Subplot a) and the time traces in Subplot c. The

upper right (Subplot b) shows the sensing formation every fifteen time steps; we

see that while the ideal triangle configuration was rarely achieved in the FSK0 and

MP tests, the target did not cross the baseline (the red straight line between the two

nodes acting as a moving LBL network), nor did the geometry ever stay poor for a

sustained period. The tracking and pursuit system did not lose the target.

The measured ranges are reported in the lower subplot in each figure, including

quantization of raw values sent to N from S in the subsequent measurement packet

for the MP case. Range losses in all cases are low, as the MicroModem ranging ping

is fairly robust; see figure captions for loss statistics. Subplot d shows the north and

east tracking error over time, along with dropped communication packets for the

mini and FSK cases. The packet losses are significantly higher for the FSK0 test,

dramatically illustrating the tradeoff between packet types and packet loss. Most of

the larger errors occur following packet losses, however some large spikes (such as

around 500 seconds in the mini-packet test) are not near packet losses—errors can

also occur due to poor sensing geometry, and in the MP case, quantization.

Recalling our broad objective to achieve dynamic control through mobile acous-

tic networks, it is revealing to ask what is the effective closed-loop estimation band-

width achieved. A direct FFT-based empirical transfer function for the estimation

error divided by target motion is shown for each test in Figure 9; spectra have been

smoothed with a 5-point centered moving average. The FSK0 test has a break fre-

quency for tracking the motion of I of approximately 0.065rad/s, slightly less than

half the Nyquist rate for the twenty-three-second cycle. The wifi test has a break

frequency of approximately 0.5rad/s, over half the Nyquist rate for this cycle time

of four seconds. The MP test has a break frequency of approximately 0.13rad/s,

about half the Nyquist rate for the twelve-second cycle. We can also compare the

attenuation of tracking error for each configuration at 0.06rad/s. FSK0 has zero at-

tenuation, wifi has 18 dB attenuation, and MP has 7 dB attenuation. These results

are summarized in Table 1.

6 This data, along with videos, is publicly available at http://web.mit.edu/hovergroup/

resources.html .
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Fig. 6 FSK0 test results (6463 seconds, 281 cycles). a) Overview of the true and estimated trajec-

tories of the target Icarus. b) Sensing formation every 15 time steps. c) Actual (GPS) and estimated

trajectory of the target Icarus. d) Estimation error of Icarus’ location. The RMS radius of estima-

tion errors was 20.2m. Data packet losses are also shown; the loss rates were: N → S = 19.9%,

S→N= 14.0%. e) Range measurements from Icarus to each vehicle, and losses. Range loss rates

were: I→N = 1.1%, I→ S= 4.8%.
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Fig. 7 Wifi test results (1820 seconds, 455 cycles). a) Overview of the true and estimated trajecto-

ries of the target Icarus. b) Sensing formation every 30 time steps. c) Actual (GPS) and estimated

trajectory of the target Icarus. d) Estimation error of Icarus’ location. The RMS radius of estima-

tion errors was 3.8m. e) Range measurements from Icarus to each vehicle, and losses. Range loss

rates were: I→N = 9.0%, I→ S= 4.8%.
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Fig. 8 MP test results (4800 seconds, 400 cycles). a) Overview of the true and estimated trajecto-

ries of the target Icarus. b) Sensing formation every 15 time steps. c) Actual (GPS) and estimated

trajectory of the target Icarus. d) Estimation error of Icarus’ location. The RMS radius of estima-

tion errors was 12.7m. Data packet losses are also shown; the loss rates were: N → S = 3.8%,

S→ N = 6.5%. e) Range measurements from Icarus to each vehicle, and losses. Range loss rates

were: I→N= 3.8%, I→ S= 4.8%. Quantized measurements sent from Silvana to Nostromo are

shown in red on top of the true measured ranges.
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Fig. 9 Empirical FFT-based

transfer function for estimator

error divided by target motion.

The solid lines show the

mean of the X and Y spectra.

The dashed lines show an

approximate linear fit for

low-frequency attenuation.

Dots show the approximate

bandwidth and attenuation

at 0.065rad/s. Note that

due to different cycle times,

the Nyquist rate for each

experiment is different.

10
−2

10
−1

−30

−20

−10

0

10

rad/s

d
B

 

 

Wifi
MP
FSK0

On top of longer cycle times, the mini-packet and FSK0 cases are affected by

communication packet losses, and the mini-packets also by quantization, so the

degradation in performance compared to wifi is expected. We note that the surface

vehicles we use (and underwater vehicles without arrays) are highly maneuverable;

a true “single-vehicle with array” configuration would be subject to much more

stringent maneuverability constraints and could not pursue the target as closely with-

out risking the target crossing the baseline. For close pursuit, we can view the wifi

case as a lower bound on performance achievable with realistic communications.

The FSK0 and mini-packet results suggest that if tracking bandwidth is desired, it

is advantageous to reduce the cycle times as much as possible, even at the expense

of extreme quantization.

4 Conclusion

Our TULiP experiment has achieved aggressive target pursuit in the underwater en-

vironment. As opposed to a traditional control and estimation design scenario, the

mission here is accomplished through a highly integrated vehicle system perform-

ing full joint estimation and coordination through lossy acoustic communications

underwater. The three experimental configurations studied show the effects of cy-

cle time, quantization, and acomms performance on the frequency response of the

system. In particular, the MP and FSK0 experiments demonstrate that for tracking

highly dynamic targets it is beneficial to trade-off quantization for low cycle time.

More broadly, the pursuit mission presented in this paper is a special case of

a much larger picture we envision for the future. Undersea communications and

coordinated control will enable truly distributed and dynamic tracking of moving

ocean features, such as eddies, plumes and fronts. Such vehicle systems would be

able to observe important chemical, biological, and physical processes over larger

physical scales than a single vehicle can cover, and would interface with observation

systems on land and in the atmosphere, as well as humans. Operations like this –
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“oceanographic pursuit” – are a natural progression of marine technology toward

the group autonomy and dynamic behavior that we have seen developed already in

the terrestrial environment and in the air. In such systems, specification of physical

configurations, scheduling, routing, and multi-rate control design will undoubtedly

join the mix, making underwater pursuit a rich problem for future work.
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