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Series Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and is vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will increas-
ingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as biomechanics, haptics, neuro-
sciences, virtual simulation, animation, surgery, and sensor networks among others.
In return, the challenges of the new emerging areas are proving an abundant source
of stimulation and insights for the field of robotics. It is indeed at the intersection of
disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

As one of robotics pioneering symposia, the International Symposium on
Robotics Research (ISRR) has established over the past two decades some of the
field’s most fundamental and lasting contributions. Since the launching of STAR,
ISRR and several other thematic symposia in robotics find an important platform
for closer links and extended reach within the robotics community.

This 16th edition of “Robotics Research,” edited by Masayuki Inaba and Peter
Corke, brings a collection of a broad range of topics in robotics including control,
design, intelligence and learning, manipulation, perception, and planning. The
content of these contributions provides a wide coverage of the current state of
robotics research: the advances and challenges in its theoretical foundation and
technology basis, and the developments in its traditional and novel areas of
applications.
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The novelty and span of the work presented in this volume reveal the field’s
increased maturity and expanded scope. This 16th edition of ISRR culminates with
this important reference on the current developments and new directions in the field
of robotics—a true tribute to its contributors and organizers!

Stanford, California Oussama Khatib
November 2015 STAR Editor
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Preface

This volume contains the papers presented at the 16th International Symposium of
Robotics Research (ISRR). This is a biennial meeting sponsored and organized by
the International Foundation of Robotics Research (IFRR). It is the longest running
series of robotics research meetings and dates back to the very earliest days of
robotics as a research discipline—the first meeting was organized by Mike Brady
and Richard Paul and took place in Bretton Woods (New Hampshire, USA) in
August 1983. This most recent meeting was held in the 30th anniversary year of the
very first meeting, and represents 30 years at the forefront of ideas in robotics
research.

This particular meeting, the 16th in the series, took place in Singapore during
16–19 December 2013. There were similarities and differences compared to the
very first ISRR. Importantly, we adopt a single track format, limit the number of
participants, and design the program to maximize meaningful technical interactions.
The first meeting was by invitation only but more recent meetings have had an open
call for papers as well as invited speakers.

The invited papers were nominated by individual IFRR officers, who then col-
lectively voted on those nominations. This meeting continued the reform of the
speaker invitation process. This year only 16 of the 45 speakers were invited and for
the first time selection was based on the votes of all IFRR officers rather than
selection by geographic region as was the previous convention.

The open submission process resulted in 58 papers from 11 countries. Of these
29 were selected by the reviewers for presentation at the meeting, a 50% acceptance
rate. These papers were presented in interactive format which enables real con-
versations between speakers and the audience.

In addition the program had, for the first time, a number of forums on topics such
as emerging areas in robotics, learning and control human–robot interaction.

The program included a tribute to remember two very long serving officers of the
Foundation, Dr. Georges Giralt and Prof. Ray Jarvis, who passed away during 2013.

In this volume we have collected the papers presented in regular sessions,
interactive sessions, and topical forums and organized them into traditional ISRR
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categories: control; design; intelligence and learning; manipulation; perception; and
planning.

Finally, the meeting would not have been possible without the brilliant orga-
nizing team led by Marcelo Ang, and the support of the sponsors. We acknowledge
and thank them all.

Masayuki Inaba
Peter Corke
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Is Active Impedance the Key
to a Breakthrough for Legged Robots?

Claudio Semini, Victor Barasuol, Thiago Boaventura,
Marco Frigerio and Jonas Buchli

Abstract This work addresses the question whether active impedance control is
key to a breakthrough for legged robots. In this paper, we will talk about controlling
the mechanical impedance of joints and legs with a focus on stiffness and damping
control. In contrast to passive elements like springs, active impedance is achieved
by torque-controlled joints allowing real-time adjustment of stiffness and damping.
We argue that legged robots require a high degree of versatility and flexibility to
execute a wide range of assistive tasks to be truly useful to humans and thus to lead
to a breakthrough. Adjustable stiffness and damping in realtime is a fundamental
building block towards versatility. Experiments with our 80 kg hydraulic quadruped
robot HyQ demonstrate that active impedance alone (thus no springs in the struc-
ture) can successfully emulate passively compliant elements during highly-dynamic
locomotion tasks (running and hopping); and, that no springs are needed to protect
the actuation system. Here we present results of a flying trot, also referred to as
running trot. To the authors’ best knowledge this is the first time a flying trot was
successfully implemented on a robot without passive elements such as springs. A
critical discussion on the pros and cons of active impedance concludes the paper. An
extended version of this paper has been published in IJRR in 2015 [43].
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Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT),
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4 C. Semini et al.

1 Introduction

Robots with arms and legs have the potential to become true assistants to humans
in everyday life and might replace them for dangerous, dull and dirty tasks. While
the legs will allow these robots to move with agility in any kind of terrain accessible
to humans and animals, their arms will allow them to execute tasks with human
dexterity. However, today’s most advanced robots are still very far from this goal. In
fact, the majority of today’s legged robots struggle to move in even slightly rough
terrain. This inability presents a stark contrast to human capabilities. The discrepancy
in performance has several reasons. Historically, robot arms—and later legs—were
controlled with stiff position-controlled joints. Interactions with the environment had
to be carefully planned in the kinematic domain since neither information about the
contact dynamics and forces could easily be taken into account, nor force and torque
control was available.While thismay be sufficient formost tasks of today’s industrial
robots, an autonomous machine will never be able to obtain neither a perfect map
of the environment nor a perfect robot state estimation. Thus, precise kinematic
planning of footholds is not a feasible solution for tomorrow’s robots that have to
move and interact in challenging and dynamically changing environments. Handling
collisions and non-smooth interactions has to be part of their list of specifications.

The physical laws governing interaction dynamics show that it is paramount to
control also the joint torques and/or the contact forces during interactions with the
environment [18], e.g. during locomotion on irregular terrain. Studies support the
assumption that humans and animals are able to control joint torques thanks to
antagonistically acting muscle pairs. The elasticity of the tendons in combination
with muscle control allow to adjust both the passive and active joint impedance,
respectively [17, 36, 40]. Active impedance for the hand or the foot is obtained
by means of muscle control by co-contracting the antagonistic muscle pair [9, 12,
31]. This control naturally has a delay of few tens of milliseconds or more [14,
23]. During collisions, the passive compliance1 and damping in the tendons helps to
protect the actuation system during this delay. The smaller the delay, the less passive
compliance/damping is needed to prevent damage.

In the last decades, researchers have proposed several possible ways on how
to more properly cope with the interaction forces with the environment. Some
approaches use the passive dynamics of mechanical and pneumatic springs in the leg
structure to govern the interactiondynamics (e.g.Buehler et al. [8],Raibert et al. [29]).
The resonant frequency of the resulting spring-mass system is then used to achieve
a resonant hopping and running motion. Pratt et al. [27] proposed the series elastic
actuator (SEA) where (usually stiffer) springs are put in series to the actuator. The
main purposes of the spring in a SEA is to control joint forces, absorb impact peaks
and temporarily store energy. Springs are especially popular for electrically actuated
robots, as they can protect the gears2 from getting damaged during collisions and
non-smooth interactions.

1Compliance is the inverse of stiffness.
2Reduction gears are required to amplify the low output torque of electric motors.

millitsa@ece.neu.edu



Is Active Impedance the Key to a Breakthrough for Legged Robots? 5

These springs, however, introduce passive dynamics and low-frequency resonant
modes into the system and therefore have to be tuned for a certain task. While this
is fine for a single-purpose machine (e.g. a robot for highly efficient running), it
drastically reduces the versatility and thus usefulness of a service robot in human
environments. Even the normally stiffer springs of the SEA reduce the actuator
bandwidth as a result of the resonant modes, and therefore make certain tasks where
a stiff and precise motion is required impossible. This topic is further elaborated in
Sect. 6.

To overcome this problem researchers have been working on variable stiffness
actuators (VSA) [42] that can vary the stiffness of each joint with the help of a (gen-
erally smaller) second actuator. While recent progresses in this field have increased
the range of adjustable stiffnesses [41], the actuators are still bulky, complex and
often cannot absorb high energy impacts due to the limited size of the springs.

Active impedance is a promising alternative that does not require any physical
springs, because the required stiffness and damping is controlled by software and
torque-controlled joints (e.g. impedance control [19], operational space control [24],
and virtual model control [28]). Any stiffness and damping (within the limitations of
the actuation and control system) can be selected in realtime either for the endeffec-
tor or for each joint independently [5]. This approach has most advantages of VSA
without the above mentioned limitations. Boaventura et al. [5] present an experi-
mental comparison study of active versus passive compliance and show that active
impedance systems can emulate passive elements in the dynamic range needed for
locomotion and interaction with the environment in general. The performance of the
emulation is such that there is no relevant difference between the dynamic behavior
of the actively controlled system and its fully passive ‘template’ system.

In this work we will demonstrate that active impedance can enable a legged robot
to potentially execute a wide range of different tasks in natural environments and
thus increase its versatility and usefulness. We will present our previous work on our
torque-controlled hydraulic quadruped robot HyQ [32, 33] in this context. And, we
will demonstrate the advantages and the potential of active impedance and torque-
controlled robots with two new experiments: a flying trot and resonant hopping. The
flying trot demonstrates the robustness and performance of the impedance controller
in a very demanding situation due to the high frequency impacts at the touch down
moments. The resonant hopping demonstrates the flexibility and versatility of the
control concept.

Themajor contribution of thiswork is the presentation of a flying trotwith an 80kg
quadruped robot with purely impedance-controlled legs, thus without any springs
in its mechanical structure. To the best knowledge of the authors no machine has
achieved this before. In this paperwe use the success of this experiment as an example
to discuss the importance of active impedance in legged robots for real-world tasks.

This paper first discusses the state of the art in the field of purely impedance-
controlled legged robots and machines that successfully demonstrated a flying trot.
Section3 then introduces the active impedance controller of our quadruped robot
HyQ. The control required to implement a flying trot is explained in Sect. 4; and
Sect. 5 presents the experimental results of a flying trot and resonant hopping motion
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with variable joint stiffness. Finally, Sect. 6 discusses if active impedance can help
legged robots to break through and Sect. 7 concludes the paper with final remarks.

2 State of the Art

We will discuss the state of the art of active impedance on legged robots and work
related to experimental implementations of flying trots on quadruped robots.

2.1 Legged Robots with Active Impedance

In this section we will focus on legged robots with active but no passive impedance,
i.e. without any physical spring in their structure. For a more general and extensive
review of impedance control in robotics, including fields like haptics and manipu-
lation, please refer to Boaventura et al. [4, 5]. There exist only a few examples of
purely impedance-controlled legs with internal torque control loop in the literature.
Ott et al. [26] presented a bipedal walking robot with actuators based on the mod-
ular drives of the DLR-Lightweight-Robot-II [16]. These actuator units are based
on torque-controlled electric motors with integrated joint torque sensors. The robot
successfully demonstrated walking on flat ground and stairs, as well as balancing and
posture control. No highly-dynamic gaits like running have been demonstrated so
far. Another electrically actuated robot with purely impedance- controlled legs is the
MIT cheetah robot. Seok et al. [34, 35] presented a quadruped robot with joint torque
control, implementedwith electricmotorswith lowgear ratio (5.8:1) and current con-
trol. No springs or torque sensing elements are needed in this approach (except an
elastic spine for energy storage). The robot—supported by a boom—successfully
demonstrated a running gait on a treadmill and showed reliable impedance control
on joint level. A similar approach was taken by Buchli et al. [7] with LittleDog that
had joint level torque control based on electric motor current control. The authors
showed how a feedforward torque term obtained by inverse dynamics can reduce
the position gains and allow for a successful disturbance rejection of unperceived
obstacles. The high gear ratio, low control bandwidth and non-robust gears, however,
made it very difficult to implement well controlled dynamic gaits.

There are also a few examples of hydraulically actuated robots with only active
impedance. The Sarcos humanoid robots at ATR [21], CMU [39] and more recently
at USC [15] have torque controlled joints based on torque sensors. The three research
groups have shown balancing and simple stepping experiments on their robots, but
none of them has shown any more dynamic gaits. HyQ is a hydraulically-actuated
quadruped robot developed at the Istituto Italiano di Tecnologia [32, 33] with joint
torque control based on torque sensors [4, 11]. Our robot has successfully demon-
strated various dynamic gaits ranging from fast walking (2 m/s), jumping, rearing to
balancing over rough and instable terrain [2]. Recent experimental studies [5] on a
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single leg of HyQ compared active versus passive impedance and showed that high-
performance impedance controllers can satisfactorily emulate passive elements such
as spring-dampers. In Sect. 5 of this paper we will show how active impedance can
enable highly-dynamic and versatile locomotion.

2.2 Robots Running with a Flying Trot

Next, wewill discuss robots that have successfully demonstrated a flying (or running)
trot. Note that we include robots with active and passive impedance, SEA, etc. in this
overview. Raibert’s quadruped robot of the CMU and later MIT leg lab was the first
quadruped robot to demonstrate a flying trot [29]. Its prismatic legs had pneumatic
springs in their structure that allowed the robot to run in resonance. BigDog is a
hydraulically-actuated quadruped robot [30]. In one of the online videos, this robot
demonstrated a flying trot. To date, no experimental results have been published.
BigDog has torque-controlled joints and springs in the last segment of its legs. We
believe that a combination of active and passive impedance is used in BigDog. Star-
lETH is a quadruped robot developed at the ETH Zurich with relatively stiff springs
in series with its actuators (SEA) making it a fully torque-controlled robot [20]. This
platform has recently shown trotting with short flight phases [13]. The Cheetah-cub
is a 1.1 kg electric quadruped robot that recently demonstrated a flying trot [37]. Its
legs are designed around a spring loaded pantograph mechanism.

Note that all of the above-mentioned robots have passively compliant elements
(mostly springs) in their legs.

A few other robots have shown running gaits while some of their degrees of free-
domare restrictedby aboomorother guidingmechanism (e.g. the bipedMABLE[38]
(using passive compliance with active force control), KOLT [10] (springs in legs),
MITCheetah (see Sect. 2.1), Boston Dynamics’ Cheetah (no information available)),
thus not fully and convincingly demonstrating the versatility required for a useful
service robot.

3 Active Impedance

With active impedance we mean that the mechanical impedance is (actively) con-
trolled and adjustable in software. Note that in our case we control both stiffness and
damping, but did not implement inertia-shaping.

To implement active impedance on HyQ, we use a cascaded control architecture
as depicted in Fig. 1. In this control scheme, an outer impedance control loop feeds
back the joint angular positions and produces a torque command as output. Then, this
torque command becomes the input reference for an inner torque control loop. The
high performance of the inner torque controller, obtained through low-level model-
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Fig. 1 Block diagram of the HyQ cascade impedance control architecture. It includes an outer
impedance loop and an inner torque loop. The outer loop consists of a feedback controller and can
include also a feed-forward controller such as rigid body inverse dynamics controller. The inner
torque loop uses a feedback linearization approach for an increased tracking performance

based techniques [4, 11], was essential to successfully achieve adjustable impedance
through software, without the presence of real springs.

The outer impedance loop defines the impedance characteristics of the robot,
either set in joint or task space. The joint stiffness and damping can be implemented
through a simple proportional derivative (PD) joint position controller. In this case,
due to the presence of the inner torque loop, the proportional gain of the position
control acquires units of Nm/rad, which corresponds to a rotational spring, and
the derivative gain acquires the unit Nms/rad, which corresponds to a rotational
damper. Therefore, by setting the proportional and derivative position gains it is
possible to define the stiffness and damping of the robot joints. This joint-space
impedance scheme is used for the flying trot experiments described in Sect. 5.2.

On the other hand, sometimes it might be more convenient to set the impedance at
the end-effector instead of at the joints. A very intuitive way of defining a task-space
stiffness and damping is through the implementation of virtual components [28]. As
for the PD position controller mentioned above, these virtual components are also
implemented in the impedance loop shown in Fig. 1. In HyQ, we designed a virtual
spring-damper between the hip and the foot, as depicted in Fig. 6 on the left. The
desired force f created by these virtual components can be linear or nonlinear with
respect to the stiffness, damping, and virtual prismatic leg length [4]. Once the end-
effector force f is calculated, it is then mapped into joint-space through the Jacobian
transpose of the kinematic transform of the virtual model coordinate system to the
joint coordinate system. The use of the virtual prismatic leg is also a simple way
of actively implementing the well-known spring loaded inverted pendulum (SLIP)
model [3], which is a useful abstraction that describes the spring-like behaviour found
in human and animal running and walking. This task-space impedance controller is
employed in this paper in Sect. 5.3, where the stiffness of the linear spring is changed
on the fly to create a resonant hopping with HyQ.
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In addition, the inner torque controller permits a straightforward implementation
of high-level model-based control techniques, such as rigid body inverse dynamics,
and gravity compensation. The output torques from the above mentioned techniques
can be easily added as a feed-forward torque to the torque reference command from
the outer loop, as shown in Fig. 1. Some of these model-based techniques provide
very convenient capabilities for performing robust locomotion in unstructured and
partially unknown environments [7]. Essentially, such control methods permit low-
ering the position gains (hence the system’s stiffness) without giving up on position
tracking performance.

4 Flying Trot Motion Generation and Control

A trot is a gait in which diagonal leg pairs move simultaneously, alternating with the
other pair of legs. A flying trot (or running trot) is a special case characterized by a
ballistic body motion, i.e., by a period in which there are no legs in contact with the
ground. The body flight phase depends on the ratio between the time that a leg stays
in contact with the ground (the stance phase) and the time that a leg takes to swing
to the next foothold (the swing phase). This ratio is called Duty Factor, hereafter
defined as D f , and varies between 0 and 1. During trotting, if all the legs have a
duty factor of less than 0.5 (i.e. swing phase longer than stance phase) then the body
undergoes a flight phase for a certain time fraction of the gait cycle.

A comprehensive locomotion control framework is required to make a robot per-
form a stable flying trot. This control framework needs to integrate appropriate tra-
jectory generation and body motion control in a closed loop fashion. Our recently
presented Reactive Control Framework (RCF) [2] implements these aspects and we
adapted it to achieve a flying trot with HyQ. The RCF integrates the basic compo-
nents for robot motion generation and robot motion control. No information about
the environment, such as terrain surface level or obstacles, is required to achieve a
basic robust (reactive) locomotion behavior.

Next, we will highlight some of the important features of the RCF in relation
to the generation of a flying trot: the generated profile for the feet trajectories; the
trajectory generator parameters; and how we choose such parameters to achieve a
flying trot.

The generation of the reference trajectories for the feet is loosely inspired by the
Central Pattern Generators (CPGs) of animals [22], with the advantage of having
intuitive parameters such as step length and step height. Ellipse–shaped trajectories
(called primitives) are generated by a network of four non-linear oscillators, whose
state represents the Cartesian coordinates of each foot [1], as depicted in Fig. 2 on the
left. The oscillator parameters that define the aspect ratio of the ellipse are directly
related to the step length Ls and the step height Hs . Each oscillator has an angular
frequency ws , associated to the corresponding leg step frequency fs ; ws might be
different for the stance and swing phases, to achieve a duty factor different from 0.5.
Non-linear filters are coupled to the output of the network of oscillators to reshape the
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Fig. 2 The foot trajectory generated by the CPG oscillator (on the left) and the trajectorymodulated
by the non-linear filter (on the right). z p and x p are the reference coordinates of the primitive’s
trajectory, while z f and x f are the filtered references sent to the joint controller. ztd is the filter
parameter which determines where the original elliptic trajectory has to be interrupted. (Figure
modified from Barasuol et al. [2])

elliptical trajectories to semi-elliptical ones, to make the robot capable of adapting
to the actual terrain profile. The non-linear filters reshape the primitive’s trajectories
according to an estimation of the foot position at touchdown; this information is either
predefined, when the surface is well known, or computed from sensory information
(for example using force sensors). The shape of the adapted trajectories are illustrated
in Fig. 2 on the right.

The step depth parameter ztd affects the reshaping of the trajectory by determining
at which height the ellipse has to be interrupted, as depicted in Fig. 2 on the right.
The desired robot forward velocity V f determines the relative velocity of the foot
with respect to the robot trunk, which is imposed during the rectified part of the
semi-ellipse (i.e. during the stance phase). If a terrain map is available the swing-to-
stance transition can be planned in advance, reducing the impact forces. On the other
hand, the feet trajectories can be dynamically adjusted even if the robot is walking
blindly, e.g. by using feedback from the foot or joint force sensing, see [2]. This
feature makes locomotion more robust also with respect to poor state estimation.

In this paper we show experiments performed on flat ground. We consider the flat
ground as a well-known surface and, therefore, we assume ztd = 0 for all the legs.
With ztd = 0 the shape of the primitives becomes a half-ellipse.

During a flying trot the most important parameters are the step length Ls , the duty
factor D f , the desired forward velocity V f and the step frequency fs . In the RCF
approach all these parameters can be independently modulated. To achieve a stable
spring-massbouncingmotionof the robot’s centre ofmass (COM), the robot’smotion
during the stance period needs to match the system’s resonant frequency (defined by
the robot’s mass and leg stiffness). Selecting a proper duty factor and step frequency
allows us to obtain a stance phase that matches the natural resonance period. Since
D f and fs are then defined, choosing a desired forward velocity V f consequently
determines the value of the step length Ls .
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Fig. 3 Modulation of the angular frequency ws . a In the collision-free region the angular frequency
ws is greater than the average angular frequency w̄s of the swing phase. In the unknown touch-down
region ws is smaller than w̄s . b The plot shows the foot’s relative position z f (step height) and the
corresponding velocity ż f references for each pair of diagonal legs (Left-Front/Right-Hind and
Right-Front/Left-Hind legs). The swing period in the collision-free region is chosen to be half of
the swing period in the unknown touch-down region. The duty factor is 0.45, the desired forward
velocity is 1 m/s, the step frequency is 2 Hz and the step height is 0.12 m

In our flying trot we explore the independent parameter modulation capability of
the RCF approach to generate a variable swing velocity of the leg. The idea is to
move the leg faster in regions where there is a low risk of impact with obstacles,
while slowing it down in proximity of the expected touchdown regions, to reduce
the impact forces. We obtain this leg behavior by modulating the angular frequency
of the primitives according to the collision-free region and the unknown touch-down
region, without affecting the total swing period. See Fig. 3a.

Figure3b shows an example of Cartesian references for a flying trot run at 1 m/s
when the swing period in the collision-free region is chosen to be half of the swing
period in the unknown touch-down region.

5 Experimental Results

We performed a series of experiments with our quadruped robot HyQ that uses
only active (and no passive) impedance. After a description of the platform, we
will present the results of a successful flying trot experiment and a resonant hopping.
Both examples illustrate the advantages and potentials of active impedance for legged
robots.

5.1 Experimental Platform HyQ

The platform used for these experiments is HyQ, a quadruped robot with hydrauli-
cally and electrically actuated joints [32, 33]. The machine weighs 80 kg, is roughly
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1m long and has a leg length of 0.78 mwith fully-extended legs. All of its 12 degrees
of freedom (DOF) are torque-controlled joints: The hip abduction/adduction joints
are driven by DC brushless motors with strain-gauge based torque sensors for torque
control [11]. All 8 joints in the sagittal plane (hip and knee flexion/extension) are
actuated by hydraulic cylinders connected to load cells for force measurement. High-
performance servovalves enable joint-level torque control with excellent tracking [4]
that led to the implementation of active impedance as described in Sect. 3. Note, that
besides a thin rubber layer at the feet, there are no passive stiffness/damping elements
(e.g. springs) present anywhere in the robot’s leg structure.

Since 2011 HyQ has demonstrated a wide range of static and dynamic motions
such as a crawl gait, stair climbing, walking trot over flat, inclined and rough terrain
(indoors and outdoors), squat jumps, rearing, balancing under disturbances and step
reflexes.

5.2 Flying Trot Experiment

We conducted several experiments of a flying trot with HyQ based on the approach
presented in Sect. 4. Figure4 shows a picture sequence of one of these experiments
to illustrate the flight phases (right hand side frames) between the stance phases of
the two diagonal leg pairs. A link to a video of this experiment can be found at [25].

Figure5 shows the knee joint torque plots of the four legs and the vertical ground
reaction forces. The duty factor during this experiment was set to 0.45, the step height
0.12m, forward velocity 1.3m/s, step length 0.28mand the joint-level active stiffness

Fig. 4 Picture sequence of the flying trot experiment with the HyQ robot, which shows the flight
phase achieved by setting the duty factor at 0.45. The time between each frame is 80 ms, and the
whole sequence represents 400 ms of the actual experiment
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Fig. 5 Force profiles during the flying trot experiment; the blue lines refer to the left legs, the
green ones to the right legs. a This plot shows the torques at the four knee joints of the robot; the
short intervals during which all the torques are close to zero are due to the flight phase. b This plot
illustrates the ground reaction forces during the same time interval, estimated from the torques at
the knees and hips with the transpose of the Jacobian

300 Nm/rad for the hip and knee flexion/extension joints. Note that the joint torques
of all four legs stay inside the maximum torque limits3 of 181 Nm demonstrating
that active compliance can successfully absorb the high impacts during the running
and cope with these collisions. The plots also show that the joint torques and ground
reaction forces go to zero between the stance phases of the diagonal leg pairs. This
illustrates that the robot was indeed in flight phases. To the best of our knowledge no
other robot has successfully shown a robust flying trot with active impedance only,
i.e. without passive elements such as springs in its legs.

5.3 Resonant Hopping Experiment

In this section we show HyQ’s ability of changing the virtual spring stiffness on the
fly to achieve a resonant hopping motion. For doing so, we implemented a virtual
linear spring-damper for all four legs of HyQ as shown in Fig. 6 on the left. The
length of the virtual linear springs (l = 0.58 m) is varied sinusoidally (δl = 0.05 m)
at a constant frequency of 1.6 Hz. During the experiment, the stiffness of the virtual
springs is linearly changed from K = 2000 to K = 5000 N/m.

As shown inFig. 6, after 1 s the spring stiffness starts to increase and, consequently,
the amplitude of the ground reaction force oscillations grows due to resonant effects.
We show the ground reaction force for the left front (LF) leg in the first plot.When the
stiffness and thus spring-mass system resonates with the frequency of the sinusoidal
spring length excitation, the robot starts to hop and the ground reaction forces go to

3Note that we recently increased the hydraulic system pressure of the HyQ robot to 20 MPa,
increasing the maximum torque of the hip and knee flexion/extension joints to 181 Nm.
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Fig. 6 Experimental results of resonant hopping: left: HyQ virtual elements: a spring-damper
connects the hip to the foot (red elements), creating a prismatic virtual leg. In the hip joint, a simple
joint-space position PD control can be seen as a rotational spring-damper (green element). Right:
We implemented a hopping motion by exciting the HyQ robot in a resonant way by varying the
virtual legs stiffness. The top plot shows the ground reaction force for the left front (LF) leg, which
reaches zero after around 9 s demonstrating a presence of a flight phase. The bottom plot presents
the linear change in stiffness applied to the legs

zero during flight phase (all four legs in the air). The resonance peak occurs at about
10 s, when the stiffness is around 3800 N/m.

This example shows how active impedance allows to adjust the dynamics of the
system, thus creating a big potential for new control methods for legged robots.

6 Discussion

An important contribution of this work is to discuss the initial question Is Active
Impedance the Key to a Breakthrough for Legged Robots? To this end, this section
will first provide possible reasonswhy legged robots are still far from a breakthrough.
We will then discuss why springs are currently not ideal to use, and mention the pro
and cons of active impedance. Finally, we will propose important future topics of
research that will help legged robots become a reality in every-day life.

As mentioned in the introduction, despite decades of research on legged locomo-
tion, today’s robots are still far from being able to move in human environments. Two
of the main requirements for such robots are (1) the ability to cope with collisions
and non-smooth interactions, since they cannot be avoided in such environments; and
(2) the versatility of such machines to execute a wide range of tasks to become truly
useful assistants. Very few examples of robot designs and their associated control
framework meet these two requirements.

Springs are often used to meet the first requirement. However, springs are not
an ideal solution to meet the second requirement for the following reasons. A truly
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versatile robot should be able to execute tasks ranging from a precise and careful
manipulation of a delicate object, to locomotion in environments with unperceived
obstacles where a soft interaction but also fast reflex motions are required. While
some tasks require very precisely controlled joints, others need compliant behavior,
yet others require very fast joint motions as reaction to an external perturbation, e.g.
when being pushed or for safety stops. Precise motions at any speed require either a
very good model4 of the robot and possibly the environment or high gain (i.e. ‘stiff’)
control.5 In addition, if fast motions are required, as a reaction to an unforeseen
event (side step to keep balance, step reflex or stopping a robot arm in front of a
person) a very high actuation bandwidth is required. Compliant behavior as reaction
to an unforeseen perturbation requires low output impedance and is in contradiction
to a quick controlled movement without using a model. It fundamentally limits the
ability of a quick stop or a sudden reactive movement. Therefore, a compliant robot
(or human) needs to have the required bandwidth and high gain control available
to be robust in such situations (e.g. a safety stop of a human arm requires imme-
diate stiffening up). In case of a SEA the spring stiffness fundamentally limits the
control bandwidth and a trade-off has been fixed at design time. As mentioned in
the introduction, VSA might be a possible solution to this problem, however the
technology has (still) several limitations. For a VSA, the ability of a quick stop is
fundamentally limited by the (usually slow) adaptation of the stiffness. In case of
an active impedance system, the only limitations stem from sensing and actuation
delays (actuator physics, data acquisition, data processing), which are, to a large
extent, design parameters.

To sum up, a versatile robot needs to be able to control its joint stiffness in a
wide range. Springs in the structure of a robot including the stiff springs of SEA
reduce the maximum joint stiffness and control bandwidth; and thus the robot’s
versatility. We argue that legged robots with active impedance, while certainly not
the only solution, are a promising solution that meet both of the above mentioned
requirements. Importantly, they are implementable with today’s available technology
thus putting versatile service robots within immediate reach.

Active impedance has several advantages when compared to passive springs and
dampers.With today’s advances in actuator, control and computer technology a wide
range of stable stiffness and damping values can be emulated [5], which leads tomore
versatile robots. These values can be adjusted in real-time to swiftly adapt to changing
conditions in the environment or task. Furthermore, robotswith active impedance can
take advantage of any programmable type of impedance (e.g. exponential springs,
nonlinear dampers, muscle-model-based springs, etc.) [4]. A potential drawback of
active compliance is low energy efficiency, as no energy can be stored due to a lack of
physically compliant elements. Despite this disadvantage we do not consider it as a

4Note that the fact that models are required for good performance does not address the question
where the model comes from. For robots it can sometimes be derived from CAD data, sometimes
must be estimated/learned. For humans models are typically acquired by learning.
5It is worthwhile discussing these issues in the control theoretic notions of nominal behavior and
disturbance reaction.
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major problem for the following reasons: On one hand, newmethods of high-density
energy storage are currently investigated in various research fields. New compact
energy sources will eventually be able to power legged robots for entire days [6]. On
the other hand, other ways of energy recovery such as energy regenerative electronics
for electricmotors have recently been proposed for joints with active impedance [34].
Furthermore, passively compliant elements are only really able to increase energy
efficiency of a robot during repetitive motions, such as walking, running, scrubbing
etc. if the motion frequency is around the resonant frequency of the system. For an
in-depth discussion of the pro & cons of active versus passive compliance we refer
the interested reader to [5].

For humans we see this trade-off in the example of Oscar Pistorious, a below-knee
amputee who has won several medals in sprint running. He uses two carbon-fibre
curve-shaped springs as foot prosthesis that allow him to run fast and efficiently. After
the races and trainings however he wears normal, stiff prosthesis. It is therefore a
good example of the limited versatility imposed by springs.

Now that we understand the limitations introduced by springs we can rethink and
adjust future research agendas to focus on the important topics that will lead to a
faster breakthrough of legged robots into everyday life. First of all, torque-controlled
robots open up awide range of controlmethods besides active impedance, e.g.model-
based control of rigid body dynamics (gravity compensation, inverse dynamics, etc.)
and control of contact forces. These are all methods that will lead to improved
manipulation and locomotion skills in human environments. Additionally, research
is required into optimal selection of stiffness trajectories for a large range of tasks.
Investigations into how to build more compact and less complex VSA with fast
stiffness adjustment are important because they might eventually be useful to save
energy during repetitive motions. Questions regarding the safety and reliability of
active impedance systems were not discussed in this work due to lack of space, but
they are important topics that need to be investigated. Last but not least more research
into energy efficient active impedance systems is required.

7 Conclusions

We have shown, to the best of our knowledge, for the first time how a legged robot
with active impedance only (i.e. without springs) can execute highly dynamic tasks
that involve large and impulsive impact forces, such as running and hopping. Our
experiments presented here and elsewhere [5] show that it is possible to achieve the
same behavior with a fully actively controlled system as with passive systems. Active
impedance offers the additional advantage of versatility and flexibility, allowing to
specify the most suitable dynamic behavior on the fly. The data shown indicates
that the argument of active systems being too slow to control does not hold for the
dynamic range that is used for highly dynamic locomotion and interaction tasks
on time-, force- and length-scales typical for humans. We consider this approach
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fundamental to the breakthrough of versatile robotic assistants with arms and legs
and we have demonstrated that the required control performance is achievable.
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Optimal Control of Nonlinear Systems
with Temporal Logic Specifications

Eric M. Wolff and Richard M. Murray

Abstract We present a mathematical programming-based method for optimal
control of nonlinear systems subject to temporal logic task specifications. We spec-
ify tasks using a fragment of linear temporal logic (LTL) that allows both finite-
and infinite-horizon properties to be specified, including tasks such as surveillance,
periodic motion, repeated assembly, and environmental monitoring. Our method
directly encodes an LTL formula as mixed-integer linear constraints on the system
variables, avoiding the computationally expensive process of creating a finite abstrac-
tion. Our approach is efficient; for common tasks our formulation uses significantly
fewer binary variables than related approaches and gives the tightest possible convex
relaxation. We apply our method on piecewise affine systems and certain classes of
differentially flat systems. In numerical experiments, we solve temporal logic motion
planning tasks for high-dimensional (10+ continuous state) systems.

1 Introduction

In safety-critical robotics applications involving autonomous ground and air vehicles,
it is desirable to unambiguously specify the desired system behavior and automat-
ically synthesize a controller that provably implements this behavior. Additionally,
autonomous systems often have high-dimensional, nonlinear dynamics and require
high-performance (not just feasible) controllers.

Linear temporal logic (LTL) is an expressive task-specification language for
specifying a variety of tasks such as responding to the environment, visiting goals,
periodically monitoring areas, staying safe, and remaining stable. These properties
generalize classical point-to-point motion planning. Also, the widespread use of LTL
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in software verification [2] makes it appealing as a common language for reasoning
about the software and dynamics of autonomous systems.

Standard methods for motion planning with LTL task specifications first create a
finite abstraction of the original dynamical system. This abstraction can informally be
viewed as a labeled graph that represents possible behaviors of the system. Approxi-
mate finite abstractions can be computed using either sampling-based methods (e.g.,
RRTs) [6, 14, 17] or reachability-based approaches [1, 3, 10, 16, 29].

Given a finite abstraction of a dynamical system and an LTL specification,
controllers can be automatically constructed using an automata-based approach [2,
6, 9, 14, 16]. This approach first transforms the LTL formula into an equivalent
Büchi automaton whose size may be exponential in the length of the formula [2]. A
product automaton is created from the finite abstraction and the Büchi automaton,
and then a controller is found by graph search in the product automaton.

The main drawback of this approach is that it is expensive to compute a finite
abstraction. The product automaton might also be quite large due to the size of the
abstraction and the Büchi automaton. Finally, although optimal controllers can be
computed for the discrete abstraction [21, 27], optimality is only with respect to the
abstraction’s level of refinement or asymptotic [14].

Instead of the automata-based approach, we directly encode a large class of tem-
poral logic formulas as mixed-integer linear constraints on the original dynamical
system. These constraints enforce that an infinite sequence of system states satisfies a
task specification. A key component of our formulation is enforcing that the system
is in a (non-convex) region at a given time. We introduce an alternative formula-
tion for this that gives a tighter convex relaxation than the commonly used big-M
approach. Our approach applies to any deterministic system model that is amenable
to finite-dimensional optimization, as the temporal logic constraints are indepen-
dent of any particular system dynamics or cost functions. We specifically investigate
Mixed Logical Dynamic (MLD) systems [4] and certain differentially flat systems
[19], whose dynamics can be encoded with mixed-integer linear constraints. MLD
systems include constrained linear systems, linear hybrid automata, and piecewise
affine systems. Differentially flat systems include quadrotors and car-like vehicles.

It is well-known that mixed-integer linear programming can be used for reason-
ing about propositional logic [7, 11], generating state-constrained trajectories [8, 20,
24], and modeling vehicle routing problems [13, 22]. The work most similar to ours
is Karaman et al. [15], who consider controller synthesis for MLD systems subject to
finite-horizon LTL specifications. However, finite-horizon properties are too restric-
tive to model a large class of interesting robotics problems, including persistent sur-
veillance, repeated assembly, periodic motion, and environmental monitoring. Our
work specifically addresses these types of periodic tasks with a novel mixed-integer
formulation.

Our main contributions are (1) a novel method for encoding both finite- and
infinite-horizon temporal logic properties as mixed-integer linear constraints on
a system and (2) an improved encoding that has a tighter convex relaxation and
uses significantly fewer binary variables for common tasks than related work [15].
The fragment of temporal logic that we consider allows one to specify properties
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such as safety, stability, liveness, guarantee, and response. We demonstrate how this
mixed-integer programming formulation can be used with off-the-shelf optimiza-
tion solvers (e.g. CPLEX [23]) to compute both feasible and optimal controllers for
high-dimensional systems with temporal logic specifications.

2 Preliminaries

An atomic proposition is a statement that is True or False. A propositional formula
is composed of only atomic propositions and propositional connectives, i.e., ∧
(and), ∨ (or), and ¬ (not). Let T = {0, 1, 2, . . . , T} ⊂ N denote a bounded set of
discrete time instances and T ∞ = {0, 1, 2, . . .} denote an unbounded set of discrete
time instances.

2.1 System Model

We consider discrete-time nonlinear systems of the form

x(t + 1) = f (x(t), u(t)), (1)

where t ∈ T ∞, x ∈ X ⊆ R
nc × {0, 1}nl are the continuous and binary states, u ∈

U ⊆ R
mc × {0, 1}ml are the inputs, and x(0) = x0 ∈ X is the initial state. We assume

that the system is deterministic, i.e., an initial state x0 and a control input sequence
u = u0u1u2 . . . produces a unique trajectory (or run) x = x(x0, u) = x0x1x2 . . ..

Let AP be a finite set of atomic propositions. The (time-dependent) labeling
function Lt : X → 2AP maps the continuous part of each state to the set of atomic
propositions that are True at time t. Each atomic proposition ψ ∈ AP is represented
by a union of polyhedrons. The finite index set Iψ

t lists the polyhedronswhereψ holds
at time t. The ith polyhedron is {x ∈ X | Hψi

t x ≤ Kψi
t }, where i ∈ Iψ

t . Thus, the set
of states where atomic proposition ψ holds at time t is given by [[ψ]](t) := {x ∈ X |
Hψi

t x ≤ Kψi
t for some i ∈ Iψ

t }. This (potentially) time-varying set is the finite union
of polyhedrons (finite conjunctions of halfspaces).

2.2 A Fragment of Temporal Logic

We do not attempt to reason about all possible temporal logic formulas (see [2]);
instead, we develop a useful library of temporal operators for robotic tasks. This
fragment of temporal logic can concisely and unambiguously specify a wide range
of tasks such as safe navigation, surveillance, persistent coverage, response to the
environment, and visiting goals. In the following definitions, ψ , φ, and ψj (for a
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finite number of indices j) are propositional formulas. To simplify the presentation,
we split these into three groups: core Φcore, response Φresp, and fairness Φfair. We
first define the syntax of the temporal operators and then their semantics.

Syntax

Thecore operators,Φcore := {ϕsafe, ϕgoal, ϕper, ϕlive, ϕuntil}, specify fundamental prop-
erties such as safety, guarantee, persistence, liveness (recurrence), and until. These
operators are,

ϕsafe := �ψ, ϕgoal := ♦ψ, ϕper := ♦�ψ, ϕlive := �♦ψ, ϕuntil := ψ U φ,

where ϕsafe specifies safety, i.e., a property should invariantly hold, ϕgoal specifies
goal visitation, i.e., a property should eventually hold, ϕper specifies persistence, i.e.,
a property should eventually hold invariantly, andϕlive specifies liveness (recurrence),
i.e., a property should hold repeatedly, as in surveillance, and ϕuntil specifies until,
i.e., a property ψ should hold until another property φ holds.

The response operators,Φresp := {ϕ1
resp, ϕ

2
resp, ϕ

3
resp, ϕ

4
resp}, specify how the system

responds to the environment. These operators are,

ϕ1
resp := �(ψ =⇒ ©φ), ϕ2

resp := �(ψ =⇒ ♦φ),

ϕ3
resp := ♦�(ψ =⇒ ©φ), ϕ4

resp := ♦�(ψ =⇒ ♦φ),

where ϕ1
resp specifies next-step response to the environment, ϕ2

resp specifies eventual
response to the environment, ϕ3

resp specifies steady-state next-step response to the
environment, and ϕ4

resp specifies steady-state eventual response to the environment.
Finally, the fairness operators,Φfair := {ϕ1

fair, ϕ
2
fair, ϕ

3
fair}, allow one to specify con-

ditional tasks. These operators are,

ϕ1
fair := ♦ψ =⇒

m∧

j=1

♦φj, ϕ2
fair := ♦ψ =⇒

m∧

j=1

�♦φj,

ϕ3
fair := �♦ψ =⇒

m∧

j=1

�♦φj,

where ϕ1
fair specifies conditional goal visitation, and ϕ2

fair and ϕ3
fair specify conditional

repeated goal visitation.
The fragment of LTL that we consider is built from the temporal operators defined

above as follows,

ϕ: := ϕcore | ϕresp | ϕfair | ϕ1 ∧ ϕ2, (2)

where ϕcore ∈ Φcore, ϕresp ∈ Φresp, and ϕfair ∈ Φfair.
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This LTL fragment specifies many properties relevant to robotics, especially for
surveillance tasks for which no mathematical programming-based approaches cur-
rently exist. However, it does not include nested properties [2]. Determining all
temporal properties that can be expressed in this framework is future work.

Remark 1 To include disjunctions (e.g., ϕ1 ∨ ϕ2), one can rewrite a formula in
disjunctive normal form, where each clause is of the form (2). In what follows, each
clause can then be considered separately, as the system (1) is deterministic.

Semantics

We use set operations between a trajectory (run) x = x(x0, u) and subsets of X
where particular propositional formulas hold to define satisfaction of a temporal
logic formula [2]. We denote the set of states where propositional formula ψ holds
by [[ψ]]. A run x satisfies the temporal logic formula ϕ, denoted by x |= ϕ, if and
only if certain set operations hold. Given propositional formulas ψ and φ, we relate
satisfaction of (a partial list of) formulas of the form (2)with set operations as follows:

• x |= �ψ iff xi ∈ [[ψ]] for all i,
• x |= ♦�ψ iff there exists an index j such that xi ∈ [[ψ]] for all i ≥ j,
• x |= ♦ψ iff xi ∈ [[ψ]] for some i,
• x |= �♦ψ iff xi ∈ [[ψ]] for infinitely many i,
• x |= ψ U φ iff there exists an index j such that xj ∈ [[φ]] and xi ∈ [[ψ]] for all i < j,
• x |= �(ψ =⇒ ©φ) iff xi /∈ [[ψ]] or xi+1 ∈ [[φ]] for all i,
• x |= �(ψ =⇒ ♦φ) iff xi /∈ [[ψ]] or xk ∈ [[φ]] for some k ≥ i for all i,
• x |= ♦�(ψ =⇒ ©φ) iff there exists an index j such that xi /∈ [[ψ]] or xi+1 ∈ [[φ]]
for all i ≥ j,

• x |= ♦�(ψ =⇒ ♦φ) iff there exists an index j such that xi /∈ [[ψ]] or xk ∈ [[φ]]
for some k ≥ i for all i ≥ j.

A run x satisfies a conjunction of temporal logic formulas ϕ = ∧m
i=1 ϕi if and

only if the set operations for each temporal logic formula ϕi holds. The LTL formula
ϕ is satisfiable by a system at state x0 ∈ X if and only if there exists a control input
sequence u such that x(x0, u) |= ϕ.

3 Problem Statement

In this section, we formally state both a feasibility and an optimization problem and
give an overview of our solution approach. Let ϕ be an LTL formula of the form (2)
defined over AP.

Problem 1 Given a system of the form (1), with initial condition x0, and an LTL
formula ϕ of the form (2), determine whether or not there exists a control input
sequence u such that x(x0, u) |= ϕ.
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We now introduce a cost function to distinguish among all trajectories that satisfy
Problem 1. Since LTL formulas are defined over infinite state sequences, we define
a cost function over infinite state sequences. We use a maximum cost function to
simplify the presentation; it can easily be extended to discounted, limit-maximum,
and average cost functions (see [26]). Let the cost c : X × U → R be bounded.

Definition 1 Let x be a trajectory andu be the corresponding control input sequence.
The maximum cost of trajectory x is

J(x, u) := sup
t∈T ∞

c(xt, ut), (3)

where J maps trajectories and control inputs to R ∪ ∞.

Problem 2 Given a system of the form (1), with initial condition x0, and an LTL
formula ϕ of the form (2), compute a control input sequence u such that x(x0, u) |= ϕ

and J(x(x0, u), u) is minimized.

We now give a brief overview of our solution approach. We parameterize the
system trajectory (control input) as a periodic prefix-suffix structure. Every LTL
operator of the form (2) is encoded as mixed-integer linear constraints on this finite
parameterization. These temporal logic constraints (see Sect. 5) are then combined
with dynamic constraints (see Sect. 6) as constraints on a combined mixed-integer
optimization problem with an appropriate cost function. For MLD systems and cer-
tain differentially flat systems (see Sect. 6) with linear costs, Problems 1 and 2 can
thus be solved using a mixed-integer linear program (MILP) solver. While even
checking feasibility of a MILP is NP-hard, modern solvers using branch and bound
methods routinely solve large problems [23]. We show promising results (see Fig. 1)
on high-dimensional (10+ continuous state) systems in Sect. 7.

Fig. 1 Illustration of a problem instance. The task is to repeatedly visit regions P, D1, and D2,
where dark regions are obstacles that must be avoided. Representative trajectories for a quadrotor
(left) and nonlinear car (right) are shown with the prefix (blue) and suffix (black)
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Remark 2 We only consider open-loop trajectory generation, which is already a
challenging problem due to the nonlinear dynamics and LTL specifications. Distur-
bances can be dealt with by wrapping a feedback controller around the trajectory.
Incorporating disturbances during trajectory generation is the subject of future work.

4 A Periodic Trajectory Parameterization

We parameterize the system trajectory by a periodic prefix-suffix form that is com-
monly used in model checking for finite systems. In this structure, the prefix is a
finite trajectory and the suffix is a finite trajectory that is repeated infinitely often.
This gives a sufficient condition that is amenable to computation, although it may
miss valid non-periodic trajectories.

A walk is a finite sequence of states x = x0x1x2 . . . xN that satisfy the con-
straints in (1). A cycle is a walk x = x0x1x2 . . . xN where f (xN , u) = x0 for some
u ∈ U . A trajectory x induces a corresponding word (i.e., sequence of labels)
L(x) = L0(x0)L1(x1)L2(x2) . . . through the labeling function. A word is similarly
defined for a walk or cycle. We now define a trajectory in prefix-suffix form.

Definition 2 Let xpre be a finite walk and xsuf be a finite cycle. A trajectory x is
in prefix-suffix form if it is of the form x = xpre(xsuf)ω, where ω denotes infinite
repetition.

We will require that the (time-varying) labeling function Lt is eventually periodic.

Assumption 1 There exists a finite t′ ∈ T ∞ and a Ω ∈ N such that Lt = Lt+Ω for
all t ≥ t′ ∈ T ∞. We further assume that Ω is minimal among all possible values.

In the sequel, we will only consider trajectories x = xpre(xsuf)ω in prefix-suffix
form. While both xpre and xsuf are finite, the constraint that xsuf is a cycle allows us
to repeat that sequence of states forever. Repeating the same sequence of states is a
sufficient condition that the word L(xsuf) (i.e., the sequence of atomic propositions) is
also repeated (usingAssumption1).However, only thewordmatters for the feasibility
of an LTL formula, not the exact sequence of states. In fact, there may exist other
trajectories that produce the same word L(x), but are not eventually periodic. Our
approach cannot find such trajectories, although we have not noticed this limitation
in our experiments. This differs from the case of finite discrete systems, where a
prefix-suffix form is sufficient to find a feasible solution if one exists [2].

In the next section, we will encode the temporal operators as mixed-integer con-
straints on xpre and xsuf. Let xcat := xprexsuf denote the concatenation of xpre and
xsuf, and assign time indices to xcat as Tcat := {0, 1, . . . , Ts, . . . , T}. Let Tpre :=
{0, 1, . . . , Ts − 1} and Tsuf := {Ts, . . . , T}, where Ts is the first time instance on
the suffix. The infinite repetition of xsuf is enforced by the constraint xcat(Ts) =
f (xcat(T), u) for some u ∈ U . By Assumption 1, it is sufficient that Ts is greater
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than t′ and that the length of Tsuf is an integer multiple of Ω . We often identify
xpre(0) · · · xpre(Tpre) with xcat(0) · · · xcat(Ts − 1) and xsuf(0) · · · xsuf(Tsuf) with
xcat(Ts) · · · xcat(T) in the obvious manner.

5 A Mixed-Integer Linear Formulation of LTL Constraints

In this section, we develop a mixed-integer programming formulation for a given
prefix-suffix trajectory parameterization, xcat = xprexsuf. The corresponding system
trajectory is x = xpre(xsuf)ω. Since the system is deterministic, this defines a cor-
responding control input sequence. The split between xpre and xsuf can either be
specified a priori or left as a variable (see [26] for details). We mix notation in the
following and refer to x and T instead of xcat and Tcat when clear from context.

5.1 Relating the Dynamics and Propositions

We now relate the state of a system to the set of atomic propositions that are True
at each time instance. We assume that each propositional formula ψ is described
at time t by the union of a finite number of polytopes, indexed by the finite index
set Iψ

t . Let [[ψ]](t) := {x ∈ X | Hψi
t x ≤ Kψi

t for some i ∈ Iψ
t } represent the set of

states that satisfy propositional formula ψ at time t. We assume that these have been
constructed as necessary from the system’s original atomic propositions. We note
that a proposition preserving partition [1] is not necessary or even desired.

For each propositional formula ψ , introduce binary variables zψi
t ∈ {0, 1} for all

i ∈ Iψ
t and for all t ∈ T . Let xt be the state of the system at time t and M be a vector

of sufficiently large constants. The big-M formulation

Hψi
t xt ≤ Kψi

t + M(1 − zψi
t ), ∀i ∈ Iψ

t∑

i∈Iψ
t

zψi
t = 1 (4)

enforces the constraint that xt ∈ [[ψ]](t) at time t. DefinePψ
t := ∑

i∈Iψ
t

zψi
t . IfPψ

t = 1,

then xt ∈ [[ψ]](t). If Pψ
t = 0, then nothing can be inferred.

The big-M formulation may give poor continuous relaxations of the binary vari-
ables, i.e., zψi

t ∈ [0, 1], which may lead to poor performance during optimization
[23]. Such relaxations are frequently used during the solution of mixed-integer lin-
ear programs [23]. Thus, we introduce an alternate representation whose continuous
relaxation is the convex hull of the original set [[ψ]](t). This formulation is well-
known in the optimization community [12], but does not appear in the trajectory
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generation literature ([8, 20, 24] and references therein). As such, this formulation
may be of independent interest for trajectory planning with obstacles.

The convex hull formulation

Hψi
t xi

t ≤ Kψi
t zψi

t , ∀i ∈ Iψ
t∑

i∈Iψ
t

zψi
t = 1,

∑

i∈Iψ
t

xi
t = xt (5)

represents the same set as the big-M formulation (4). While the convex hull formu-
lation introduces more continuous variables, it gives the tightest linear relaxation of
the disjunction of the polytopes and reduces the need to select theM parameters [12].
Note that we will only use the convex hull formulation (5) for safety and persistence
formulas (i.e., ϕsafe and ϕper) in Sect. 5.2, as Pψ

t = 0 enforces x = 0.
Regardless if one uses the big-M or convex hull formulation, only one binary vari-

able is needed for each polyhedron (i.e., finite conjunction of halfspaces). This com-
pares favorably with the approach in [15], where a binary variable is introduced for
each halfspace. Additionally, the auxiliary continuous variables and mixed-integer
constraints previously used are not needed because we use implication. For simple
tasks such as ϕ = ♦ψ , our method can use significantly fewer binary variables than
previously needed, depending on the number of halfspaces and polytopes needed to
describe [[ψ]].

For every temporal operator described in the following section, the constraints in
(4) or (5) should be understood to be implicitly applied to the corresponding propo-
sitional formulas so that Pψ

t = 1 implies that the system satisfies ψ at time t. Also,
note that we use different binary variables for each formula—evenwhen representing
the same set.

5.2 The Mixed-Integer Linear Constraints

In this section, the trajectory parameterization x has been a priori split into a prefix
xpre and a suffix xsuf. This assumption can be relaxed, so that the size of xpre and xsuf
are optimization variables (see [26] for details). We further assume that xpre and xsuf
satisfy Assumption 1.

In the following, the correctness of the constraints applied to xpre and xsuf comes
directly from the temporal logic semantics given in Sect. 2.2 and the form of the
trajectory x = xpre(xsuf)ω. The most important factors are whether a property can
be verified over finite- or infinite-horizons. All infinite-horizon (liveness) properties
must be satisfied on the suffix xsuf.
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We begin with the fundamental temporal operators Φcore. Safety and persistence
require a mixed-integer linear constraint for each time step, while guarantee and
liveness only require a single mixed-integer linear constraint.

Safety, ϕsafe = �ψ , is satisfied by the constraints

Pψ
t = 1, ∀t ∈ Tpre,

Pψ
t = 1, ∀t ∈ Tsuf,

which ensure that the system is always in a [[ψ]] region. Similarly, persistence,
ϕper = ♦�ψ , is enforced by

Pψ
t = 1, ∀t ∈ Tsuf,

which ensures the system eventually remains in a [[ψ]] region.
Guarantee, ϕgoal = ♦ψ , is satisfied by the constraints

∑

t∈Tpre

Pψ
t +

∑

t∈Tsuf

Pψ
t = 1,

which ensures the system eventually visits a [[ψ]] region. Similarly, liveness ϕlive =
�♦ψ is enforced by

∑

t∈Tsuf

Pψ
t = 1,

which ensures the system repeatedly visits a [[ψ]] region.
Until, ϕuntil = ψ U φ, is enforced by

Pφ

0 = s0,

Pφ
t = st − st−1, t = 1, . . . , T

Pψ
t = 1 − st, ∀t ∈ T ,

where we use auxiliary binary variables st ∈ {0, 1} for all t ∈ T such that st ≤ st+1

for t = 0, . . . , T − 1 and sT = 1.
Now consider the response temporal operators Φresp. For these formulas, the

definition of implication is used to convert each inner formula into a disjunction
between a property that holds at a state and a property that holds at some point in
the future. The response formulas require a mixed-integer linear constraint for each
time step.

For next-step response, ϕ1
resp = �(ψ =⇒ ©φ) = �(¬ψ ∨ ©φ), the addi-

tional constraints are
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P¬ψ
t + Pφ

t+1 = 1, t = 0, . . . , Ts, . . . , T − 1,

P¬ψ

T + Pφ

Ts
= 1,

Similarly, steady-state next-step response, ϕ3
resp = ♦�(ψ =⇒ ©φ) = ♦�(¬ψ ∨

©φ), is satisfied by

P¬ψ
t + Pφ

t+1 = 1, t = Ts, . . . , T − 1,

P¬ψ

T + Pφ

Ts
= 1,

Eventual response, ϕ2
resp = �(ψ =⇒ ♦φ) = �(¬ψ ∨ ♦φ), requires the fol-

lowing constraints

P¬ψ
t +

T∑

τ=t

Pφ
τ = 1, ∀t ∈ Tpre,

P¬ψ
t +

∑

t∈Tsuf

Pφ
t = 1, ∀t ∈ Tsuf.

Similarly, for steady-state eventual response, ϕ4
resp = ♦�(ψ =⇒ ♦φ) =

♦�(¬ψ ∨ ♦φ), the additional constraints are

P¬ψ
t +

∑

t∈Tsuf

Pφ
t = 1, ∀t ∈ Tsuf.

Now consider the fairness temporal operatorsΦfair. In the following, the definition
of implication is used to rewrite the inner formula as disjunction between a single
safety (persistence) property and a conjunction of guarantee (liveness) properties.
These formulas require a mixed-integer linear constraint for each conjunction in the
response and each time step.

Conditional goal visitation, ϕ1
fair = ♦ψ =⇒ ∧m

j=1 ♦φj = �¬ψ ∨ ∧m
j=1 ♦φj,

is specified by

P¬ψ
t +

∑

t∈T
P

φj
t = 1, ∀j = 1, . . . , m,∀t ∈ T .

Conditional repeated goal visitation, ϕ2
fair = ♦ψ =⇒ ∧m

j=1 �♦φj = �¬ψ ∨∧m
j=1 �♦φj, is enforced as

P¬ψ
t +

∑

t∈Tsuf

P
φj
t = 1, ∀j = 1, . . . , m,∀t ∈ T .

Similarly, ϕ3
fair = �♦ψ =⇒ ∧m

j=1 �♦φj = ♦�¬ψ ∨ ∧m
j=1 �♦φj, is represented

by
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P¬ψ
t +

∑

t∈Tsuf

P
φj
t = 1, ∀j = 1, . . . , m, ∀t ∈ Tsuf.

We have encoded the temporal logic specifications on the system variables using
mixed-integer linear constraints. Note that the equality constraints on the binary
variables dramatically reduce search space. In Sect. 6 we discuss adding dynamics
to further constrain the possible behaviors of the system.

6 System Dynamics

The mixed-integer constraints in Sect. 5 are over a sequence of states, and thus are
independent of the specific system dynamics. Dynamic constraints on the sequence
of states can also be enforced by standard transcription methods [5]. However, the
resulting optimization problem may then be a mixed-integer nonlinear program due
to the dynamics. We highlight two useful classes of nonlinear systems where the
dynamics can be encoded using mixed-integer linear constraints.

6.1 Mixed Logical Dynamical Systems

Mixed Logical Dynamical (MLD) systems have both continuous and discrete-valued
states and allow one tomodel nonlinearities, logic, and constraints [4]. These systems
include constrained linear systems, linear hybrid automata, and piecewise affine
systems. An MLD system is of the form

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t)

subject to E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5,

where t ∈ T ∞, x ∈ X ⊆ R
nc × {0, 1}nl are the continuous and binary states, u ∈

U ⊆ R
mc × {0, 1}ml are the inputs, and δ ∈ {0, 1}rl and z ∈ R

rl are auxiliary binary
and continuous variables, respectively. The terms A, B1, B2, B3, E1, E2, E3, E4, and
E5 are system matrices of appropriate dimension. We assume that the system is
deterministic and well-posed (see Definition 1 in [4]).

6.2 Differentially Flat Systems

A system is differentially flat if there exists a set of outputs such that all states
and control inputs can be determined from these outputs without integration. If a
system has states x ∈ R

n and control inputs u ∈ R
m, then it is flat if we can find
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outputs y ∈ R
m of the form y = y(x, u, u̇, . . . , u(p)) such that x = x(y, ẏ, . . . , y(q))

and u = u(y, ẏ, . . . , y(q)). Thus, we can plan trajectories in output space and then
map these to control inputs [17].

Differentially flat systems may be encoded using mixed integer linear constraints
in certain cases, e.g., the flat output is constrained bymixed integer linear constraints.
This holds for relevant classes of robotic systems, including quadrotors and car-like
robots. However, control input constraints are typically non-convex in the flat output.
Common approaches to satisfy control constraints are to plan a sufficiently smooth
trajectory or slow down along a trajectory [19].

7 Examples

We demonstrate our techniques on a variety of motion planning problems. The first
example is a chain of integrators parameterized by dimension. Our second example
is a quadrotor model from [25]. Our final example is a nonlinear car-like vehicle with
drift. All computations were done on a laptop with a 2.4GHz dual-core processor
and 4 GB of memory using CPLEX [23] through Yalmip [18].

The environment and task is motivated by a pickup and delivery scenario. All
properties should be understood to be with respect to regions in the plane (see Fig. 1).
Let P be a region where supplies can be picked up and D1 and D2 be regions
where supplies must be delivered. The robot must remain in the safe region S (in
white). Formally, the task specification is ϕ = �S ∧ �♦P ∧ �♦D1 ∧ �♦D2.
Additionally, we minimize the maximum cost function (3) where c(xt, ut) = |ut|
penalizes the control input.

In the remainder of this section, we consider this temporal logic motion plan-
ning problem for different system models. We use the simultaneous (sim.) approach
described in Sect. 5.2, and also a sequential (seq.) approach from [26] that first com-
putes the suffix and then the prefix. A trajectory of length 60 (split evenly between
the prefix and suffix) is used in all cases, and all results are averaged over 20 ran-
domly generated environments. The simultaneous approach uses between 300 and
469 binary variables with a mean of 394. Finally, all continuous-time models are
discretized using a first-order hold and time-step of 0.5s.

7.1 Chain of Integrators

The first system is a chain of orthogonal integrators in the x and y directions. The
kth derivative of the x and y positions are controlled, i.e., x(k) = ux and y(k) = uy,
subject to the constraints |ux| ≤ 0.5 and |uy| ≤ 0.5. The general state constraints
are |x(i)| ≤ 1 and |y(i)| ≤ 1 for i = 1, . . . , k − 1. Results are given in Tables1 and 2
under “chain-2”, “chain-6”, and “chain-10”, where “chain-k” indicates that the kth
derivative in both the x and y positions is controlled.
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Table 1 Time until a feasible solution was found (mean± standard error) and number of problems
(out of 20) solved in 45s using the big-M formulation (4) with M = 10

Model Dimensional Feasible solution (s) Number of problems solved

Simultaneous Sequential Simultaneous Sequential

Chain-2 4 1.10 ± 0.09 0.64 ± 0.06 20 20

Chain-6 12 4.70 ± .48 2.23 ± 0.15 20 20

Chain-10 20 9.38 ± 1.6 3.74 ± 0.29 20 19

Quadrotor 10 4.20 ± 0.66 1.80 ± 0.15 20 20

Quadrotor-flat 10 2.26 ± 0.36 1.99 ± 1.0 20 20

Car-3 3 43.9 ± 0.77 10.7 ± 2.0 4 20

Car-4 3 42.4 ± 1.7 18.7 ± 3.1 2 18

Car-flat 3 15.8 ± 3.8 14.0 ± 4.4 12 14

Table 2 Time until a feasible solution was found (mean± standard error) and number of problems
(out of 20) solved in 45s using the convex hull formulation (5)

Model Dimensional Feasible solution (s) Number of problems solved

Simultaneous Sequential Simultaneous Sequential

Chain-2 4 1.94 ± 0.23 0.94 ± 0.11 20 20

Chain-6 12 12.4 ± 2.7 2.89 ± 0.32 20 20

Chain-10 20 16.9 ± 3.0 7.28 ± 1.2 17 15

Quadrotor 10 18.9 ± 3.8 2.80 ± 0.35 16 20

Car-3 3 37.3 ± 3.1 13.3 ± 1.6 8 20

7.2 Quadrotor

Wenowconsider the quadrotormodel used in [25] for point-to-pointmotionplanning,
to which we refer the reader for a complete description of the model. The state
x = (p, v, r, w) is 10-dimensional, consisting of position p ∈ R

3, velocity v ∈ R
3,

orientation r ∈ R
2, and angular velocity w ∈ R

2. This model is the linearization of a
nonlinear model about hover with the yaw constrained to be zero. The control input
u ∈ R

3 is the total, roll, and pitch thrust. Results are given in Tables1 and 2 under
“quadrotor”, and a sample trajectory is shown in Fig. 1.

Also, we use the fact that the quadrotor is differentially flat [19] to generate
trajectories for the nonlinear model (with fixed yaw). We parameterize the flat output
p ∈ R

3 with eight piecewise polynomials of degree three, and then optimize over their
coefficients to compute a smooth trajectory. Afterwards, we check that the trajectory
does not violate the control input constraints. Results are given in Table1 under
“quadrotor-flat”.
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7.3 Nonlinear Car

Consider a nonlinear car-like vehicle with state x = (px, py, θ) and dynamics ẋ =
(v cos(θ), v sin(θ), u). The variables px, py are position (m) and θ is orientation (rad).
The vehicle’s speed v is fixed at 0.8 (m/s) and its control input is constrained as
|u| ≤ 2.5. We form a hybrid MLD model by linearizing the system about different
orientations θ̂i for i = 1, . . . , k. The dynamics are governed by the closest lineariza-
tion to the current θ . Results with k = 3 and k = 4 are given in Table1 under “car-3”
and “car-4”, respectively. A sample trajectory of “car-4” is show in Fig. 1.

Additionally, we use the flat output (x, y) ∈ R
2 to generate trajectories for the

nonlinear car-like model in a similar manner as for the quadrotor model. Results are
given in Table1 under “car-flat”.

7.4 Discussion and Comparison

We first compare our approach to reachability-based algorithms that compute a finite
abstraction [16, 28]. We used the method in [28] to compute a discrete abstraction
for a two dimensional system in 22s, and [16] reports abstracting a four dimensional
system in just over a minute. This contrasts with our mixed-integer approach that can
routinely find solutions to such problems in seconds, although we do not compute a
feedback controller. Our results appear particularly promising for situations where
the environment is dynamically changing and a finite abstraction must be repeatedly
computed.

We also compare to the finite-horizon mixed-integer formulation given in [15].
Consider the task ϕ = ♦ψ , where [[ψ]] is a convex polytope defined bym halfspaces.
Our method uses one binary variable at each time step, while their approach uses m.
Additionally,whilewe encode eventually (♦) using a single constraint, their approach
uses a number of constraints quadratic in the trajectory length.

In most of our examples, we are able to quickly compute a feasible trajectory that
satisfies a temporal logic formula by solving a mixed-integer linear program. This
is aided by the sequential approach, which separates the problem into computing a
suffix and then a prefix [26]. It typically takes a long time to compute a trajectory
that is provably globally optimal, although this does happen in finite time.

Finally, the convex hull formulation performed poorly in our examples. There is
an empirical tradeoff between having tighter continuous relaxations and the number
of continuous variables in the formulation. We hypothesize that the convex hull
formulation will be most useful in cases when (1) the number of binary variables is
large, or (2) the cost function is minimized near the boundary of the region.
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8 Conclusion

We presented a novel mixed-integer programming-based method for control of non-
linear systems with a useful fragment of LTL that allows both finite- and infinite-
horizon properties to be specified. Our method is efficient in the number of binary
variables used to model the an LTL formula. Additionally, we showed the computa-
tional effectiveness of our approach on temporal logic motion planning examples.

Futureworkwill consider reactive environments by including both continuous and
discrete disturbances using a receding horizon control approach. Additionally, we
will expand the space of tasks that can be specified by including additional temporal
operators and timing constraints.
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Extended LQR: Locally-Optimal Feedback
Control for Systems with Non-Linear
Dynamics and Non-Quadratic Cost

Jur van den Berg

Abstract We present Extended LQR, a novel approach for locally-optimal control
for robots with non-linear dynamics and non-quadratic cost functions. Our formu-
lation is conceptually different from existing approaches, and is based on the novel
concept of LQR-smoothing, which is an LQR-analogue of Kalman smoothing. Our
approach iteratively performs both a backward Extended LQR pass, which com-
putes approximate cost-to-go functions, and a forward Extended LQR pass, which
computes approximate cost-to-come functions. The states at which the sum of these
functions is minimal provide an approximately optimal sequence of states for the
control problem, and we use these points to linearize the dynamics and quadratize
the cost functions in the subsequent iteration. Our results indicate that Extended
LQR converges quickly and reliably to a locally-optimal solution of the non-linear,
non-quadratic optimal control problem. In addition, we show that our approach is
easily extended to include temporal optimization, in which the duration of a trajec-
tory is optimized as part of the control problem. We demonstrate the potential of our
approach on two illustrative non-linear control problems involving simulated and
physical differential-drive robots and simulated quadrotor helicopters.

1 Introduction

Optimal control is an important problem in robotics. The problem is generally defined
in terms of a description of the robot’s dynamics and a control objective in the form of
a cost function that is to be minimized, and the goal is to compute an optimal feedback
control policy that tells the robot what control to apply given the state it is in. The
linear-quadratic regulator (LQR) [4] provides a closed-form optimal solution in case
the dynamics of the robot are linear and the cost function is quadratic. The linear-
quadratic control problem is known to be closely related to the linear-Gaussian state
estimation problem [20], for which the Kalman filter provides the optimal closed-
form solution. Since the Extended Kalman filter provides a natural extension to
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state estimation of non-linear systems [1], a natural question is whether LQR can
be extended in a similar fashion to systems with general non-linear dynamics and
non-quadratic cost functions. The main challenge here is that the LQR controller is
derived using a recursion backward in time starting at the final time, and that the
future states and control inputs of the robot are unknown at the time of designing the
controller. So, choosing suitable points to linearize the dynamics and quadratize the
cost functions about is non-trivial.

To address this, we propose Extended LQR, a novel approach to the non-linear,
non-quadratic control problem that is based on the novel concept of LQR-smoothing.
The LQR-smoother consists, analogous to the Kalman smoother [14], of a standard
backward LQR pass that computes cost-to-go functions, and a forward LQR pass
that computes cost-to-come functions. The sum of these functions give total-cost
functions, and the states at which the total-cost functions are minimal provide an
optimal sequence of states for the linear-quadratic control problem. To extend this to
systems with non-linear dynamics and non-quadratic cost, Extended LQR iteratively
performs a backward and a forward pass (analogous to the extended Kalman smoother
[2]) to progressively obtain a better idea of the robot’s future trajectory. The states
at which the approximate total-cost functions are minimal are used to linearize the
dynamics and quadratize the cost functions in each iteration, while the control policies
computed in each pass provide control inputs to linearize and quadratize about. We
will show that this procedure converges quickly and reliably to a locally-optimal
solution to the non-linear, non-quadratic control problem.

There is a large body of literature on the non-linear, non-quadratic control problem,
and many approaches based on linear-quadratic approximations have previously been
proposed (as we discuss in detail in Sect. 2). Even though we will show that Extended
LQR improves upon existing methods such as Iterative LQR (iLQR) [12], the main
purpose of this paper is to introduce a conceptually novel approach to non-linear,
non-quadratic control. Our formulation remains strictly within the LQR framework
and does not use the duality between control and estimation [20] (in contrast to e.g.
Approximate Inference Control (AICO) [22]), resulting in a conceptually intuitive
approach that is easy to implement. Also, we will show that Extended LQR can
naturally be applied to temporal optimization problems, in which the duration of
the trajectory is to be optimized as part of the optimal control problem [15]. We
have made source code of our approach publicly available at http://arl.cs.utah.edu/
research/extendedlqr/.

We experimented with our approach on two illustrative non-linear control prob-
lems with and without temporal optimization, and compared performance to iLQR.
Experiments involve both a physical and simulated differential-drive robot in a 2-D
environment with obstacles (see Fig. 1), and a simulated quadrotor helicopter with
a 12-D state space in 3-D environments with obstacles. Our results indicate that
Extended LQR converges more quickly and reliably than iLQR even without pro-
viding it with an initial trajectory or implementing special convergence measures.

The remainder of this paper is organized as follows. We discuss related work in
Sect. 2. In Sect. 3, we formally define the problem we address in this paper. In Sect. 4
we review the LQR controller and introduce the novel concept of linear-quadratic
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Fig. 1 A physical and simulated iRobot create navigating an environment with obstacles using
extended LQR. See http://arl.cs.utah.edu/research/extendedlqr/ for videos of our experiments

smoothing. We use this in Sect. 5 to develop our Extended LQR approach, and show
how it can be applied to temporal optimization problems in Sect. 6. We present
experimental results in Sect. 7 and conclude in Sect. 8.

2 Related Work

Our approach is conceptually different from existing approaches to approximate
optimal control such as Iterative LQR (iLQR) [12] and Differential Dynamic Pro-
gramming (DDP) [9]. These approaches linearize the dynamics and quadratize the
cost functions about a given (dynamically feasible) nominal trajectory and use LQR to
compute a control policy. This control policy is then executed to compute a new nom-
inal trajectory, and the procedure is repeated until convergence. These approaches
require special measures such as line search [26] to ensure convergence, as the control
policies may drive a new trajectory too “far away” from where the LQ-approximation
is valid. Our approach, in contrast, relinearizes/requadratizes in both the backward
pass and the forward pass, about a sequence of states and control inputs that is dynam-
ically feasible only upon convergence. We will show that as a result, Extended LQR
converges reliably without special convergence measures.

Sequential Quadratic Programming (SQP) methods [3, 13] also iteratively relin-
earize the dynamics and requadratize the cost functions, with the distinction that
it formulates the problem in each iteration as a convex optimization problem that
allows for the inclusion of convex constraints on the state and the control input.
SQP approaches, however, typically do not compute a feedback control policy, but
instead give an optimal open-loop sequence of control inputs for the control problem.
The approaches of [17, 27] are closely related, and focus on trajectory optimization
among obstacles for the specific class of robots with holonomic dynamics. Extended
LQR can be used for trajectory optimization as well. In this case, like the mentioned
approaches, the initial trajectory need not be dynamically feasible.

Approximate Inference Control (AICO) [22] uses the duality between control and
estimation [20], and formulates the optimal control problem in terms of Kullback-
Leibler divergence minimization [16]. Even though the derivation of Extended LQR
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differs considerably from that of AICO, ultimately the qualitative differences are
subtle. A key technical difference is that AICO focuses on computing an optimal
sequence of states and does not compute control policies during iterations. This
limits AICO to cost functions that are explicitly quadratic in the control input, and
it requires “local” iterations for each stage along the trajectory in addition to global
forward and backward passes. Our approach computes control policies in each pass,
which are used to select control inputs to linearize/quadratize about in the subsequent
pass. Extended LQR is therefore applicable to general non-quadratic cost functions
and does not use local iterations.

Extended LQR assumes deterministic dynamics, implicitly relying on the fact
that the optimal LQR solution is independent from the process noise variance. Other
approaches more directly account for stochastic dynamics: AICO lets the process
noise variance interact with the cost matrices in the Ricatti equations, resulting in a
form of risk-sensitive control [16, 25], and iLQR and DDP have been extended to
explicitly take into account state and control input-dependent process noise [19, 21].

The problem of temporal optimization has previously been addressed in [15],
which extends AICO with an EM-approach that alternatingly optimizes the trajectory
and its duration. We present a more direct approach that includes the time-step in the
state, and penalizes for the duration of the trajectory in the cost function. Extended
LQR can then be applied as is to the augmented control problem.

One of the concepts underpinning our approach is Forward LQR. While forward
Ricatti recursion has been explored in optimal control [6, 24], these works do not
use it to compute cost-to-come functions as part of an LQR-smoothing framework.
Our work also has similarities in spirit to [7], which employs both a forward and a
backward Dijkstra’s algorithm in discrete gridworlds.

3 Problem Definition

Let X ⊂ R
n and U ⊂ R

m be the state space and the control input space, respectively,
of the robot, and let its deterministic discrete-time dynamics be given by:

xt+1 = gt(xt, ut), (1)

with gt ∈ X × U → X, where xt ∈ X and ut ∈ U denote the state and the control
input of the robot at stage t. Let the control objective be defined as minimizing a cost
function:

c�(x�) + ∑�−1
t=0 ct(xt, ut), (2)

for given horizon � and local cost functions c� ∈ X → R and ct ∈ X × U → R. Now,
the optimal control problem is defined as finding a control policy πt ∈ X → U for
all 0 ≤ t < �, such that selecting controls ut = πt(xt) minimizes Eq. (2).

A general solution approach computes the cost-to-go functions st ∈ X → R and
the optimal control policies πt using a backward recursion procedure:
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s�(x�) = c�(x�), st(xt) = minut (ct(xt, ut) + st+1(gt(xt, ut))), (3)

πt(xt) = argminut
(ct(xt, ut) + st+1(gt(xt, ut))). (4)

The cost-to-go function st(xt) gives the total future cost that will be accrued between
stage t and stage � by a minimal-cost sequence of states and control inputs that starts
in xt at stage t. In general, there is no explicit parametric expression for the cost-to-
go functions st , except in the case where the dynamics are linear and the local cost
functions are quadratic (as we will review in Sect. 4.1). The objective of this paper
is to extend this approach to create (locally) optimal solutions to the general control
problem with non-linear dynamics and non-quadratic cost.

Even though we address the discrete-time control problem, we assume the
continuous-time dynamics are given:

ẋ(t) = f(t, x(t), u(t)). (5)

A continuous-time formulation is typically the most natural way to describe the
dynamics of (non-linear) robotic systems, and it allows us to evaluate the discrete-
time dynamics gt (Eq. (1)), as well as its inverse, for any given time-step using e.g.
Runge-Kutta integration. The inverse discrete-time dynamics are denoted by:

xt = ḡt(xt+1, ut), (6)

where ḡt is defined such that gt(ḡt(xt+1, ut), ut) = xt+1 and, equivalently, ḡt(gt(xt,

ut), ut) = xt . It is obtained by integrating Eq. (5) backward in time. We further
assume that the local cost functions have positive-(semi)definite Hessians:

∂2c�

∂x�∂x�

> 0,
∂2ct

∂ut∂ut
> 0,

∂2ct

∂[ xt
ut ]∂[ xt

ut ]
≥ 0. (7)

4 Linear-Quadratic Control and Smoothing

We begin this section by reviewing LQR, which computes cost-to-go functions and
provides a closed-form optimal solution to the linear-quadratic control problem. We
then show how cost-to-come functions can be computed by a procedure similar to
LQR, but one that runs forward in time, and introduce the concept of linear-quadratic
smoothing, in which the cost-to-go and the cost-to-come functions are combined to
create an LQR analogue of the Kalman smoother [14] that provides the optimal
sequence of states for the linear-quadratic control problem. These concepts are at
the foundation of our Extended LQR approach for non-linear, non-quadratic control,
which we discuss in Sect. 5.
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4.1 LQR Control

The linear-quadratic control problem is a special case of the general problem defined
above for which the LQR controller provides a closed-form optimal solution [4]. In
this case, the dynamics are linear and given by:

xt+1 = gt(xt, ut) = Atxt + Btut + ct, (8)

with At ∈ R
n×n, Bt ∈ R

n×m, and ct ∈ R
n given for all t. The local cost functions are

quadratic, and given by:

c�(x�) = 1

2
xT

� Q�x� + xT
� q�, ct(xt, ut) = 1

2

[
xt

ut

]T[
Qt PT

t
Pt Rt

] [
xt

ut

]
+

[
xt

ut

]T[
qt

rt

]
,

(9)

where Qt ∈ R
n×n, Rt ∈ R

m×m, Pt ∈ R
m×n, qt ∈ R

n, and rt ∈ R
m are given for all

t. Matrices Q� > 0 and Rt > 0 are positive-definite, and
[

Qt PT
t

Pt Rt

] ≥ 0 is positive-
semidefinite, in accordance with Eq. (7).

For this control problem, the cost-to-go functions st have the following explicit
quadratic formulation:

st(xt) = 1
2 xT

t Stxt + xT
t st + k, (10)

where k is a constant, and St ∈ R
n×n > 0 and st ∈ R

n are computed using backward
recursion. For final stage �, we have S� = Q� and s� = q�, and for stage � > t ≥ 0:

St = Dt − CT
t E−1

t Ct, st = dt − CT
t E−1

t et, (11)

where:

Ct = Pt + BT
t St+1At, Dt = Qt + AT

t St+1At, Et = Rt + BT
t St+1Bt,

dt = qt + AT
t st+1 + AT

t St+1ct, et = rt + BT
t st+1 + BT

t St+1ct .

The optimal feedback control policies πt have an explicit linear formulation:

πt(xt) = Ltxt + lt, Lt = −E−1
t Ct, lt = −E−1

t et, (12)

4.2 Cost-to-Come Functions and Forward LQR

As mentioned above, the cost-to-go functions st(xt) give the total future cost that
will be accrued between stage t and stage � (including the cost incurred at stage t)
by a minimal-cost sequence of states and control inputs that starts in xt at stage t. We
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use the similar concept of cost-to-come functions [11], denoted s̄t(xt), which give
the total past cost that was accrued between stage 0 and stage t (excluding the cost
incurred at stage t) by a minimal-cost sequence of states and controls that arrives in
xt at stage t. Given the inverse dynamics (see Eq. (6)), the cost-to-come functions are
generally defined by the following forward recursion procedure:

s̄0(x0) = 0, s̄t+1(xt+1) = minut (ct(ḡt(xt+1, ut), ut) + s̄t(ḡt(xt+1, ut))), (13)

π̄t(xt+1) = argminut
(ct(ḡt(xt+1, ut), ut) + s̄t(ḡt(xt+1, ut))),

(14)

Here, π̄t is an inverse control policy that given a state xt+1 at stage t + 1 computes
the control input ut = π̄t(xt+1) that was applied at stage t in order to arrive at xt+1

with minimal cost-to-come.
If the dynamics are linear and given by Eq. (8), and the local cost functions are

quadratic and given by Eq. (9), the cost-to-come functions s̄t have an explicit quadratic
formulation, similar to the cost-to-go functions in LQR:

s̄t(xt) = 1
2 xT

t S̄txt + xT
t s̄t + k̄, (15)

where S̄t ∈ R
n×n ≥ 0 and s̄t ∈ R

n. The recursive update equations for S̄t and s̄t run
forward in time, and can be derived in a similar fashion as those of standard LQR,
given that the linear dynamics are expressed in their inverse form:

xt = ḡt(xt+1, ut) = Ātxt+1 + B̄tut + c̄t, (16)

with Āt = A−1
t , B̄t = −A−1

t Bt , and c̄t = −A−1
t ct (as follows from solving Eq. (8) for

xt). Then, we initially have S̄0 = 0 and s̄0 = 0, and for stage 0 ≤ t < �:

S̄t+1 = D̄t − C̄T
t Ē−1

t C̄t, s̄t+1 = d̄t − C̄T
t Ē−1

t ēt, (17)

where

C̄t = B̄T
t (S̄t +Qt)Āt +PtĀt, D̄t = ĀT

t (S̄t +Qt)Āt, Ēt = B̄T
t (S̄t +Qt)B̄t +Rt +PtB̄t +B̄T

t PT
t,

d̄t = ĀT
t (s̄t + qt) + ĀT

t (S̄t + Qt)c̄t, ēt = rt + Pt c̄t + B̄T
t (s̄t + qt) + B̄T

t (S̄t + Qt)c̄t .

The inverse control policies π̄t have, similar to the control policies in LQR, an explicit
linear formulation:

π̄t(xt+1) = L̄txt+1 + l̄t, L̄t = −Ē−1
t C̄t, l̄t = −Ē−1

t ēt . (18)

In the remainder of this paper, we refer to the above procedure as Forward LQR.

millitsa@ece.neu.edu



46 J. van den Berg

4.3 Linear-Quadratic Smoothing

Performing both the standard LQR procedure (following Sect. 4.1) and the forward
LQR procedure (following Sect. 4.2) for a given linear-quadratic control problem
gives both the cost-to-go functions st and cost-to-come functions s̄t . The sum of the
cost-to-go st(xt) and the cost-to-come s̄t(xt) gives the total (past and future) cost
ŝt(xt) accrued between stage 0 and stage � by a minimal-cost sequence of states and
controls that visits xt at stage t:

ŝt(xt) = st(xt) + s̄t(xt) = 1
2 xT

t (St + S̄t)xt + xT
t (st + s̄t) + k̂. (19)

Let x̂t denote the state at stage t for which the total-cost function ŝt is minimal:

x̂t = argminxt
ŝt(xt) = −(St + S̄t)

−1(st + s̄t). (20)

(Note that this inverse exists since St > 0.) Then, the sequence of states {x̂0, . . . , x̂�} is
the minimum-cost sequence of states for the given linear-quadratic control problem.
The associated controls are given by the (inverse) control policies:

x̂t+1 = gt(x̂t, πt(x̂t)), x̂t = ḡt(x̂t+1, π̄t(x̂t+1)). (21)

Note also that πt(x̂t) = π̄t(x̂t+1).
The above can be seen as an LQR-analogue of the Kalman smoother [14]. The

Kalman smoother performs both a forward and a backward Kalman filter to com-
pute the posterior distributions of the state given all (past and future) observations.
The mean of these distributions gives the maximum-likelihood (and maximum-a-
posteriori) sequence of states. In fact, it can be shown that the above procedure is the
exact dual of the Kalman smoother. We use the insights of Eqs. (20) and (21) below
to develop Extended LQR.

5 Extended LQR

In this section we extend LQR and Forward LQR to the case of general non-linear
dynamics and non-quadratic local cost functions, in a similar way as how the extended
Kalman filter extends the Kalman filter to non-linear systems. In our (forward)
Extended LQR approach, we use the same equations as in standard LQR and for-
ward LQR to update the cost-to-go and cost-to-come functions, respectively. The
challenge is how to linearize the dynamics and quadratize the local cost functions
in each cycle of the recursion, since there are a-priori no obvious candidates for the
state and control input to linearize/quadratize about.

The idea of our approach to tackle this problem is to iteratively perform backward
and forward Extended LQR passes to compute increasingly better approximations of
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the total-cost functions ŝt , analogous to the (iterated) extended Kalman smoother [2].
In each pass, we use the states at which the current approximations of the total-cost
functions are minimal to linearize and quadratize, and use the control policies from
the preceding pass to select control inputs to linearize/quadratize about.

The iteration continues until convergence, i.e. when the minimum-total-cost states
no longer change. These states then provide a locally-optimal sequence of states for
the non-linear, non-quadratic control problem, and the control policies computed by
the last backward pass provide an approximately optimal feedback control policy.
The iteration starts with a backward pass, which we discuss first. We then discuss
the forward pass, and discuss convergence properties.

5.1 Backward Extended LQR

We assume during the backward pass that the cost-to-come functions, as defined by
S̄t and s̄t , as well as the inverse control policies π̄t are available for all t from the
preceding forward pass. Also, an initial quadratization point x̂� for stage � is available
from the forward pass. If this is the first backward pass (and no forward pass preceded
it), one can assume S̄t = 0, s̄t = 0, π̄t(xt+1) = 0, and x̂� = 0, or alternatively set these
values in accordance with any available prior information (such as a given initial
trajectory).

The backward pass closely follows the standard LQR approach of Sect. 4.1. We
initialize the backward pass by setting S� = Q� and s� = q� as in standard LQR,
where matrix Q� and vector q� are obtained by quadratizing the final cost function
c�(x�) about the given point x̂�, which puts it in the form of Eq. (9), with:

Q� = ∂2c�

∂x�∂x�

(x̂�), q� = ∂c�

∂x�

(x̂�) − Q�x̂�. (22)

We then proceed by performing recursive updates of the cost-to-go function for
� > t ≥ 0. In each step of the recursion, we compute St and st given St+1 and st+1,
starting with t = � − 1. For this, we use Eq. (11) as in standard LQR, where matrices
At , Bt , and ct are obtained by linearizing the dynamics gt(xt, ut), and matrices Pt ,
Qt , Rt , qt , and rt are obtained by quadratizing the local cost function ct(xt, ut).

The challenge is to choose a state x̂t and control input ût about which to linearize
the dynamics and quadratize the local cost function. In principle, we would like to
set x̂t to the minimum-total-cost state at stage t, as defined by Eq. (20). However, we
do not yet have an estimate of the total-cost function at stage t, since St and st are not
yet computed (at least not in the current backward pass). We do have a current-best
estimate of the state with minimal total-cost at stage t + 1, though:

x̂t+1 = −(St+1 + S̄t+1)
−1(st+1 + s̄t+1). (23)
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We can then set the state x̂t and the control input ût about which to linearize and
quadratize in accordance with Eq. (21), using the inverse dynamics and the inverse
control policy π̄t available from the preceding forward pass:

ût = π̄t(x̂t+1), x̂t = ḡt(x̂t+1, ût). (24)

Linearizing the (forward) dynamics gt(xt, ut) about x̂t and ût then puts it in the
form of Eq. (8), with:

At = ∂gt

∂xt
(x̂t, ût), Bt = ∂gt

∂ut
(x̂t, ût), ct = x̂t+1 − At x̂t − Bt ût, (25)

and quadratizing the local cost function ct(xt, ut) about x̂t and ût puts it in the form
of Eq. (9), with:

[
Qt PT

t
Pt Rt

]
= ∂2ct

∂[ xt
ut ]∂[ xt

ut ]
(x̂t, ût),

[
qt

rt

]
= ∂ct

∂[ xt
ut ]

(x̂t, ût) −
[

Qt PT
t

Pt Rt

] [
x̂t

ût

]
.

(26)

Given these matrices and vectors we can compute St and st using Eq. (11), and the
control policy πt using Eq. (12). This recursion is repeated until t = 0.

5.2 Forward Extended LQR

We assume during the forward pass that the cost-to-go functions, as defined by St and
st , as well as the control policies πt are available for all t from the preceding backward
pass. The forward pass closely follows the Forward LQR approach of Sect. 4.2.
We initialize the forward pass by setting S̄0 = 0 and s̄0 = 0, and then proceed by
performing recursive updates of the cost-to-come functions for 0 ≤ t < �.

In each step of the recursion, we compute S̄t+1 and s̄t+1 given S̄t and s̄t , starting
with t = 0. For this, we use Eq. (17), where matrices and vector Āt , B̄t , and c̄t are
obtained by linearizing the inverse dynamics ḡt(xt+1, ut), and matrices and vectors
Pt , Qt , Rt , qt , and rt are obtained by quadratizing the local cost function ct(xt, ut).

We select linearization and quadratization points in a similar manner as in the
backward pass. We do not yet have an estimate of the minimum-total-cost state at
stage t + 1 as defined by Eq. (20) to linearize the inverse dynamics about, since S̄t+1

and s̄t+1 are not yet computed, but we do have a current-best estimate of the state
with minimal total-cost at stage t:

x̂t = −(St + S̄t)
−1(st + s̄t). (27)

millitsa@ece.neu.edu



Extended LQR: Locally-Optimal Feedback Control … 49

Using the forward dynamics and the control policy πt available from the backward
pass, we then set x̂t+1 and ût in accordance with Eq. (21):

ût = πt(x̂t), x̂t+1 = gt(x̂t, ût). (28)

Linearizing the inverse dynamics ḡt(xt+1, ut) about x̂t+1 and ût and quadratizing
the local cost function about x̂t and ût then gives:

Āt = ∂ ḡt

∂xt+1
(x̂t+1, ût), B̄t = ∂ ḡt

∂ut
(x̂t+1, ût), c̄t = x̂t − Āt x̂t+1 − B̄t ût, (29)

and Pt , Qt , Rt , qt , and rt as in Eq. (26). We can then compute S̄t+1 and s̄t+1 using
Eq. (17), and the inverse control policy π̄t using Eq. (18). This recursion is repeated
until t = � − 1. Finally, we set an initial quadratization point for stage � for the
subsequent backward pass:

x̂� = −(S� + S̄�)
−1(s� + s̄�). (30)

5.3 Convergence Properties

Upon convergence, the properties of Eq. (21) hold, and the minimum-total-cost states
x̂t form an exact locally-optimal sequence of states for the non-linear, non-quadratic
control problem. The (linear) control policies πt from the last backward pass then
provide a first-order Taylor approximation about the minimum-total-cost states x̂t

of the true locally-optimal control policy, and the computed (quadratic) cost-to-go
functions provide a second-order Taylor approximation of the true locally-optimal
cost-to-go functions. Using the analogy with the iterated Kalman smoother [2], our
approach can be shown to perform Gauss-Newton updates towards a local optimum
and thus should exhibit a rate of convergence approaching second-order [5]. The
running-time per iteration is O(�n3).

Before convergence is achieved, the sequence of minimum-total-cost states is
not necessarily consistent with the non-linear dynamics. Also, as the minimal-total-
cost states are in a way an “average” between the minimal-cost-to-go states and the
minimal-cost-to-come states, of which only one is updated in each pass, the minimal-
total-cost states smoothly evolve. This is why our approach can converge reliably
without implementing convergence measures such as line search.
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6 Temporal Optimization

In many cases it is desirable to optimize the duration of the trajectory as part of the
optimal control problem [15]. Such an objective naturally fits within our framework,
by keeping the number of steps � constant, but making the time-step τ part of the
state, and penalizing linearly for the duration of the trajectory in the cost function.

Since the time-step must be strictly positive, we make its logarithm λ = log τ part
of the state. The augmented state x̃ and the augmented (continuous-time) dynamics
˙̃x(t) = f̃(t, x̃(t), u(t)) are then defined as:

x̃ = [xT , λ]T , ẋ(t) = f(t, x(t), u(t)), λ̇(t) = 0, (31)

where we use a time-step of τ = exp λt when evaluating the discrete-time dynamics
gt(x̃t, ut) (or its inverse). In addition, we create augmented cost functions c̃t that add
a term exp λt to the local cost functions ct of each stage 0 < t ≤ � (excluding 0),
such that in total the duration of the trajectory is linearly penalized:

c̃�(x̃�) = exp λ� + c�(x�), c̃t(x̃t, ut) =
{

ct(xt, ut) if t = 0,

exp λt + ct(xt, ut) if 0 < t < �.

(32)

Since the second derivative of exp λt with respect to λt is positive, the augmented
cost functions obey the requirements of Eq. (7).

With these definitions of augmented state, dynamics, and cost functions, we can
use Extended LQR as is to solve control problems with temporal optimization. Upon
convergence, the value of λt in the minimum-total-cost states ˆ̃xt is the same for all t,
as follows from Eq. (21) and the fact that λ̇(t) = 0 in the augmented dynamics.

7 Experiments

We experimented with Extended LQR on two systems; an iRobot Create differential-
drive robot, which we use mainly for illustrative purposes to gain insight into the
working of our approach and temporal optimization, and a simulated quadrotor heli-
copter, on which we perform extensive quantitative analysis and performance com-
parison with Iterative LQR (iLQR).

7.1 IRobot Create Differential-Drive Robot

Our first experiment involves a simulated and physical iRobot Create differential-
drive robot. Its state x = [px, py, θ ]T is described by its two-dimensional position
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(px, py) (m) and orientation θ (rad), and its control input u = [v�, vr]T consists of the
speeds (m/s) of the left and right wheel, respectively. The dynamics ẋ = f(x, u) of
the robot are non-linear and given by:

ṗx = 1
2 (v� + vr) cos θ, ṗy = 1

2 (v� + vr) sin θ, θ̇ = (vr − v�)/w,

where w = 0.258 m is the distance between the wheels of the iRobot Create.
We use the following cost functions in our experiments:

c�(x) = 1
2 (x − x�

�)
T Q(x − x�

�),

c0(x, u) = 1
2 (x − x�

0)
T Q(x − x�

0) + 1
2 (u − u�)T R(u − u�),

ct(x, u) = 1
2 (u − u�)T R(u − u�) + q

∑
i exp(−di(x)),

for 0 < t < �, where x�
� is the target state, x�

0 the initial state, and u� the nominal con-
trol input, which we set to (0.25, 0.25)m/s for the iRobot Create (which has maximum
wheel speeds of v�, vr ∈ [−0.5, 0.5]m/s). Matrices Q and R and scalar q are posi-
tive weight factors. The function di(x) gives the (signed) distance between the robot
configured at x and the i’th obstacle in the environment. The term q

∑
i exp(−di(x))

makes this local cost function non-quadratic in the state x. Since its Hessian is not
always positive-semidefinite, counter to the requirement of Eq. (7), it is regularized
when quadratizing the cost function. That is, its eigendecomposition is computed
and its negative eigenvalues are set to zero [8].

We experimented in the environment of Fig. 2, which measures 4 m by 6 m.
The obstacles each have a radius of 0.2 m, and the iRobot Create has a physical
radius of 0.17 m. The initial state was set to x�

0 = (0,−2.5, π) and the target state to
x�

� = (0, 2.5, π). We ran our approach for various fixed time-steps τ and temporal
optimization, with a fixed number of steps � = 150. Extended LQR was not seeded

Fig. 2 Trajectories resulting from the differential-drive robot experiments. The robot is shown every
second. See http://arl.cs.utah.edu/research/extendedlqr/ for videos of our experiments. a τ = 1

10 s.
b τ = 1

6 s, τ → 0.168 s. c τ = 1
5 s. d τ = 1

4 s
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Table 1 a Results of the simulations of Sect. 7.1 with a differential-drive robot. b Results of the
simulations of Sect. 7.2 with a quadrotor helicopter, averaged over 100 queries

a Differential-Drive Robot (n = 3, � = 150) b Quadrotor Helicopter (n = 12, � = 150)

Extended LQR Extended LQR Iterative LQR

time-step (s) #iters time (s) speed (m/s) time-step (s) #iters time (s) #iters time (s)

τ = 1/10 8 0.014 0.359 τ = 1/40 9.39 0.33 27.7 0.48

τ = 1/6 7 0.012 0.251 τ = 1/30 12.9 0.46 37.9 0.66

τ = 1/5 8 0.014 0.238 τ = 1/20 17.61 0.63 50.08 0.86

τ = 1/4 14 0.027 0.242 τ = 1/10 24.22 0.87 92.66 1.59

τ → 0.168 7 0.016 0.250 τ → 0.070 20.85 0.81 N/A

with an initial trajectory, and we let the algorithm run until the relative improve-
ment dropped below 10−4. Figure 2 shows the resulting trajectories. Table 1a gives
quantitative results, where the second column gives the number of iterations until
convergence, the third column the computation time required (for a C++ implemen-
tation on an Intel i5 1.60 GHz with 4 GB RAM), and the fourth column gives the
average speed of the robot along the trajectory.

To appreciate these results, it is important to note that the nominal control input u�

was set to 0.25 m/s. Hence, the robot is penalized for driving either faster or slower.
For a time-step of τ = 1

10 s, the robot only has �τ = 15 s to reach the goal; it therefore
chooses a short trajectory that comes close to the obstacles with a speed far above
the nominal. For τ = 1

6 s, the robot has 25 s to reach the goal, and we see a speed
close to the nominal and a trajectory that takes a safer margin with respect to the
obstacles. For τ = 1

4 s, on the other hand, the robot has as much as 37.5 s to reach
the goal, while it still wants to keep driving at a speed of 0.25 m/s. The result is that
the robot takes a long detour, while maintaining a speed slightly below the nominal.

The above results clearly show why temporal optimization can be useful. The
results of temporal optimization are shown the bottom row of Table 1a. In this case,
the resulting trajectory is visually indistinguishable from the trajectory resulting from
τ = 1/6 s (Fig. 2b) and the resulting time-step (0.168 s) is only slightly longer to
allow for an average speed of exactly the nominal. The results suggest that including
temporal optimization does not significantly affect the convergence rate of Extended
LQR. The computation time slightly increases, which reflects the higher dimension
of the state after adding the time-step.

We also successfully executed the control policy resulting from these experiments
on a physical iRobot Create (see Fig. 1) in a laboratory with motion capture for
state estimation. This shows that the control policy can account for disturbances to
which a real robot is inherently subject, despite the fact that Extended LQR does not
specifically take into account motion uncertainty.
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7.2 Quadrotor Helicopter in 3-D Environment

Our second experiment considers a simulated quadrotor helicopter, modeled after
the Ascending Technologies’ ResearchPilot. Its state x = [pT , vT , rT , wT ]T is 12-
dimensional, and consists of its position p (m), velocity v (m/s), orientation r (rotation
about axis r by angle ‖r‖ (rad)), and angular velocity w (rad/s). Its control input
u = [u1, u2, u3, u4]T (N) consists of the forces exerted by each of the four rotors.
The dynamics are non-linear, and given by:

ṗ = v,

v̇ = −ge3 + ((u1 + u2 + u3 + u4) exp([r])e3 − kvv)/m,

ṙ = w + 1
2 [r]w + (1 − 1

2‖r‖/ tan( 1
2‖r‖))[r]2w/‖r‖2,

ẇ = J−1(ρ(u2 − u4)e1 + ρ(u3 − u1)e2 + km(u1 − u2 + u3 − u4)e3 − [w]Jw),

where ei are the standard basis vectors, g = 9.8 m/s2 is the gravity, kv = 0.15 is a
constant relating the velocity to an opposite force (caused by rotor drag and induced
inflow), m = 0.5 kg is the mass, J = 0.05I (kg m2) is the moment of inertia matrix,
ρ = 0.17 m is the distance between the center of mass and the center of the rotors,
and km = 0.025 is a constant relating the force of a rotor to its torque. The notation
[a] refers to the skew-symmetric cross-product matrix of a. We used the same local
cost functions as in Sect. 7.1, where the nominal control input u� was set to 1

4 mg N
for each of the rotors, which is the force required to let the quadrotor hover.

We experimented in the 3-D environment of Fig. 3a measuring 6 m by 6 m by 6 m
for varying initial and target states and time-steps, and compared the performance of
Extended LQR to iLQR. Neither algorithm was initialized with a given trajectory, but
iLQR was implemented with line search. In all simulations we used a fixed number of
steps � = 150, and modeled the geometry of the quadrotor as a sphere with a radius of
0.3 m. The initial state x�

0 was set to (p, 0, 0, 0), where initial position p was randomly
sampled from the edges of the environment. The target state x�

� = −x�
0 was set to

the antipodal point in the environment. Due to the multiple homotopy classes in
the environment, Extended LQR and iLQR often converge to different local optima.
Therefore, we averaged the computation time and the number of iterations for both
methods over the same 100 random queries for each value of the time-step, which
we let range from τ = 1

40 s to τ = 1
10 s. Figure 3b graphs the quantitative results, and

Table 1b gives actual numbers for part of the experiments.
These results suggest that Extended LQR requires on average about a factor 3

less iterations than iLQR. However, per iteration, Extended LQR requires about
twice the computation time of iLQR (35 ms versus 17 ms). This is not surprising, as
Extended LQR relinearizes and requadratizes in both the backward and the forward
pass, whereas iLQR only does so in its backward pass. Combining these effects, the
performance gain of Extended LQR over iLQR is about a factor 1.5. The graph also
shows that the number of iterations required increases as the time-step (and hence
the duration of the trajectory) increases. This is true for both Extended LQR and
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iLQR, although our results suggest that this effect is stronger for iLQR. The cause
of this is not entirely clear; an intuitive explanation may be that the “well” of the
cost-potential is less “deep” for longer trajectories, as there is less hurry to arrive
at the goal. For the quadrotor simulations Extended LQR required about 18 times
more computation time per iteration than for the differential-drive robot simulations,
reflecting the trebling of the dimension n of the state.

We also ran Extended LQR with temporal optimization on the same 100 queries
(see the bottom row of Table 1b; an example trajectory is shown in Fig. 3a). In this
case the resulting time-step was on average 0.070 s, and it took on average 20.85
iterations until convergence. This is consistent with the number of iterations required
for a fixed time-step of 0.07 s (see Fig. 3b), confirming that temporal optimization
does not negatively affect the performance of Extended LQR.

Overall, we observed that the local optimum Extended LQR converges to is rela-
tively sensitive to the parameter settings. This is because we did not seed our approach
with an initial trajectory, and in the first few iterations the minimum-cost-states
“bounce around” relatively unpredictably. In most cases Extended LQR converged
quickly, where the relative improvement typically declined by about a constant fac-
tor with each iteration. A second-order convergence rate was not observed in our
experiments, for neither iLQR nor Extended LQR. This is likely the result of the
way the obstacle-cost term is quadratized, in which negative second-order informa-
tion is essentially “thrown away” in order to ensure positive-semidefiniteness. In all
experiments, Extended LQR converged reliably without line search.

Quadrotor Helicopter (n= 12, � = 150)

(a) (b)

τ → 0:080s

Fig. 3 a A trajectory resulting from the quadrotor helicopter experiments of Sect. 7.2 with temporal
optimization. The robot is shown every half second. For videos of our experiments, see http://arl.
cs.utah.edu/research/extendedlqr/. b Chart indicating the relative performance of extended LQR
(blue lines) and iLQR (red lines) for varying values of the time-step in terms of computation time
(dotted lines) and number of iterations (solid lines) averaged over 100 queries
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8 Conclusion

We presented Extended LQR, a novel approach to the non-linear, non-quadratic opti-
mal control problem. Experiments showed that our approach converges quickly to a
locally-optimal solution, outperforming iLQR, and does not require additional con-
vergence measures for reliability. In addition, this paper introduced the novel concept
of LQR-smoothing, which is at the foundation of Extended LQR. We also showed
that Extended LQR can naturally be applied to temporal optimization problems. We
made source code of Extended LQR publicly available for download at http://arl.cs.
utah.edu/research/extendedlqr/.

We have presented our approach for deterministic dynamics, implicitly relying
on the independence of the optimal LQR solution to the process noise variance. An
interesting question for future work is whether our approach can be extended for the
risk-sensitive control problem or the stochastic optimal control problem with state
and control input-dependent process noise. In [25] and [21] it is shown that LQR can
naturally be extended for such settings. Our approach would require a formulation
of the inverse stochastic dynamics, which seems to be the main challenge.

Potential application domains of Extended LQR include optimal kinodynamic
motion planning, where Extended LQR could serve as a local planner in RRT* [10]
or as part of LQR-trees [18], and belief space planning, where Extended LQR could
improve upon the iLQR-based approach of [23].
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Adaptive Communication in Multi-robot
Systems Using Directionality
of Signal Strength

Stephanie Gil, Swarun Kumar, Dina Katabi and Daniela Rus

Abstract We consider the problem of satisfying communication demands in a multi-
agent system where several robots cooperate on a task and a fixed subset of the
agents act as mobile routers. Our goal is to position the team of robotic routers
to provide communication coverage to the remaining client robots. We allow for
dynamic environments and variable client demands, thus necessitating an adaptive
solution. We present an innovative method that calculates a mapping between a
robot’s current position and the signal strength that it receives along each spatial
direction, for its wireless links to every other robot. We show that this information can
be used to design a simple positional controller that retains a quadratic structure, while
capturing the behavior of wireless signals in real-world environments. Notably, our
approach does not necessitate stochastic sampling along directions that are counter-
productive to the overall coordination goal, nor does it require exact client positions,
or a known map of the environment.

1 Introduction

Multi-agent robotic systems perform many complex tasks through coordination, such
as cooperative search of an environment, consensus, rendezvous, and formation con-
trol [1–3]. As cooperation is at the core of multi-robot tasks, the performance of these
systems directly hinges on the robots’ ability to communicate reliably. To maintain
certain communication guarantees, these systems need a mapping of communication
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quality to robot placement. Producing such a mapping however is quite challenging
[4]. Past literature employs two broad strategies to address this challenge: On the
one hand, there is the Euclidean disk model which assumes that the signal quality
of a link is a function of distance between the communicating vehicles. This model
is deterministic and simple, and hence when incorporated in a robotic controller,
yields simple positional optimizations for a wide range of collaborative tasks [1–3].
Unfortunately, the Euclidean model is too simplistic and fails to represent wireless
signals in realistic environments [4]. On the other hand, there are stochastic sampling
methods [4–6] that measure the wireless signal strength in a robot’s vicinity to fit
parameters for intricate probabilistic communication models. While such methods
are not oblivious to wireless channels, they require exploratory sampling [7] along
directions that may be counter-productive to the overall coordination goal. Further,
they often assume the knowledge of parameters based on the structure and material
composition of the environment.

Our objective here is to (i) present a novel method for capturing the spatial vari-
ation of wireless signals in the local environment without sampling along counter-
productive directions, or requiring information about the environment and/or the
channel’s distributions and (ii) derive a control formulation that maintains the struc-
tural (quadratic) simplicity allowed by the Euclidean disk model while accounting for
this wireless channel feedback. First, we introduce an innovative approach for map-
ping communication quality to robot placement. We calculate a mapping between
a robot’s current position and the signal strength that it receives along each spa-
tial direction, for every wireless link with other robots. This is in contrast to existing
methods [5, 6], which compute an aggregate signal power at each position but cannot
distinguish the amount of signal power received from each spatial direction.

Second, we construct an optimization for positioning a team of robot routers
to provide communication coverage to an independent set of client vehicles using
the directional information provided by our mapping. We aim for a solution that is
adaptive to variable communication quality demands by the clients, as well as changes
in the wireless channels due to natural fluctuations or a dynamic environment. Being
able to measure the profile of signal strength across spatial directions in real-time
yields a much more capable controller. For example, the controller uses the profile to
find directions of movement that yields better communication quality. The profile also
helps estimate the confidence with which the controller can improve signal power by
navigating the robot along any of these directions. The confidence can then be used
to control the speed of the robot, thereby improving stability and convergence time.
Furthermore, the controller can leverage the entire profile of signal strength across
directions, to optimize communication with multiple robots by choosing a direction of
movement corresponding to a strong signal that strikes trade-offs between competing
demands. Interestingly, we show that such optimizations can be formulated in terms
of simple quadratic costs, similar in spirit to the disk model. Further, they can be
made independent of environment-dependent parameters, or even client positions.

A key question remains: how do we calculate the signal strength along each spatial
direction? The naive approach would use directional antennas, a type of antenna that
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receives signals only from a cone in space. Unfortunately, directional antennas are
bulky and have low spatial resolution [8] (about 60◦), making them ill-suited for small
agile robots. To address this problem, we employ Synthetic Aperture Radar (SAR), a
technique that leverages movement to emulate a high-resolution directional antenna
[9]. In order to achieve this, we must derive a method for implementing SAR using
off-the-shelf wireless cards, a challenging task since these devices are not intended
for this purpose.

We implement our method in a multi-robot testbed that has two robotic routers
serving three robotic clients. We conduct our experiments in different indoor environ-
ments without providing the robotic controller the environment map or the clients’
positions. We observe the following: (1) Our system consistently positions the robotic
routers to satisfy the robotic client demands, while adapting to changes in the envi-
ronment and fluctuations in the wireless channels; (2) Compared to the disk model
[1, 2] and the stochastic approach [10, 11] under identical settings, our system con-
verges to accurately satisfy the communication demands, unlike the disk model, while
significantly out-performing the stochastic method in terms of empirical convergence
rate (see Fig. 8 in Sect. 5.4).

Contributions: The contributions of this paper are three-fold: (1) We present a
method to enable a robotic receiver to find the profile of signal strength across spatial
directions for each sender of interest. To this end, we perform synthetic aperture radar
(SAR) techniques using standard Wi-Fi packets exchanged between two independent
nodes; (2) We develop an optimization that leverages this directional signal profile
to position robotic routers to satisfy heterogeneous communication demands of a
network of robotic clients, while adapting to real-time environmental changes; (3)
We implement our design and demonstrate its empirical gains in comparison to both
the disk model and the stochastic method.

2 Related Work

Our work is related to past papers on multi-robot coordination to achieve a collabo-
rative task while supporting specific communication demands [4–6, 10, 12]. These
papers recognize the importance of measuring the signal strength on real-world wire-
less links to model communication quality. Such papers typically build analytical
models of the signal strength on a wireless link to account for the effects of distance,
obstacles, and reflections on the signal. The models are then supplemented with mea-
surement data. While these approaches provide a more realistic integration of robot
coordination with communication constraints than the disk model, they often necessi-
tate parameter fitting that are environment-dependent. Further, they require sampling
of signal strength along stochastic directions that may be counter-productive to the
overall coordination goal. In comparison to these papers, we introduce a system that
captures the different directions of a signal, as opposed to only its magnitude at a
particular position. This allows us to satisfy variable demands from multiple robotic
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(a) (b) (c) (d)

Fig. 1 Schematic drawings demonstrating the differences between the current method and previous
methods

clients in an environment-oblivious fashion, and without sampling the signal along
stochastic directions (Fig. 1).

Our work is also related to past work on synthetic aperture radar (SAR). SAR
allows us to exploit the natural movements of robots to calculate the signal strength
along each spatial direction. Past work on SAR however assumes a single device
that transmits a signal and receives its reflections [9, 13–15], and none of this work
can use off-the-shelf Wi-Fi cards. In contrast, we present a system that extracts SAR
information from standard Wi-Fi packets transmitted between different devices.

3 Problem Statement

We consider a mobile network with two classes of members, n robotic clients (or
clients) whose positions are not controlled, and a team of k robotic routers whose
mobility we control. Our goal is to position the robotic routers to provide adaptive
wireless communication coverage to the clients, while allowing variable communi-
cation quality demands for all clients, and where exact client positions are unknown.
For each client j ∈ [n] = {1, . . . , n}, we define demanded communication quality
qj > 0,1 and achieved communication quality ρij to each router i (where i ∈ [k]),
both expressed in terms of Effective Signal to Noise Ratio (ESNR) that has a direct
mapping to rate in Mb/s [16].2 Additionally, let every client j be given an importance
αj > 0. We define the notion of service discrepancy for each pair of robots (i, j) to
be the difference between the demanded and achieved communication quality scaled
by the importance of the client.

wij = max(αj(qj − ρij)/qj, 0) (1)

1Note that all quantities in this section are time-dependent; we omit this dependency for simplicity.
2We choose to work with ESNR values rather than rates since the rates supported on a link are
discretized (non-continuous).
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Physically, this is the fraction of the client’s communication demand that remains
to be satisfied, scaled by αj. Denote by ci ∈ R

d the position of the ith robot router
and by pj ∈ R

d the position of the jth client3 and Ct = {c1,t, . . . , ck,t} is the set of all
router positions at time t. Given a cost g in terms of signal quality, communication
demands, and agent positions, we wish to position each robotic router to minimize the
largest discrepancy of service between routers and clients. However, the true form of
this function g has an intricate dependence on the position of the client, router, and the
environment. Thus an inherent challenge to solving this problem is approximating
the influence of spatial positioning on communication quality in a way general to
different environments. We have a joint goal to (1) find fij : [−π

2 , π
2 ] → R (a relation

capturing directional information about the signal quality between i and j), and an
approximation g̃ of g that is a cost characterizing the anticipated communication
quality for the router-client pair (i, j) at a proposed router position ci, and (2) use this
cost to optimize router positions to minimize the service discrepancy to each client.
Formally,

Problem 1 Find a mapping

fij :
[
−π

2
,
π

2

]
→ R (2)

that maps spatial direction to wireless signal strength directly from channel measure-
ments, and a cost

g̃(ci, Ct, wij, fij) > 0 (3)

that is independent of the environment and client positions, has a simple quadratic
form, and whose minimization over ci directly relates to increasing signal quality.
We aim to find robot router positions, Ct+1 that minimize the maximum service
discrepancy over all clients j by solving the following min–max problem:

Ct+1 = arg min
ci∈C

{max
j

min
i

g̃(ci, Ct, wij, fij)} (4)

Intuitively, the solution to this optimization problem favors “fair” solutions where
the maximum service discrepancy is minimized over all clients. We dedicate the
next sections of this paper to (1) Developing a method that computes fij as the profile
of signal qualities along each direction θ for each link (i, j) found directly from
channel measurements; and (2) Developing an optimization framework that utilizes
this directional information to handle trade-offs between competing client demands,
and position all routers to jointly minimize the maximum service discrepancy over
the links in the communication network.

3In this paper we mainly consider d = 2 although all concepts are extensible to d = 3.
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Fig. 2 a, c LOS and NLOS topologies annotated with signal paths. b, d f (θ) of the signal in LOS
and NLOS. e Shows how θ is defined in SAR. f Shows h(ti), the forward channel from transmitter
to receiver and hr(ti), the reverse channel from receiver to transmitter at time ti

4 Approach

4.1 Computing the Directional Power Profile
of a Wireless Link

In this section, we develop the first component of the solution of Problem 1; namely,
we derive a method to calculate f (θ), the mapping which captures the strength of the
signal from a robotic client to its router along each direction θ .4 Where this mapping
can be updated often, roughly once every 6 cm of motion.

Before we explain how we compute f (θ), we describe this function to help under-
stand the information it captures. Assume we have a robotic client and router, where
the router moves along some trajectory. We will define the direction θ relative to
the tangent to the router’s trajectory at each point. Consider the scenario in Fig. 2a,
where the robotic client is in line-of-sight at −50◦ relative to the robotic router,
which is moving along the horizontal axis. In this case, one would expect f (θ) to
have a single dominant peak at −50◦, as shown in Fig. 2b. Now consider the more
complex scenario in Fig. 2c, where the environment has some obstacles and one of
these obstacles obstructs the line-of-sight path between the router and its client. In

4For simplicity, we denote fij(θ) as f (θ) as we consider only the single link between robotic router
i and client j for the rest of this section.
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this case, f (θ) would show two dominant peaks at 20◦ and −30◦ that correspond to
the two reflected paths from surrounding obstacles, as shown in Fig. 2d.

Advantage over Sampling Methods: One may estimate f (θ) by sampling the signal
power similar to stochastic techniques [5, 10, 11]. In this case, one has to move the
router along each direction, compute the power in all these new positions relative
to the first, and draw the profile f (θ). Unfortunately, this approach leads to much
wasted exploration. This is because the signal power does not change reliably when
the robot moves. For example, if the robot moves for 5 or 10 cm, it is very likely
that the resulting change in the signal power is below the variability in noise. Hence,
measurements of power over short distances are likely to be marred by noise. To
obtain reliable measurements of changes in the signal power, the robot has to move
significantly along potentially counter-productive paths.

To address this limitation, our approach relies on the channel phase as opposed
to the power. Specifically, at any position the wireless channel can be expressed
as a complex number h(t) [17]. The magnitude of this complex channel captures
the signal power (more accurately, its square-root). The phase of the channel has
traditionally been ignored by robotic systems. However, the phase changes rapidly
with motion. For Wi-Fi signals at a frequency of 5 GHz, the phase of the channel
rotates by π every 3 cm. This far exceeds any rotation due to noise variability. Thus,
by measuring channels as complex numbers and tracking changes in its phase as
the robot moves, we reliably estimate signal variation without much exploration. In
the next section, we explain how to use a technique called synthetic aperture radar
(SAR) to extract the received signal strength along each direction from changes in
channel phase. Note that SAR does not need exploring all directions; the robot can
move along its path without extra exploration or sampling. SAR uses the resulting
variations in channel phase over distances of a few centimeters to find f (θ).

4.1.1 Synthetic Aperture Radar (SAR)

Synthetic Aperture Radar (SAR) enables a single antenna mounted on a mobile
device to estimate the strength of the signal received along every spatial direction.
We leverage the natural motion of a robotic router to implement SAR and measure
f (θ) for each of its robotic clients using an omni-directional antenna. To do so, the
robotic router measures the channel h(t) from its client as it moves along any straight
line. The straight line path over which the router acquires data is on the order of half
a wavelength (centimeters); assuming the source is stationary and the router either
moves at a known constant velocity or its position is known for the traversal time
window, then a sufficient amount of usable channel data can be collected. This means
every few centimeters the router can have an updated measurement of f (θ), for all
values of θ .

Specifically, Let h(t) for t ∈ {t0, . . . , tm} be the m+1 most recent channel measure-
ments, corresponding to the robot moving a distance d(t0) . . . d(tm). SAR computes
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the received signal strength across spatial directions f (θ) as:

f (θ) =
∣∣∣∣∣
∑

t

h(t)e−j 2π
λ

d(t)cosθ

∣∣∣∣∣

2

, (5)

where λ is the wavelength of the Wi-Fi signal. We refer the reader to [18] for the analy-
sis of this standard SAR equation. At a high level, the multiplying terms e−j 2π

λ
d(t)cosθ

in Eq. (5) project the channels h(t) along the direction of interest θ by compensating
for incremental phase rotations introduced by the robot’s movement to all paths of
the signal arriving along θ .

Note that SAR finds the signal power from every angle θ simply by measuring
the channels,5 without needing prior tuning to any given direction. In fact, moving
by around a wavelength (about 6 cm) is sufficient to measure the full profile of f (θ).

Therefore, SAR is a natural choice for autonomous robotic networks since it
exploits the mobility of the robots to compute f (θ). Further, it only requires the
robot to move along a small straight line along any arbitrary direction, and does not
require it to explore directions counter-productive to the overall coordination goal.
Note that SAR requires only the relative position of the robotic router d(t) and the
both the magnitude and phase of the channel h(t). It does not require the topology
of the environment nor the exact location of the transmitter.

4.1.2 Challenges in Implementing SAR on Independent Wireless
Devices

A key challenge in adapting SAR to multi-robot systems is that all past SAR-based
solutions [9, 13, 15] are for radar-like applications, where a single device transmits
a radar signal and receives its reflections off an imaged object, e.g., an airplane.
However, in our scenario the transmitter and receiver are completely independent
wireless devices (i.e., the robotic client and router, respectively). This means that
the transmitter robot and the receiver robot have different frequency oscillators. In
practice, there is always a small difference between the frequency of two independent
oscillators. Unfortunately, even a small offset Δf in the frequency of the oscillators
introduces a time varying phase to the wireless channel.

For instance, let h(t0), h(t1), . . ., h(tm) be the actual wireless channel from the
robotic client to the robotic router at times t0, t1, . . . , tm. The channel observed by
the router from its client ĥ(t0), ĥ(t1), . . ., ĥ(tm) are given by:

ĥ(t0) = h(t0), ĥ(t1) = h(t1)e
−2πΔf (t1−t0), . . . , ĥ(tm) = h(tm)e−2πΔf (tm−t0). (6)

Hence, the phase of the channels are corrupted by time-varying values due to the
frequency offset between the transmitter and the receiver. Fortunately, we can correct

5Of course, the resolution at which θ is available depends on the number of channel measurements.
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for this offset using the well-known concept of channel reciprocity [17]. Specifically,
let hr(t) denote the reverse channel from the robotic router to its client, as shown
in Fig. 2f. Reciprocity states that the ratio of the forward and reverse channels stays
constant over time, subject to frequency offset, i.e. hr(t) = γ h(t), whereγ is constant.
Further, the frequency offset in the reverse direction Δr

f is negative of the offset in

the forward direction, i.e. Δr
f = −Δf . Thus, the observed reverse channels ĥr(t0),

ĥr(t1), . . ., ĥr(tm) are given by:

ĥr(t0) = hr(t0), ĥr(t1) = hr(t1)e
2πΔf (t1−t0), . . . , ĥr(tm) = hr(tm)e2πΔf (tm−t0). (7)

Multiplying Eqs. 6 and 7 above and using hr(t) = γ h(t), we have ĥ(t)ĥr(t) =
h(t)hr(t) = γ h(t)2 ⇒ h(t) =

√
ĥ(t)ĥr(t)/γ . Hence we re-write Eq. (5) as:

f (θ) =
∣∣∣∣∣
∑

t

√
ĥ(t)ĥr(t)e−j 2π

λ
d(t)cosθ

∣∣∣∣∣

2

, (8)

where the constant scaling γ is dropped for simplicity. Hence, to measure f (θ) the
router and client simply need to measure their channels at both ends.6 In the next
section, we explain how we leverage f (θ) on each link to control the position of
multiple robotic routers to meet the clients’ communication demands.

4.2 Optimizing Robotic Router Placement Using Channel
Feedback

In this section, we target the problem of placing a team of mobile router vehicles
at locations such that they provide wireless coverage to client vehicles, each with
different communication demands. Specifically, using as input the channel feedback
fij(θ) derived in the previous section, we aim to find a function g̃ that can be optimized
over router positions such that:

Ct+1 = arg min
C

{max
j

min
ci∈C

g̃(ci, Ct, wij, fij)} (9)

Our focus in this section is to find a function g̃ that has three desirable properties: (1)
It is quadratic; (2) It allows for trade-offs between clients with competing demands as
captured by the service discrepancies wij; and (3) It is independent of client positions
pj. In the rest of this section, we show how to capitalize the rich spatial information

6In practice, the router and client transmit back-to-back packets with a small gap δ ≈ 200µs to
obtain ĥr(t + δ) and ĥ(t), respectively. The router collects these values and approximates ĥ(t)ĥr(t)
as ĥ(t)ĥr(t + δ)e−j2Δf δ . The router computes this 10 times per second (an overhead of just 0.1 %).
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provided by fij(θ), to derive a cost g̃ possessing the three desired qualities. We can
then optimize this cost to complete our objective of robot router placement that best
satisfies the communication demands of the clients.

4.2.1 A Generalized Distance Metric for Incorporation
of Channel Feedback

Our first goal is to translate signal quality over all directions, fij(θ), to a cost g̃ that can
be optimized over router positions. We begin with the case where all positions are
known and extend to the position independent case in Sect. 4.2.3. Consider a single
router-client pair (i, j) located at positions (ci, pj). A disk model approach to service
this client does not use fij(θ) at all. Instead, it relates improving communication
quality between the router and client to reducing the Euclidean distance between
them, i.e. the cost g̃ := dist(pj, ci). The appeal of such a cost is in its simple quadratic
form that can be easily optimized. Unfortunately, the cost is oblivious to the actual
wireless channel at the client and fails to capture the current service discrepancy
which can be large even at small distances (say, due to obstacles).

Our system avoids this pitfall, while retaining simplicity, by incorporating real-
time channel feedback into a generalized distance metric. In particular, we do not
assume that the shortest distance for enabling better communication between two
robots is the straight line path between them, but rather the path along the θmax, the
direction of maximum signal strength from the mapping fij(θ). Thus, the client is
recommended to move towards vθmax , the unit vector along θmax.

Importantly, the recommended heading direction vθmax may exhibit variation due
to noise or multipath affecting the wireless link. To account for these effects, while
not over-fitting to noise, we leverage the entire fij signal profile to design a confidence
metric σij in heading direction. Intuitively, σij captures the“variance” of fij around
θmax.7 We would like to encode this quantity into our controller such that vθmax direc-
tions of high confidence are followed more aggressively (larger displacements along
these directions), and the opposite is true of vθmax directions with low confidence.
Specifically, σij falls under the following categories: (1) σij < 1: Indicates a high
confidence in vθmax due to a sharp peak in fij. The robot is moved at higher speeds; (2)
σij ≈ 1: Indicates that fij is noisy, so the robot must move slowly; (3) σij > 1: Indi-
cates that fij has multiple significant peaks owing to multi-path. We study this case,
and particularly the opportunity it presents for making trade-offs between clients,
more elaborately in Sect. 4.2.2.

We can use the heading direction and confidence to design a cost function g̃ that
accurately captures the cost of communication in the spatial domain. Interestingly,
we can express this cost as a generalized distance metric called the Mahalanobis
distance. The square of the Mahalanobis distance is a cost function (paraboloid)
with ellipsoidal level sets (Fig. 3). We design our cost by orienting these level sets
so that the direction of steepest descent is along vθmax . We then skew the ellipsoidal

7Mathematically, σij = ∑
θ [(θ − θmax)

2fij(θ)]/ ∑
θ [(θ − θmax)

2mean{fij(θ)}].
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Fig. 3 These plots show the level sets of Euclidean and Mahalanobis distance functions. a Euclidean
distance. b Mahalanobis (Low Conf). c Mahalanobis (High Conf)

level sets using the confidence σij, so that a higher confidence translates to a steeper
descent. Mathematically, the Mahalanobis distance is given by:

Definition 1 (Mahalanobis Distance) Given a positive definite matrix M ∈ R
dxd , a

vector x ∈ R
d , and a vector y ∈ R

d , the Mahalanobis Distance between x and y is:

distM(x, y) =
√

(x − y)T M(x − y) (10)

Euclidean distance is a special case of the Mahalanobis distance (see Fig. 3a) with
M = I where I is the identity matrix of appropriate dimension.

Here, M = Q�QT is a positive-definite matrix, where Q consists of orthogonal
eigen-vectors and � contains the corresponding eigen-values. We simply set one of
the eigen-vectors of Q to the heading direction vθmax . To skew the ellipsoid, we set the
ratio of the eigen values {λ1, λ2} in � to the confidence σ 2, i.e. λ2/λ1 = σ 2, where λ1

is the eigen-value corresponding to vθmax . For e.g., In Fig. 3b, where σ ≈ 1 (i.e. poor
confidence), the level sets are nearly circular, leading to a shallow descent in cost;
while Fig. 3c, where σ < 1 (i.e. high confidence), the level sets are skewed, leading
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to a steep descent in cost along vθmax . In other words, the cost function has an elegant
geometric interpretation, akin to Euclidean distance, but is derived directly from
channel measurements. Further, the cost function g̃ := distMij (pi, cj) from Eq. (10)
is quadratic, a desirable property for optimizations.

4.2.2 Network Trade-Offs

In this section, we show how our optimization framework readily extends to a multi-
agent scenario and study the different trade-offs. We show that via the setting of
two parameters, both set automatically from wireless channel data, the resulting
positional controller can be made to greedily optimize one client vs. strike trade-offs
between multiple clients. First, we focus on managing service discrepancies specified
by wij. wij aims to bias the controller by assigning higher weight to users with larger
service discrepancies. To do this, we scale the cost function g̃ = distMij (pi, cj) by the
square of the discrepancy w2

ij to optimize:

rM(P, C) = max
pj∈P

min
ci∈C

{w2
ijdistMij (pi, cj)} (11)

Second, we highlight the subtle role played by the confidence σij in managing network
trade-offs. For instance, consider a scenario with two clients: 1 and 2, where client-1
demands greater communication quality (as specified by wij’s). Suppose client-1 has
a highly confident vθmax as shown in Fig. 4a (i.e. σij < 1). As expected, the robotic
router is directed towards client-1 as shown in Fig. 4c. In the more interesting scenario
in Fig. 4b, client-1’s confidence is poor due to multiple peaks in the signal profile
fij (i.e. σij > 1). Here, the router strikes a trade-off and services client-2 instead,
as this may potentially benefit client-1 as well due to the multipath recognized in
client-1’s fij(θ) map. The intuition behind this is simple. Eq. (13) above, scales the
ellipsoidal cost function based on the discrepancies wij’s. However, recall that the
ellipsoidal cost function is steep (or shallow) depending on whether the confidence
is high (or low) and this is attained by setting the ratio of eigenvalues λ2/λ1 of Mij. In
extremely low confidence scenarios such as Fig. 4b, the higher value of discrepancy
of client-1 is masked by its low value of confidence. This balances the trade-off in
favor of client-2, despite a lower discrepancy.

4.2.3 A Position-Independent Solution

A simple relaxation to the cost from the previous section frees the optimization of
using client positions, while maintaining its simple structure and desirable properties
developed above. Consider a given stepsize γ > 0. We replace client positions pj in
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the optimized router direction

Eq. (13) with “virtual” positions p′
ij:

p′
ij = ci,t + γ wijvθmax (12)

Loosely, a client is no longer directly observed but rather estimated to be along the
relative direction vθmax and at a distance ofγ wij with respect to the ith router. As before,
vθmax , is the heading direction associated with the maximum stength signal direction
θmax. As a client’s demand is better satisfied by router i, the service discrepancy wij

tends to 0 and the client is perceived as being closer to router i. The intuition here
is that routers better equipped to service a particular client as reflected by the wij

term, will view the client as “closer” and those routers with a weaker signal to the
same client will view this client as farther away. This results in a natural method of
assigning client nodes to routers by effectively sensing over the wireless channels.
Our final cost takes the form:

rM(C) = max
j∈{1,...,n} min

c′
i∈C′

{dist2Mij
(ci,t + γ wijvθmax, c′

i)} (13)
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By expanding the squared per-link cost dist2Mij
(ci + γ wijvθmax , c′

i) from Eq. (13):

(c′
i − ci,t)

T Mij(c
′
i − ci,t) − 2γ wijλθij v

T
θmax

(c′
i − ci,t) + γ 2w2

ijλθ ij (14)

we note that as wij → 0 the first term in Eq. (14) favors stable solutions where
c′

i = ci,t , i.e. the router reaches a static solution when all of its assigned clients have
zero service discrepancy.

Finally for a set of routers with positions C, rM(C) reflects the cost of the client
with the largest service discrepancy. The positions C that minimize rM(C) can be
found by solving this optimization as a second order cone program as in [19, 20].

As defined in our problem statement, Problem 1, we have found a set of quadratic
costs g(pj, ci, Ct, wij, fij) = (p′

ij(ci,t, wij, vθmax) − ci)
T Mij(p′

ij(ci,t, wij, vθmax) − ci) that
can be optimized in the desired min–max formulation from (4) in order to find an
optimized robotic router placement for our wireless network.

5 Experimental Results

We evaluated our system on a five-node testbed with two routers and three clients.
Each node was an ASUS 1015PX netbook equipped with an Intel 5300 Wi-Fi card
mounted on an iRobot Create robot. We implemented SAR by modifying the iwlwifi
driver on Ubuntu 10.04. We used the 802.11 CSI tool [21] to obtain channel infor-
mation (ĥ(t) in Eq. (8)). The routers communicated with a central laptop emulating
the base for control information and human input. We performed our experiments
in a room with a Vicon motion capture system to aid robot navigation. Our testbed
contains obstacles to simulate both line-of-sight and non-line-of-sight scenarios.

5.1 Computing Direction of Maximum Signal Strength

We first observe how effectively our system computes the direction of maximum
signal strength θmax, on a wireless link. We consider a single client, serviced by
a robot router that is: (1) In direct line-of-sight (LOS) as shown in Fig. 5a. (2) In
possible non-line-of sight (NLOS) scenarios due to obstacles as shown in Fig. 5b.
We drive the robot router in a lawn-mover pattern and get θmax at regular intervals.

Results: Figure 5a and b depict the gradient field with the arrows indicating θmax

in LOS and NLOS, respectively. The gradient field in LOS accurately directs the
robot router towards the client regardless of its initial position. In NLOS, the robot is
directed away from obstacles so that controller can route around obstacles to improve
signal strength. We stress that θmax is found locally at the router purely via wireless
channels and its own position, without prior knowledge of the environment. Further,
the plots are not static and naturally change over time, especially in dynamic settings.
Thus our system obtains instantaneous θmax values locally in real-time.
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Fig. 5 Gradient field of θmax and power profile for a Line-of-sight and b Non-line-of-sight

Figure 5c and d plot fij(θ), the power profile of the signal along different directions,
for a candidate location in line-of-sight and non-line-of-sight scenarios, respectively.
Clearly, the power profile in line-of-sight is dominated by a single peak at θmax,
directed along the line-of-sight path to the client. In contrast, the power profile in
non-line-of-sight close to an obstacle has two significant peaks, each corresponding
to reflected paths along walls or other objects in the environment.

5.2 Controlling Router Trajectory to Satisfy Client Demands

We evaluate how a single robotic router finds a trajectory to satisfy the demands
of three clients (specified in terms of effective signal-to-noise ratio or ESNR) using
θmax on each link. We consider the candidate non-line-of-sight setting in Fig. 6a. The
router is unaware of exact client positions or the layout of the environment.

Fig. 6 a Depicts testbed with robot router servicing three clients in a candidate non-line-of-sight
setting. The blue line depicts the trajectory, and colored arrows indicate instantaneous θmax for the
corresponding clients. b Plots the ESNR across time (as dotted lines) for each client through the
experiment. Solid lines denote client demands
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Results: Figure 6a depicts the trajectory of the robotic router in blue. The colored
arrows denote the recommended vθmax directions for each client at every control point.
The figure shows how the robot performs non-zero control actions until it eventually
satisfies network demands. Figure 6b tracks the ESNR of the clients across time
(dotted lines). The plot shows that the ESNR demands of each client (solid lines) are
satisfied upon convergence. Note that the whenever the robot decides to follow the
vθmax of a client at a control point (vertical line), the client’s ESNR increases. This
validates our claim that following a heading direction based on vθmax indeed improves
the ESNR of the corresponding client.

5.3 Aggregate System Results

We evaluate our full system with two robot routers serving three clients with different
ESNR demands. We perform the experiment in line-of-sight (LOS) and non-line-of-
sight (NLOS) settings as shown in the inset maps of Fig. 7b and 7d respectively. We
repeat the experiment five times in each setting and plot the results.

Results: Figure 7a and b plot the mean and variance of ESNR over time across
experiments for each client (dotted colored lines) in LOS and NLOS. Clearly, each
client’s ESNR demand (solid lines) is satisfied at the converged position across

Fig. 7 Agregate results obtained over 5 runs show demands are consistently met even in the presence
of obstacles as demonstrated by the candidate converged solutions. a ESNR versus time (Line of
sight). b ESNR versus time (Non line of sight). c Rate versus time (Line of sight). d Rate versus
time (Non line of sight)
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experiments. Figure 7c and d plot the corresponding aggregate link rate across time,
which follows the same trend as the ESNR [16].8 The inset plots in Fig. 7c and d
depict the final converged position of the routers (blue dots) in LOS and NLOS. The
results show that our system consistently satisfies client demands while adapting to
real-time changes in wireless channels, even in the presence of obstacles.

5.4 Comparison with Existing Schemes

We test our method against two other popular approaches to the communication prob-
lem in robotics: (1) Euclidean Disk Model as used in [1, 2], where communication
constraints are in terms of Euclidean distance; (2) Stochastic Gradient Approach,
where we implement the Simultaneous Perturbation method (SPSA) [11] for esti-
mating the gradient of signal power by sampling the ESNR (which provides greater
granularity than RSSI), along randomized directions, similar to the approach utilized
by [10]. For the generation of each direction in the SPSA method we use a Bernoulli
random variable (as in [11]) and diminishing step sizes satisfying the conditions
stated in [11] for convergence. Our largest step size was allowed to be the same max-
imum vehicle velocity of vc for all experiments. We consider a robotic router and
three clients, each with an ESNR demand of 20 dB. We repeat the experiment five
times in the non-line-of-sight environment in Fig. 8b–d. In each instance, we mea-
sure rmax, the maximum ratio of ESNR demand versus the ESNR achieved among
all three clients. In particular, rmax is below one at the converged position (i.e. all
client demands are satisfied), and above one otherwise.

Results: Figure 8a plots the aggregate mean and variance of rmax across time, for
all the three approaches. Figure 8b–d shows a candidate trajectory adopted by the
robotic router for the three schemes. The plots demonstrate while the disk model
converges quickly to a solution, ignorance of the wireless channels leads to solutions
not meeting client demands; especially in non-line-of-sight settings. In contrast, the
stochastic gradient approach (in blue), which sample the instantaneous ESNR, even-
tually satisfies network demands. However, the convergence is often laborious as the
router often traverses counter-productive directions (see Fig. 8c). Indeed such tech-
niques are noisy at low signal power, as even a large change in distance translates to
a small change in signal power (a well-studied problem in communications literature
[22–24]). Figure 8c shows that this leads to areas at non-line-of-sight or far distances
from the client, where the robot easily gets lost.

Our method leverages full information of the channel, including signal power and
phase, to find the direction of signal power as opposed to its magnitude. The result
is an algorithm that converges to positions that satisfy network demands while not
necessitating counter-productive exploration steps of a pure sampling approach.

8Note that the data-rate is capped by 60 Mb/s causing the plot to appear flat at times unlike ESNR.
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Fig. 8 Plots comparing our method against the Euclidean disk model and a stochastic gradient
descent method based on ESNR. Our method both converges to a position that meets communication
demands, and converges quickly along an efficient path. a Comparison. b Euclidean disk model.
c Stochastic method. d Our method

5.5 Robustness to Dynamic Obstacle Positions

We evaluate how our system adapts to changes in the environment without an a
priori known map. Consider two robotic routers and three clients in an environment
with an obstacle located initially as shown in Fig. 9a. We allow the robot routers
to navigate to their converged positions. At t = 120 s, we move the obstacle to a
different location as in Fig. 9c, and let the routers re-converge.

Results: Figure 9b and c depict the converged position of the routers before and after
the obstacle was moved. Figure 9d plots the data-rate across time for each client. The
plot shows that our system satisfies client demands at the initial position. Further
it recovers from the sharp fall in data-rate to one of the clients to successfully re-
converge after the obstacle is moved.

5.6 Complex Indoor Environments

We evaluate our system in a large complex indoor environment with concrete walls
and columns. We place a robotic router and client and line-of-sight (LOS) and non-
line-of-sight (NLOS) as in Fig. 10. We trace the router’s gradient field towards the
client starting from multiple initial positions.
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Fig. 9 These plots show the result of disturbing the wireless channels via movement of a line-
of-sight obstructing obstacle. Actual testbed snapshots are shown on the right. b Initial position. c
Obstacle pos. 1. d Obstacle pos. 2

Fig. 10 Trajectories using measured vθmax directions satisfy a client’s demand in line-of-sight and
non-line-of-sight settings in complex indoor environments. a Line of sight. b Non line of sight

Results: Figure 10a, b plot of candidate trajectories (from gradient field) in LOS and
NLOS across initial locations. The plots show that our system successfully navigates
towards the client to satisfy its demands, without knowledge of the environment or
client location.

6 Conclusion

In this paper, we present a framework to satisfy real-time variable communication
demands for a changing network. We develop a solution enabling a robotic receiver to
find the profile of signal strength across spatial directions for each sender of interest.
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While our technique retrieves these spatial signal profiles in real time, we note that
it faces an important limitation: it assumes access to wireless channels from both
the transmitter and the receiver. Developing a system that can work with unmodified
transmitters remains an open challenge. Our system integrates the signal profiles with
a controller that optimizes communication quality while maintaining quadratic edge
costs, and thus has natural extensions to many communication-aware coordination
problems such as coverage [1], consensus [3], formation control [2], etc. We believe
our system provides the necessary robustness to bring the benefits of these important
contributions to practical robotic systems.
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Multi-vehicle Dynamic Pursuit
Using Underwater Acoustics

Brooks Reed, Josh Leighton, Milica Stojanovic and Franz Hover

Abstract Marine robots communicating wirelessly is an increasingly attractive
means for observing and monitoring the ocean, but acoustic communication remains
a major impediment to real-time control. In this paper we address through experi-
ments the capability of acoustics to sustain highly dynamic, multi-agent missions,
in particular range-only pursuit in a challenging shallow-water environment. We
present in detail results comparing the tracking performance of three different com-
munication configurations, at operating speeds near 1.5m/s. A “lower bound” case
with RF wireless communication, a 4-second cycle and no quantization has a track-
ing bandwidth of ≈0.5 rad/s. When using full-sized modem packets with negligible
quantization and a 23-second cycle time, the tracking bandwidth is ≈0.065 rad/s.
With 13-bit mini-packets, we employ logarithmic quantization to achieve a cycle
time of 12s and a tracking bandwidth of ≈0.13 rad/s. These outcomes show defini-
tively that aggressive dynamic control of multi-agent systems underwater is tractable
today.

1 Introduction

Marine robots have played an increasing role in ocean operations during recent years,
with the proliferation of many commercial platforms and sensors. A major trend
is toward tetherless operation, for which each vehicle has to carry its own power
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source and have a means of wireless communication. Over distances beyond about
one hundred meters, underwater communication is almost exclusively accomplished
through acoustics. Acoustic communications bring many challenges, however, such
as packet loss, low data rates, and delays; Heidemann et al. provide a recent review
[24]. These undesirable properties of acoustic communication have limited its use in
high-performance, real-time tasks. Typical experiments with acoustic modems and
vehicles address packet loss rates [7, 9], distributed navigation [1], and command
and control of vehicles from ships [30].

If a capability existed, truly dynamicmissions of interestwould include networked
ocean vehicles following a submarine or a marine animal; the latter has been a
dream of biologists for decades. Major gaps exist in our understanding of the life
cycles of jellyfish [29], sharks [32, 37], lobsters [35], and more. A broader and more
challenging problem is monitoring and following a quickly-evolving plume or other
oceanic process [8, 19], where distributed measurements must be combined into an
estimate, potentially taking into account prior model information [26]. These tasks
involve dynamic feedback control that relies explicitly on acoustic communication,
and fit into the growing field of network-based control, as described in a recent review
by Baillieul et al. [2].

In an effort to lay some groundwork for exploiting advanced algorithms in a
real-world ocean application, this paper addresses with experiments an approach
for joint estimation and pursuit of a moving target using acoustic communications;
see Fig. 1. Needless to say, the general pursuit problem has held high interest for

Fig. 1 Screenshot from an active localization and pursuit experiment with acoustic communica-
tions. The two vehicles jointly estimate the target location based on range measurements, and move
to stay in formation relative to it
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decades; it is a canonical mission in space and air, on land, and at sea. Probabilistic
pursuit-evasion games have been studied extensively in the robotics literature [36],
and pursuer and evader dynamics aswell as nonlinear estimation are important factors
in these algorithms [27, 38]. The effects of communication constraints however
have not received much attention [28]. These are often addressed indirectly via
decentralized approaches that require minimal exchange of information between
agents [11]; see [17, 22] for ocean-specific implementations.

There have been some recent experimental works that are related to our pursuit
scenario. Perhaps most intriguing is tracking a leopard shark in extremely shallow
water, using a single autonomous vehicle with a two-element hydrophone array
[12]. The system was successful but the shark evidently moved only 200m or so in
48min reported. Bean et al. studied range-based leader—follower regulation with
Micro-Modem mini-packets and 1m/s speeds [3], while Brignone et al. looked at
a similar problem with DSPComm modems and two vehicles operating at 0.7 and
3m/s [6]. Both works present data from proof-of-concept field trials with mostly
straight trajectories. Soares et al. consider a vehicle following two leaders in a triangle
formation, with ranges of about fifteenmeters, speeds around 0.5m/s, and a total loop
time of 4 s [33]. In contrast, Cruz et al. consider a complete feedback system—in
the sense of two-way communications—for which a stationary controller transmits
commands for two mobile followers, who then transmit back their positions [13].
The vehicle speeds are slow, in the neighborhood of 10cm/s, and the cycle time is
around 20s. Through analysis, Chen and Pompili addressed optimization of acoustic
communications in coordinated flight of ocean gliders, where currents are especially
important [10].

None of these prior works explicitly deal with designing and improving closed-
loop frequency response of an integrated multi-vehicle feedback system. This is
exactly our objective here. Our design does not rigorously account for stability mar-
gins, the multi-rate nature of acoustic communications, inherent geometric nonlin-
earities, or the fact that autonomous marine vehicles are not ideal actuators. On the
other hand, our approach demonstrates practical closed-loop performance at half the
Nyquist rate, with little evidence of stability breakdown.

We detail the experiment setup in the following section with descriptions of the
vehicles and communication hardware used, the experimental domain, and the esti-
mation and control strategies and parameters. We then give results from three inte-
grated tests, demonstrating the performance achieved.

2 Experimental Setup

Out experiment in joint localization and pursuit has twomobile agents sharing sensor
information and commands through acoustic links. We make scalar range measure-
ments at each agent, and thus tracking is impossible without their coordination. One
agent is designated as the leader that coordinates the measurements and the actions
of the follower. This arrangement involves lossy channels at both locations in the
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Fig. 2 Block diagram of a generic multi-vehicle feedback system with a centralized estimator and
controller, and communication channels at two locations within the loop. Vehicles act as mobile
sensors

feedback loop of Fig. 2. In the general case, a centralized architecture such as this
allows integrationwith remote sensing, large-scale computations (such as data assim-
ilation), and human-in-the-loop decision-making. The mobile agents attempt to stay
close to the target, and in a formation conducive to good sensor performance.

The next five subsections detail the arrangement and operation of this system.

2.1 Autonomous Surface Vehicles

We use autonomous kayaks as shown in Fig. 3 for our experiments; they are also
described in [23]. Each craft is 1.8m long, weighs about 40kg, and has a rotating
thruster near the bow for propulsion and steering. In these tests, the vehicles operate

Fig. 3 The Charles River Basin in Cambridge/Boston, MA, and the autonomous kayak Nostromo.
Water depth is 2–12m
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at a nominal speed of V = 1.5m/s. The relevant navigation sensors available on
each vehicle are a tilt-compensated compass and RTK GPS. We use Novotel GPS
antennas, uBlox GPS receivers, and the RTKlib software package [34], and have
observed position variances on the order of 10−4 m2. Raw compass measurements
are passed through a first-order low-pass filter with time constant 2 s, and the noise
variance on this signal is estimated as 10 deg2.

The vehicles run MOOS-IvP autonomy software [4] integrated with custom con-
trol algorithms and modem interfaces. We rely on the the MOOS heading PID
controller, which runs at 5Hz, and the MOOS trackline controller, which runs at
2Hz. Step response experiments with the kayak under closed-loop heading control
indicate a rise time of roughly 4 s, and 30% overshoot; we also note the kayaks are
able to turn 180◦ in approximately 3 s. The MOOS trackline controller is an inner-
outer loop that modulates the desired vehicle heading so as to steer it toward a point
on the trackline, some lead distance ld ahead. When the waypoint is closer than the
lead distance, the vehicle simply drives towards the waypoint. For longer distances
the result for small errors is a proportional map for desired heading: φd � ex/ ld ,
where ex is the cross-track error in meters and φd is in radians.1 We set ld = 15m
for these experiments.

2.2 Acoustic Communications

We use the the WHOI Micro-Modem [20], a well-established and commercially
available technology for underwater acoustic communication. Modems are towed by
the vehicles, suspended at a depth of about 1.5m; this gives us realistic shallow-water
acoustic performance, but with direct access to GPS and RF wireless connectivity
at the surface for conducting controlled tests. Along with messaging, we use the
modem for one-way travel-time ranging [18]. For messaging, the Micro-Modem has
six different packet types with different lengths and data capacities. In this work, we
use the FSK mini-packet (“MP”), which is regarded as the most robust of the packet
types, but contains only thirteen bits of information. The mini-packets take slightly
over 1 s to transmit. We also use the full-sized Rate 0 FSK packets (“FSK0”), which
carry thirty-two bytes of information and take approximately 5 s to transmit.We have
observed very large increases in packet loss when using small guard times with both
packets, and have found communications to be most reliable with 4-second slots for
mini-packets and 9.5-second slots for FSK0 packets. All Micro-Modem packets are
sent with an acoustic source level of 190dB rel µPa.

The Charles River Basin has fresh water 2–12m deep, a complex bathymetry,
and some hard surfaces on the boundaries (seawalls and bridges); our working space
is about 1500m long and 500m wide. Acoustic performance in this environment is

1The linear form written is based on approximation of the tangent function. For errors less than 1m,
the MOOS Trackline controller increases the lead distance proportionally, effectively lowering the
gain to limit oscillations.
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Fig. 4 Micro-Modem performance data in the Charles River Basin, an environment limited by
multipath, not power. The left plot shows transmissions from the source to a mobile relay, and the
right plot shows transmissions from the relay to the destination. The SNR value indicates sound
pressure level relative to ambient noise

different from an open-water deep ocean scenario, wheremultipath and reverberation
are much lower, but the ranges are higher. Operations in the Basin can have highly
variable acoustic performance, as shown in Fig. 4. Our conditions are multipath-
limited and travel times are short.

2.3 Physical Layout

The two-vehicle pursuit mission encompasses limited communication performance
in both the sensing and control channels. In this experiment there is a target to be
tracked, “Icarus”, and two cooperating agents “Silvana” and “Nostromo”. We will
denote these three nodes with the symbols I, S, andN, respectively.N can be thought
of as a leader, and S a follower. The sensing objective is a simple one: to maintain S
andN in a fixed triangular configuration relative to the estimated location of I, so that
measurements will be of high fidelity, i.e., in the sense of a goodHDOP [5], and in the
sense of a short range. Our pursuit arrangement models the general situation where
range or other target sensing degrades with distance, but a high level of tracking
precision is desired. Maintaining a close pursuit formation keeps ranges close to a
nominal value, allowing for more precise quantization.

An “unstable” situation is encountered if the target crosses the baseline (the line in
between the two vehicles acting as a moving long baseline network)—the estimate
begins to diverge from the target location. Thus, a major disadvantage of a small
pursuit formation is that it is easier for the target to cross the baseline, bringing up
a key tradeoff between robustness of a larger formation and accuracy of a smaller
formation (which requires good closed-loop performance).
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2.4 Cycle Description, Timing and Quantization

We detail the stages of the control loop for the MP and FSK0 cases. Within a cycle
step, S and N each receive a measurement of range to I via the Micro-Modems in
ranging mode. After a guard period, S transmits its current location and range data
to N through acoustic communication. N combines this information with its own
location and range information to generate an estimated location of I. N calculates
control actions for itself and for S, and transmits the latter back to S. The cycle
includes three separate transmissions and there are no acknowledgments.We enforce
the fixed time slots with a number of timeouts, as indicated in Fig. 5. We synchronize
clocks using the network time protocol; in the absence of clock synchronization, we
note that precision clocks are becoming increasingly practical for use on underwater
vehicles [18].

Fig. 5 The internal state machine used on each vehicle to maintain consistent timing with respect
to predefined transmission and reception slots. Thick arrows distinguish acoustic events that initiate
state changes or other actions from normal logic flow. Special operations are indicated to handle
detection of erroneous multipath receptions, which frequently occur in this environment. For exam-
ple, a good reception for a time slot Ti will follow the “Receive complete” path (bottom) to a good
signal. A trailingmultipath reception will return to the receiving state, but the end of time slot Ti will
arrive before the end of the packet. In the top right, slot Ti is already taken by the good reception,
so we return to the ready state with no action taken
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For feedback control, there is a problem-dependent tradeoff to be made between
time-averaged throughput (usually achieved with long coding blocks) and timeliness
of the information (shortermessages).Wepresent data using both 13-bitmini-packets
and 32-byte FSK0 packets as an initial study of this tradeoff. The MP scenario min-
imizes cycle time at the expense of data quantization; we achieved a total cycle
time of 12s in this configuration.2 With the FSK0 configuration, packets require no
quantization for the data types we send, but do require a 9.5 s time slot for each trans-
mission, resulting in a total cycle time of 23s.3 The “wifi” scenario involves a 4 s slot
for acoustic ranging, as detailed above. However, the inter-vehicle communications
are handled instantaneously via wifi, so the estimate is available immediately upon
reception of ranges.

For the message from S to N in the MP case, we used three bits for the range,
and five bits each direction for S’s location in a 32 × 32 discretized workspace; this
workspace had ten-meter resolution. The range data were logarithmically quantized
relative to a desired range of 50m, with seven bin edges located at [19.2 32.5 42.5 50
57.5 67.5 80.8]m, and the three-bit messages decoded as [11.5 26.8 38.2 46.8 53.2
61.8 73.2 88.5]m. This correlates with the density ρ = 0.75 [21]. For the message
from N back to S, we used five bits in each of x and y for the desired location in the
workspace. This left three bits unused. This quantization makes stark the tradeoff
between range and precision. Any range larger than 80.8m is decoded as the furthest
range bin, so when ranges are very large, estimation suffers. Increasing this outer
range would come at the expense of resolution of the bins near the 50m nominal
range; it is the control system’s job to keep the vehicles in the desired formation so
that small bins can be used.

2.5 Settings and User Choices

The tracking systemcontains a nonlinear sigma-point filter (SPF) [25],well-suited for
this type of application.4 The nonholonomic target I (a smallmotorboat)was assumed
to be moving at constant 1.55m/s, with stochastic low-pass, zero-mean turning rate
having variance Q. The observation vector contains the two noisy ranges, with vari-
ances RS and RN for range measurements to Silvana and Nostromo, respectively.
The range sensor noise was chosen based on prior characterizations of the WHOI
Micro-Modem ranging capability [14, 20] and our own observed LBL performance.
The sensor noise for the follower range measurement (I to S) in the MP exper-
iment was set to a higher value to account for the effects of quantization during

2When range measurements do not interfere with modem packets and the cycle consists of just
two-way communications (e.g. using GPS and wifi for ranges), we have achieved a 6-second total
cycle time with mini-packets in the field.
3As we were submitting this paper we became aware of several modifications in the operation of
the Micro-Modems that likely will allow for slightly faster cycle times.
4Other nonlinear, range-only filters, such as particle filters, could also be used [15].
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Table 1 Settings and results for the three configurations

Config Cycle
time (s)

DesRange
(m)

RS (m2) RN (m2) Q (rad/s)2 BW (rad/s) Atten (dB)

FSK0 23 100 0.25 0.25 0.01 0.065 0

Wifi 4 50 0.25 0.25 0.05 0.5 18

MP 12 50 0.25 9 0.05 0.13 7

DesRange is the length of the legs in the desired sensing formation. The columns with R are the
sensor noise variances for the range measurements to each vehicle. Q is the target heading rate
variance. BW is the closed-loop tracking bandwidth, and Atten is the tracking error attenuation at
0.065 rad/s. Also see Fig. 9

communication of the measurement from S to the filter running on N. Settings for
the three configurations are given in Table1.

When a measurement is not available (either due to a missed LBL range, or a
dropped measurement packet from S toN), we take the standard approach of setting
the noise of the lostmeasurement to infinity [31]. In theMP and FSK0 configurations,
when a control command fromN to S is dropped, the previously-received command
for S remains the desired waypoint. This approach ensures safe operation in the case
of many missed packets. In the MP case, three bits are left unused in the command
packet which could encode contingency plans.

The desired observation triangle has a sixty-degree vertex at I. For the MP and
wifi cases, the ranges to each of S and N were 50m; for the FSK0 case the desired
ranges were 100m due to the slower cycle time.5

3 Experimental Results

We compare the tracking performance of three different communication configura-
tions: full-sized packets (“FSK0”) with negligible quantization and a 23s cycle, RF
wireless communication (“wifi”) with a 4 s cycle, and 13-bit mini-packets (“MP”)
with a 12s cycle. The “wifi” configuration roughly represents a single vehicle towing
a long two-element array, as inter-vehicle communication is lossless and immediate.
However, a true single-vehicle with array would be far less maneuverable than vehi-
cles without arrays, and could not pursue the target as closely without risking the
target crossing the baseline. For close pursuit with multiple vehicles, we can view
the “wifi” case as a lower bound on performance.

The experiments we report were conducted on 8–9 July 2013, both days with light
winds.6 Figures6, 7, 8 give results from the FSK0, wifi and MP tests, respectively.
In each test, I moved in a largely random trajectory, as shown in the birds-eye

5The ranges are set relative to the distance the target can drive in a time step, so that the target is
unlikely to cross the baseline before the control system can react.
6This data set, along with videos, is publicly available at http://web.mit.edu/hovergroup/resources.
html.
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Fig. 6 FSK0 test results (6463s, 281 cycles). a Overview of true and estimated trajectories of the
target Icarus. b Sensing formation every 15 time steps. c Actual (GPS) and estimated trajectory
of target Icarus. d Estimation error of Icarus’ location. The RMS radius of estimation errors was
20.2m. Data packet losses are also shown; loss rates were: N → S = 19.9%, S → N = 14.0%.
e Range measurements from Icarus to each kayak, and losses. Range loss rates were: I → N =
1.1%, I → S= 4.8%
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Fig. 7 Wifi test results (1820s, 455 cycles). a Overview of the true and estimated trajectories of the
target Icarus.bSensing formation every 30 time steps. cActual (GPS) and estimated trajectory of the
target Icarus. d Estimation error of Icarus’ location. The RMS radius of estimation errors was 3.8m.
e Range measurements from Icarus to each vehicle, and losses. Range loss rates were: I → N =
9.0%, I → S= 4.8%
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Fig. 8 MP test results (4800s, 400 cycles). a Overview of the true and estimated trajectories of the
target Icarus.bSensing formation every 15 time steps. cActual (GPS) and estimated trajectory of the
target Icarus.dEstimation error of Icarus’ location. TheRMS radius of estimation errorswas 12.7m.
Data packet losses are also shown; the loss rates were:N → S= 3.8%, S→ N = 6.5%. e Range
measurements from Icarus to each vehicle, and losses. Range loss rates were: I → N = 3.8%,
I → S = 4.8%. Quantized measurements sent from Silvana to Nostromo are shown in red on top
of the true measured ranges
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view in the upper left (Subplot a) and the time traces in Subplot c. The upper right
(Subplot b) shows the sensing formation every fifteen time steps; we see that while
the ideal triangle configuration was rarely achieved in the FSK0 and MP tests, the
target did not cross the baseline (the red straight line between the two nodes acting as
a moving LBL network), nor did the geometry ever stay poor for a sustained period.
The tracking and pursuit system did not lose the target.

The measured ranges are reported in Subplot e in each figure, including quan-
tization of raw values sent to N from S in the subsequent measurement packet for
the MP case. Range losses in all cases are low, as the Micro-Modem ranging ping
is fairly robust; see figure captions for loss statistics. Subplot d shows the north and
east tracking errors over time, along with dropped communication packets for the
MP and FSK cases. The packet losses are significantly higher for the FSK0 test.
Most of the larger errors occur following packet losses, but some large spikes (such
as around 500s in the mini-packet test) are not near packet losses—errors can also
occur due to poor sensing geometry, and in the MP case, quantization.

Recalling our broad objective to achieve dynamic control throughmobile acoustic
networks, it is revealing to askwhat is the effective closed-loop estimation bandwidth
achieved. A direct FFT-based empirical transfer function for the estimation error
divided by target motion is shown for each test in Fig. 9; spectra have been smoothed
with a 5-point centered moving average. The FSK0 test has a break frequency for
tracking the motion of I at approximately 0.065 rad/s, slightly less than half the
Nyquist rate for the 23s cycle. The wifi test has a break frequency of approximately
0.5 rad/s. The MP test has a break frequency of approximately 0.13 rad/s. We can
also compare the attenuation of tracking error for each configuration at 0.065 rad/s.
FSK0 has zero attenuation, wifi has 18dB attenuation, and MP has 7dB.

Fig. 9 Empirical FFT-based
transfer function for
estimator error divided by
target motion. The solid lines
show the mean of the X and
Y spectra. The dashed lines
show an approximate linear
fit for low-frequency
attenuation. Dots show the
approximate attenuation at
0.065 rad/s
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4 Conclusion

Our experiment has achieved aggressive target pursuit in the underwater environ-
ment. As opposed to a traditional control and estimation design scenario, the mis-
sion here is accomplished through a highly integrated vehicle system performing full
joint estimation and coordination through lossy acoustic communications underwa-
ter. The three experimental configurations studied show the effects of cycle time,
quantization, and reliability on the frequency response of the system. In particular,
the MP and FSK0 experiments demonstrate that for tracking highly dynamic targets
it is beneficial to trade-off quantization for low cycle time.

The pursuit mission presented in this paper is one special case of a much larger
picture; we believe that undersea communications and coordinated control will soon
enable truly distributed and dynamic tracking of moving ocean features, such as
eddies, plumes and fronts. Such vehicle systems would be able to observe impor-
tant chemical, biological, and physical processes over larger physical scales than a
single vehicle can cover, and would interface with observation systems on land and
in the atmosphere, as well as with humans. Operations like this—“oceanographic
pursuit”—are a natural progression of marine technology toward the group auton-
omy and dynamic behavior that we have seen developed already in the terrestrial
environment and in the air [16]. Specification of physical configurations, schedul-
ing, routing, and multi-rate control design will undoubtedly join the mix, making
underwater pursuit a rich problem for future work.
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Aggressive Maneuver Regulation
of a Quadrotor UAV

Sara Spedicato, Giuseppe Notarstefano, Heinrich H. Bülthoff
and Antonio Franchi

Abstract In this paper we design a nonlinear controller for aggressive maneuvering
of a quadrotor. We take a maneuver regulation perspective. Differently from the clas-
sical trajectory tracking approach, maneuver regulation does not require following a
timed reference state, but a geometric “path” with a velocity (and possibly orienta-
tion) profile assigned on it. The proposed controller relies on three main ideas. Given
a desired maneuver, i.e., a set of state trajectories equivalent under time translations,
the system dynamics is decomposed into dynamics longitudinal and transverse to
the maneuver. A space-dependent version of the transverse dynamics is derived, by
using the longitudinal state, i.e., the arc-length of the path, as an independent vari-
able. Then the controller is obtained as a function of the arc-length consisting of two
terms: a feedforward term, being the nominal input to apply when on the path at the
current arc-length, and a feedback term exponentially stabilizing the state-dependent
transverse dynamics. Numerical computations are presented to prove the effective-
ness of the proposed strategy. The controller performances are tested in presence of
uncertainty of the model parameters and input noise and saturations. The controller
is also tested in a realistic simulation environment validated against an experimental
test-bed.
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1 Introduction

In the recent years, the steadily growing number of applications involvingUnmanned
AerialVehicles (UAVs), as quadrotors, has raised attention on the execution of precise
aggressive motions. This is, in fact, a fundamental requirement in several (complex)
tasks. The classical approaches used in the literature to perform such motions fall
into the categories of trajectory tracking and path following methods. Trajectory
tracking techniques aim at limiting the error between the actual system state and the
desired state at a specified time. The system state includes position, orientation, and
linear and angular velocities. Whenever an exogenous disturb (e.g., wind) forces the
robot to momentarily lag behind the “moving reference” of the desired trajectory,
then undesired phenomena are likely to arise, such as: (i) huge peaks of acceleration
and (ii) a poor geometric tracking of the planned path that may lead to collisions
with the surrounding world.

In order to highlight this last sensitive issue, let us consider the example depicted
in Fig. 1.A quadrotor has to fly around an obstacle tracking a given planned trajectory,
which is specified as a desired state at each time t. At t = t1 strong opposing wind
significantly decelerates the actual motion of the quadrotor for a few seconds. When
the wind ceases, at t = t3, the quadrotor recovers the full control of its motion and
tries to quickly catch up with the moving desired state that is now on the other side
of the obstacle, thus dramatically crashing into it.

These drawbacks do not arise in classical path following techniques, whose objec-
tive is to have the system position follow a geometric path without a predefined time
scheduling. Since a pre-defined timing law on the path is not given, these methods
consider a tracking error between the current robot position and the set of positions
on the entire geometric path; while orientation, linear and angular velocities are not
usually taken into account. Classical path following techniques are able to avoid
undesired phenomena as the one described above. However, they can only drive the
center of mass of the UAV along the path without ensuring a desired orientation and
velocity profile along it.

To overcome the drawbacks that affect both these two techniques, we deal with
an extended version of the path following, called maneuver regulation, that aims at
satisfying additional requirements (such as assigning orientation, linear velocity, and
angular velocity on the path).

Fig. 1 Example of an
undesired phenomenon
arising using trajectory
tracking
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We organize the literature on quadrotor controllers in two parts. First, a vast num-
ber of trajectory tracking techniques for quadrotors have been proposed. In [1] a
dynamic feedback controller, which renders the system linear and controllable, has
been developed. In [2] a full backstepping technique is presented, based on a decom-
position of the dynamic model into an underactuated subsystem, and a fully-actuated
subsystem. A geometric tracking control is presented in [3]. The nonlinear tracking
controller is developed on the special Euclidean group SE(3) and it is shown to
have desirable closed loop properties that are almost global. The trajectory tracking
controller in [3] has been successfully implemented in [4] to perform fast aerobatic
maneuvers without exogenous disturbances and precise measures from an external
motion capture system (aerobatic maneuvering is also addressed, for autonomous
helicopters, in [5, 6]). A sliding mode controller is proposed in [7] in order to sta-
bilize the quadrotor model as a class of cascaded under-actuated systems. In [8], an
underactuated nonlinearH∞ controller based on the six degrees of freedom dynamic
quadrotor model is designed to control the attitude and altitude in an inner-loop. The
outer-loop control is performed using amodel-based predictive controller to track the
reference trajectory. Finally a trajectory tracker based on a linear quadratic regulator
(LQR) is proposed in [9].

Second, only recently, extended path following techniques for quadrotors have
been presented. In [10] the problem is solved by means of a backstepping technique.
In [11] the problem is addressed as the stabilization of the zero dynamics for a
nonlinear control system and solved using input-output feedback linearization on an
augmented quadrotor system. The technique is refined in [12] with the objective of
executing a more general class of paths “in a more general manner”. The definition
of the position error as the distance between the actual quadrotor position and the
desired path is used in [13], where a “commanded acceleration” is computed using
a PD feedback of the position and velocity errors.

The first and main contribution of the paper is the design of a maneuver regulation
controller for aggressive maneuvering of a quadrotor on a three-dimensional path
with assigned orientation and velocity profiles along it. The control strategy, inspired
to the one proposed in [14] for a motorcycle on a bi-dimensional path, is based on the
idea of transverse linearization of the dynamic system.Given a desired trajectory, the
system dynamics is rewritten in terms of a longitudinal and a transverse dynamics.
The new system states are the arc-length s and a set of transverse coordinates w(s)
(defined bymeans of an appropriate distance between the current state and the desired
trajectory states). Differently from the (extended) path following approaches in [10–
12], we consider a space-dependent version of the transverse dynamics. That is, we
derive a differential equation in which the arc-length s is the independent variable,
so that the transverse linearization is obtained by linearizing such a space-dependent
dynamics. By solving an infinite-horizon linear quadratic regulator optimal control
problem, the (space-dependent) transverse dynamics linearization can be exponen-
tially stabilized (under standard controllability assumptions). Thus, the quadrotor
maneuver regulation controller is a function of the arc-length s: a feedforward term
being the desired input for the given s, plus a feedback K(s)w(s) to stabilize the
(space-dependent) transverse dynamics. Notably, although the feedback is linear as
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a function of the arc-length, it turns to be a nonlinear feedback of the original system
state in the time-domain as s(t) = s(x(t)).

As second contribution, and preliminary step for experimental tests, we test our
maneuver regulation controller on a physical quadrotor simulator, in order to show the
performances of the proposedmaneuver regulation controller in a realistic simulation
scenario. Furthermore, we perform numerical computations under uncertainties on
the model parameters and input noise and saturations. The computations show how
the controller well behaves in performing a fairly aggressive maneuver as a barrel
roll. In fact, we verified that even if the design is executed with some nominal inertial
parameters the controller is able to adapt the control effort depending to the actual
inertia and to maintain the system stability even if the severe input saturation and
noise do not allow a perfect tracking of the desired maneuver.

Compared to the other extended path following approaches designed for a quadro-
tor, [10–12], our maneuver regulation controller has three key differences. First, the
other schemes only ensure the distance from the path and the error on the yaw angle
to converge to zero. The resulting roll and pitch angle, although stable, cannot be
assigned a priori, so that problems could arise for example in narrow passageways.
Second, the scheme does not rely on structural properties of the simplified quadrotor
model as, e.g., flatness or non-minimum-phase-ness. Thus, it can be applied also to
more complex (possibly non-minimumphase)models. Third, the proposedmaneuver
regulation scheme can be decoupled into a slow time-scale block and a realtime one.
The desired trajectory and the feedback gains can be computed in a slow time-scale.
In particular, the desired trajectory can be computed by using trajectory optimization
techniques as the ones proposed in [15, 16]. The online computation only requires
the calculation of the scheduled arc-length and the application of the feedback gain.
Due to this structure, the proposed controller can be seen as a preliminary step toward
the development of a receding-horizon scheme involving both trajectory generation
and regulation in a coupled scheme.

The paper is organized as follows. In Sect. 2 the quadrotormodel and themaneuver
regulation problem are introduced. Section3 addresses the design of the maneuver
regulation controller for the quadrotor. Finally, in Sect. 4 numerical computations
and physical simulations are provided in order to prove the effectiveness of the LQR
based controller under parameters uncertainty and input saturation.

2 Quadrotor Model and the Maneuver Regulation Problem

In this section we present the standard quadrotor model that is instrumental to for-
mally define the maneuver regulation problem and the proposed controller.

In the following we denote vectors using bold small symbols and matrices using
capital letters. Given an inertial reference frame (with x–y–z axes oriented in a north-
east-down fashion) and a body reference frame attached to the quadrotor center of
mass (with x–y–z axes oriented in a forward-right-down fashion), let ppp ∈ R

3 be the
position vector from the origin of the inertial frame to the origin of the body frame,
expressed in the inertial frame. The orientation of the body frame with respect to
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the inertial frame is denoted by the rotation matrix R ∈ SO(3), which maps vectors
in the body frame into vectors in the inertial frame. Let vvv ∈ R

3 and ωωω ∈ R
3 denote

respectively the linear and angular velocities expressed in the body frame.
The quadrotor is driven by four forces and torques produced by the four propellers.

Each thrust force is directed along the body z-axis but pointing in the negative direc-
tion. The thrust forces produce the torques γ1 and γ2 around the body x-axis and y-axis
respectively. A torque γ3 around the z-axis is produced by the reaction moments act-
ing on the propellers. The sum of the thrust forces is denoted by f and the torques
vector is denoted by γγγ = (γ1 γ2 γ3)

T .
The standard quadrotor model, see, e.g., [17], is

ṗ̇ṗp = Rvvv (1)

mv̇̇v̇v = −mΩvvv + mgRTeee3 − f eee3 (2)

Ṙ = RΩ (3)

Jω̇̇ω̇ω = −ΩJωωω + γγγ (4)

wherem is the quadrotormass, J = diag(jx, jy, jz) is the inertiamatrix, g is the gravity
constant, Ω is the screw-symmetric matrix associated with ωωω and eee3 = (0 0 1)T .

We choose to parameterize the rotation matrix R by roll-pitch-yaw angles.1 From
the inertial reference frame the first rotation is taken around the z-axis by the yaw
angle ψ . The coordinate system is then rotated around the new y-axis by the pitch
angle θ and finally rotated about the new x-axis by the roll angle ϕ. The rotation
matrix is thus

R =
(

cψcθ −sψcϕ + cψsθsϕ sψsϕ + cψsθcϕ
sψcθ cψcϕ + sψsθsϕ −sϕcψ + sψsθcϕ
−sθ sϕcθ cθcϕ

)
, (5)

where for a generic angle φ we define cφ := cos(φ) and sφ := sin(φ).
Let us define p = (p1 p2 p3)T , v = (v1 v2 v3)T and ω = (p q r)T . Using the roll-

pitch-yaw parametrization equations (1–4) are

ṗ1 = cψcθv1 + (−sψcϕ + cψsθsϕ)v2 + (sψsϕ + cψsθcϕ)v3 (6)

ṗ2 = sψcθv1 + (cψcϕ + sψsθsϕ)v2 + (−sϕcψ + sψsθcϕ)v3 (7)

ṗ3 = −sθv1 + sϕcθv2 + cθcϕv3 (8)

ϕ̇ = p + qsϕ tan θ + rcϕ tan θ (9)

θ̇ = qcϕ − rsϕ (10)

ψ̇ = qsϕ
1

cθ
+ rcϕ

1

cθ
(11)

v̇1 = rv2 − qv3 − gsθ (12)

1This parametrization of R, largely used in the literature, has a singularity when the pitch angle
reaches π/2. However, the proposed techniques can be developed for any other parametrization.
Thus, given the desired maneuver, the best suited parametrization can be used to avoid singularities.
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v̇2 = −rv1 + pv3 + gsϕcθ (13)

v̇3 = qv1 − pv2 + gcθcϕ − f

m
(14)

ṗ = qr

(
jy − jz

jx

)
+ γ1

jx
(15)

q̇ = pr

(
jz − jx

jy

)
+ γ2

jy
(16)

ṙ = pq

(
jx − jy

jz

)
+ γ3

jz
(17)

Equations (6–17) represent a nonlinear, time-invariant control system of the form

ẋ(t) = f (x(t), u(t)) (18)

y(t) = h(x(t)) (19)

with state x = (p1 p2 p3 ϕ θ ψ v1 v2 v3 p q r)T ∈ R
12, input u = (f γ1 γ2 γ3)

T ∈
R

4 and output y = (p1 p2 p3)T ∈ R
3. Equation (18) can be also written in scalar

form as
ẋi(t) = fi(x(t), u(t)), ∀i = 1, . . . , 12,

where xi is the ith component of x and fi(·) is the scalar ith component of the vector
function f (·).

Given the quadrotor model, we can formalize the maneuver regulation task that
we want to solve. In the approach we propose in this paper, we can decouple the task
into two parts: (i) generation of a desired, or nominal, (state-control) trajectory, and
(ii) regulation of the corresponding desired maneuver.

Although in this paper we focus on the regulation sub-task (ii), we briefly describe
the whole task. Usually, to accomplish a complex mission, the quadrotor is required
to follow a given three-dimensional path and, maybe, satisfy some (soft) constraints
on the orientation (e.g., because it has to traverse a narrow passageway).

The trajectory generation sub-task (i) is the following. We suppose that a suitable
output curve is assigned by the mission to satisfy some geometric constraints. A
reasonable choice of output curve for the quadrotor is yξ (t) = (p1ξ (t) p2ξ (t) p3ξ (t))T ,
t ≥ 0. The use of the subscript ξ will be clear in the next lines. We say that an output
curve yξ (·) is admissible, if there exists a state-control trajectory ξ = (xξ (·), uξ (·)),
such that

ẋξ (t) = f (xξ (t), uξ (t)), yξ (t) = h(xξ (t))

for all t ≥ 0, ‖ẏξ (·)‖ is bounded away from zero and ‖ÿξ (·)‖ is bounded.
State-control trajectories for the standard quadrotor model used in this paper

can be generated by exploiting its differential flatness. For more general models or
in case state and input constraints need to be explicitly taken into account in the
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desired trajectory generation, nonlinear optimal control based trajectory-generation
techniques, as the ones developed in [15, 16], may be used.

Given a desired (state-control) trajectory (xξ (·), uξ (·)), we define a maneuver
[xξ , uξ ] as the set of all the trajectories equivalent under time translation to the
trajectory (xξ (·), uξ (·)). Given a trajectory (x̃ξ (·), ũξ (·)) of f (·), we say that it is
equivalent to (xξ (·), uξ (·)) under time translation if and only if there exists Δ ∈ R,
such that x̃ξ (t) = xξ (t + Δ) and ũξ (t) = uξ (t + Δ), ∀t ≥ 0.

We are now ready to formally define the maneuver regulation problem.

Maneuver regulation problem. Let an output yξ (·) and an associated maneuver
[xξ , uξ ] of the quadrotor be given. Find a feedback control law u = k(x; [xξ , uξ ]) that
exponentially stabilizes the maneuver [xξ , uξ ], i.e. such that there exist Δ, k, λ > 0
such that

lim
t→∞ ||x(t) − xξ (t + Δ)|| ≤ ke−λt .

Remark 1 From the above definition it is clear why the maneuver regulation task
protects from dangerous situations as the one described in Fig. 1. Indeed, for the
task to be accomplished the quadrotor is not required to catch up a reference on the
desired maneuver. In the specific scenario, when the quadrotor regains control after
the disturbance has ceased, it can track a time-translated trajectory belonging to the
same maneuver, whose initial condition is close to the current quadrotor state, thus
avoiding to fall into the obstacle. �

3 Transverse Linearization Based Maneuver Regulation
Controller

In order to exponentially stabilize a desired maneuver, rather than a trajectory, we
seek a controller scheduled by points on the desired output, rather than by the time.
As a first step, we rewrite the quadrotor dynamics in terms of a longitudinal and a
transverse dynamics.

The longitudinal dynamics describes the evolution of the system position along
the curve, while the transverse dynamics describes the evolution of a suitable error
between the actual state and the desired one at the current longitudinal coordinate.

We start by parametrizing the (admissible) output curve in terms of the arc-length
σξ : R+

0 → R
+
0 , defined as

σξ (t) =
∫ t

0

√
ṗ21ξ (τ ) + ṗ22ξ (τ ) + ṗ23ξ (τ ) dτ, ∀t ≥ 0. (20)

Defining the inverse of σξ (·) as the function t̄ξ : R+
0 → R

+
0 , the output, parametrized

using the arc-length, is ȳξ (σ ) = yξ (t̄ξ (σ )).We shall denote theσ -parametrized curves
with a bar, and the derivatives with respect to the coordinate σ with a prime symbol.
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We parameterize the position of the quadrotor center of mass y = (p1 p2 p3)T in
a tubular neighborhood of ȳξ (·) using a set of coordinates (s, w1, w2) ∈ R × R × R.
In order to do this, we construct a locally invertible function φ : R3 → R × R × R

such that
(s, w1, w2) = φ(y), (21)

with φi, i ∈ {1, 2, 3}, the ith scalar component of the vector function φ(·), and such
that φ(ȳξ (s)) = (s, 0, 0).We choose s to be the arc-length identifying the point on the
desired path at minimumdistance from the quadrotor center ofmass. The coordinates
w1 and w2 express the distance between the quadrotor center of mass and the point
on ȳξ (·) identified by s.

Consistently, the first component of φ(·) is defined as

φ1(y) := argmin
σ∈R

‖y − ȳξ (σ )‖2.

The minimizing s is unique provided that ȳξ (·) is locally a non-intersecting C2 curve
with non-vanishing ȳ′

ξ (·) and that y(t) is close to ȳξ (·) for all t. In order to construct
the other components of φ(·), let us consider the Serret–Frenet frame, which origin

has ȳξ (s) as coordinates, defined by the basis {−→t (s),−→n (s),
−→
b (s)}. The vectors−→

t ,
−→n ,

−→
b are respectively the tangent, normal and bi-normal vectors and they are

defined, with components in the inertial frame, as t̄(s) := ȳ′
ξ (s), n̄(s) := ȳ′′

ξ (s)/k̄(s),

b̄(s) := t̄(s) × n̄(s), where k̄(s) := ‖ȳ′′
ξ (s)‖ is the curvature of ȳξ (·) at s. The position

of the quadrotor center of mass y can be written as

y = ȳξ (s) + R̄SF(s)d, (22)

where the rotationmatrix R̄SF = (t̄ n̄ b̄)maps vectors with components in the Serret–
Frenet frame into vectors with components in the world inertial frame and d :=
(0 w1 w2)

T is the vector from the origin of the Serret–Frenet frame to the origin of
the body frame, with components in the Serret–Frenet frame. Using the Eq. (22), we
define the remaining components of the function φ(·) as

φ2(y) := n̄(s)T (y − ȳξ (s)), (23)

φ3(y) := b̄(s)T (y − ȳξ (s)). (24)

With the function φ(·) in hand, we can provide a change of coordinates from
the state x to the coordinates (s, w), where s ∈ R is the longitudinal coordinate and
w ∈ R

11 is the vector of transverse coordinates with ith transverse coordinate, i ∈
{1, . . . , 11}, denoted by wi. The longitudinal and transverse coordinates as function
of the system state are defined as
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s := φ1(h(x)), w3 := ϕ − ϕ̄ξ (s), w6 := v1 − v̄1ξ (s), w9 := p − p̄ξ (s),
w1 := φ2(h(x)), w4 := θ − θ̄ξ (s), w7 := v2 − v̄2ξ (s), w10 := q − q̄ξ (s),
w2 := φ3(h(x)), w5 := ψ − ψ̄ξ (s), w8 := v3 − v̄3ξ (s), w11 := r − r̄ξ (s).

Furthermore, we define

uw := u − ūξ (s), γ1w := γ1 − γ̄1ξ (s), (25)

fw := f − f̄ξ (s), γ2w := γ2 − γ̄2ξ (s),

γ3w := γ3 − γ̄3ξ (s).

The change of coordinates is used in order to write the standard quadrotor system
(6–17) in (s, w) coordinates. Deriving (22) with respect to time we have

ẏ = ȳ′
ξ ṡ + R̄′

SF ṡ d + R̄SF ḋ. (26)

Further on, for simplicity of notation, the dependency by s is omitted and all the bar
terms are evaluated with respect to s. The term on the left side of Eq. (26) is

ẏ = Rv, (27)

according to the definition of y and the Eq. (1). The first term on the right side is

ȳ′
ξ ṡ = R̄SF[ṡ 0 0]T (28)

according to the definition of the tangent vector t̄. Furthermore we have

R̄′
SF ṡ = R̄SF

⎡

⎣
0 −k̄ṡ 0
k̄ṡ 0 −τ̄ ṡ
0 τ̄ ṡ 0

⎤

⎦ , (29)

where τ̄ := n̄b̄
′
is the torsion of ȳξ (·) at s. The expression (29) can be derived from

the Serret–Frenet formulas [18] t̄′ = k̄n̄, n̄′ = −k̄ t̄ + τ̄ b̄, b̄
′ = −τ̄ n̄, using the

definition of R̄SF . Multiplying both sizes of the Eq. (26) times R̄T
SF , using (27), (28),

(29) and the coordinate transformation from x to (s, w), we obtain

ṡ = t̄T Rv/(1 − k̄w1),

ẇ1 = n̄T Rv + τ̄ ṡw2,

ẇ2 = b̄
T

Rv − τ̄ ṡw1,

(30)

where v = [(w6 + v̄1ξ ) (w7 + v̄2ξ ) (w8 + v̄3ξ )]T and R is given by (5) with ϕ = w3 +
ϕ̄ξ , θ = w4 + θ̄ξ and ψ = w5 + ψ̄ξ . Equation (30) are equivalent to Eqs. (6–8) but
they are only functions of the longitudinal coordinate s, the transverse coordinates
w1, w2 and the state trajectory x̄ξ (·). Furthermore, Eqs. (9–17) can be expressed as
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function of s, w and x̄ξ (·), using the coordinate transformation from x to (s, w) and
Eq. (25). Taking the time derivative of xi = wi−1 + x̄iξ , the equations ẋi = fi(x, u)

can be written as

ẇi−1 = fi(x̄ξr + wr, uw + ūξ ) − x̄′
iξ ṡ, ∀i = 4, . . . 12, (31)

where x̄ξr is the vector containing from the 4th to the 12th component of x̄ξ and wr

is the vector containing from the 3rd to the 11th component of w.
The system (30 and 31) can be expressed in a form such that the independent

variable is the longitudinal coordinate s, rather than the time t. We parameterize
the transverse coordinates using s, i.e., wi(t) = w̄i, ∀i = 1, . . . , 11, and by using the
chain rule, we compute the time derivatives of the transverse coordinates as ẇi = w̄′

i ṡ.
Thus, Eqs. (30 and 31) can be written as the transverse dynamic system

w̄′
1 = (n̄T Rv)/ṡ + τ̄ w̄2,

w̄′
2 = (b̄

T
Rv)/ṡ − τ̄ w̄1,

w̄′
i−1 = fi(x̄ξr + w̄r), ūw + ūξ )/ṡ − x̄′

iξ , ∀i = 4, . . . 12,
(32)

where ṡ = t̄T Rv/(1 − k̄w̄1), v = [(w̄6 + v̄1ξ ) (w̄7 + v̄2ξ ) (w̄8 + v̄3ξ )]T and R is given
by (5) with ϕ = w̄3 + ϕ̄ξ , θ = w̄4 + θ̄ξ and ψ = w̄5 + ψ̄ξ .

The system (32) is a nonlinear control system with state w̄ ∈ R
11 and input

ūw ∈ R
4, for which s-varing control laws can be developed in order to regulate the

transverse state w̄ to zero. We compute such control law solving a linear quadratic
regulator (LQR) problem.

Let us consider the transverse linearization

w̄′ = ĀT (s)w̄ + B̄T (s)ūw,

i.e., the linearization of the transverse dynamic system (32). We design a feedback
matrix K̄(·) that asymptotically stabilizes the transverse linearization by solving a
linear quadratic regulator problem. If the transverse linearization is exponentially
stabilized by an s-varing linear state feedback, ūw = −K̄(s)w̄, then the nonlinear
feedback

u = ūξ (s) − K̄(s)w (33)

exponentially stabilizes the maneuver [xξ ] for (6–17) [14].
The controller in (33) can be rewritten by exploiting the dependence of s from the

system output (s = φ1(y)) as

u = ūξ (φ1(y)) − K̄(φ1(y))w.

The above expression highlights the nonlinear feedback structure of the proposed
maneuver regulation controller. In particular, the feedforward term and the feedback
matrix are nonlinear functions of the system state (the output portion).
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Fig. 2 a Values of the inertia matrices, used to perform the Monte Carlo simulation. The blue, red
and green markers represent the terms jx , jy, yz , respectively. b, c Closed loop trajectories for the
different values of inertia matrices

4 Numerical Validation

This section provides two groups of simulations that are meant to be a preliminary
step for experimental tests. The first group objective is to test the performance and
robustness in the stabilization of an aggressive maneuver in presence of error in the
initial conditions and uncertainty in the inertia matrix parameters; while the goal of
the second group is to test the robustness on the same maneuver with respect to noise
and saturation of the four propellers forces.

For both groups, we choose a barrel roll maneuver in the p2 − p3 plane with a
constant velocity profile for which the quadrotor is subject to “significant” acceler-
ations. The quadrotor center of mass is required to move along a circle of diameter
d = 3m at a speed v = 8m/s. The desired maneuver is designed so that the roll
angle ϕ goes from 0◦ to 360◦ (i.e., the quadrotor performs a complete flip). As a
reference for the nominal inertial parameters of the model we used the data-sheet
values of the customized MK-Quadro2 that is described in [19], i.e., m = 0.749 kg,
jx = 0.0176 kgm2, jy = 0.0177 kgm2, jz = 0.034 kgm2.

In the first group of simulations we conduct a Monte Carlo analysis aimed at
testing the robustness against imperfect initial conditions and inertial parameters.
The desired barrel roll path is represented with a blue curve in Fig. 2b, c. In all the
25 + 1 simulations of this first group the quadrotor starts 1.04m distant from the
nominal initial position, outside the p2 − p3 plane. In particular, each component

2www.mikrokopter.de.
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of the position vector is perturbed respectively of 0.60m from the nominal one.
We opted for using the nominal mass of the MK-Quadro in every simulation. The
reason is that in real applications the quadrotor mass is easily computable with high
accuracy and reliability either using a scale or through simple hovering calibration.
On the other hand, calibration of the inertia matrix requires a sophisticated mea-
surement equipment and can easy become outdated if the geometrical configuration
of the internal masses changes over time, e.g., whenever the battery is mounted
in a slightly different place. In real applications, this is equivalent to have a ran-
dom noise on the nominal parameters. In one simulation we used the nominal val-
ues for jx, jy, jz while in each of the other 25 we used a different quadrotor model
with set of values for jx, jy, jz obtained by randomly perturbing the nominal val-
ues according to a normal distribution where the standard deviation is 0.0102

3 kgm2

(i.e., 95% of the samples are within (jx ± jz, jy ± jz, jz ± jz) being jz the maximum
among jx, jy, jz). Notice that we still consider negligible the off-diagonal terms of the
matrix w.r.t. the diagonal ones, which is a reasonable assumption in practice. The 25
normally distributed samples of the 3 diagonal inertia coefficients are represented
in Fig. 2a, where the blue, red and green markers represent the perturbed terms jx,
jy, jz, respectively. The nominal values are instead represented with 3 horizontal
lines (notice that jx and jy are almost overlapping). In each of the 25 + 1 simula-
tions the maneuver regulation controller defined in (33) employes always the same
ūξ (s), and K̄(s) that are computed using the nominal values of jx, jy, jz. Notice that
also the desired maneuver is designed considering the nominal value. In this way
we can test the robustness of the controller against model parameter uncertainties.
Finally, the diagonal weight matrices employed in the LQR problem in order to com-
pute the feedbackmatrix K̄(·) areQ = diag(100, 100, 9, 9, 9, 10, 10, 10, 3, 3, 3) and
R = diag(0.1, 0.1, 1, 0.1) referred to the state w̄ and the input ūw, respectively.

Figure2c presents the projection, on the p2 − p3 plane, of the desired position
trajectory (thick blue curve), the closed loop position trajectory starting from the
perturbed initial condition with nominal parameters (thick red curve), and the closed
loop trajectories starting from the perturbed initial condition for all the 25 sets of
perturbed inertial parameters (thin colored curve), which are actually indistinguish-
able from the red curve. After the initial transient, all the curves quickly converge
to the desired curve right before the actual barrel roll maneuver starts. It is worth
noting that even if the desired task is defined in the p2 − p3 plane, the perturbed
initial condition is taken outside this plane and thus the resulting maneuver involves
the whole dynamics, as can be seen from Fig. 2b.

In Fig. 3a, c, e we show the desired roll, pith and yaw angles compared to ones
achievedduring the 26 closed loop trajectories (hereweuse the samecolor convention
described before). The three components of the (body frame) linear velocities are
instead plotted in Fig. 3b, d, f still with the same color convention as before. All the
quantities are plotted with respect to the arc-length σ . As already pointed out, the
maneuver regulation, as opposed to classical path following techniques, is able to
satisfy additional constraints like assigning orientation and linear velocity. In fact,
the plots clearly show how, after the transient phase these additional constraints
are fulfilled. Robustness with respect to the perturbation of the model parameters
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Fig. 3 Attitude angles and velocity components for the Monte Carlo simulation. Thick blue lines
are used for the desired maneuver. Thick red lines are used for closed-loop maneuver with nominal
parameters. All the other lines refer to the closed-loop maneuvers with perturbed parameters. a Roll
angles ϕ. b Linear velocity components v1. c Pitch angles θ . d Linear velocity components v2. e
Yaw angles ψ . f Linear velocity components v3

is also manifest from the fact that all the 26 closed-loop trajectories are almost
indistinguishable, despite the fact that the inertial parameters differ from the ones
used in the controller design.

Control inputs of the first group of simulations are shown in Fig. 4. Differently
from the plots presented so far, these plots show a different behavior of the torques
γ1,γ2, and γ3 across the 26 closed-loop simulations of this group. This happens
because the proposed controller automatically adapts to the perturbationof the inertial
parameters in order to track the desired trajectory. For example, the torque γ2 in
Fig. 4c, which is responsible for the flip of the roll, is either smaller or larger in
order to automatically compensate for smaller or larger values of the perturbed jy,
respectively. Notice how all the thrusts show an almost indistinguishable behavior
instead. This is manly due to the fact that the mass is not perturbed, for the reasons
explained before, across the 26 simulations.
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In the second group of simulations we show how the proposed maneuver regula-
tion controller is able to ensure good performances also in case of input noise and
saturations, which are common in real physical systems. In order to further validate
the controller with a realistic simulator we apply the controller on SwarmSimX [20],
a quadrotor simulator whose fidelity has been already validated several times with
respect to the test-bed described in [19] (see, e.g., [20] for a numerical comparison
between the real quadrotor and the simulated one). We encourage the reader to watch
the video attachments corresponding to these simulations at http://homepages.laas.
fr/afranchi/robotics/?q=node/168.

The desired maneuver is the same barrel roll trajectory that has been used before
but with a negligible initial error, since we want to evaluate here the sole effect of
input noise and saturation. As it happens in the real world, we apply the actual noise
and saturations on each single force produced by the 4 propellers. Denoting those
forces with f p

1 , f p
2 , f p

3 , f p
4 we have the well-known relation [3]:

⎡

⎢⎣

f

γ1

γ2

γ3

⎤

⎥⎦ =
⎡

⎢⎣

1 1 1 1

0 −l 0 l

l 0 −l 0

−k k −k k

⎤

⎥⎦

⎡

⎢⎣

f
p
1

f
p
2

f
p
3

f
p
4

⎤

⎥⎦ (34)

where l is the distance of the propeller from the center of mass and k is a suitable
constant that mainly depends on the propeller shape.

The model parameters used in the simulations are the one of the customized
MK-Quadro, i.e., mass and inertia matrix described before and l = 0.30m. We
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apply a Gaussian noise with standard deviation equal to 0.1N to each propeller.
Three different cases are then considered: (i) no saturation; (ii) 8.5N saturation, and
(iii) 7N saturation. These values are consistent with the capabilities of the MK-
Quadro. Considering that (see, e.g., Fig. 4a) the barrel roll maneuver needs a 40N
peak of total thrust (i.e., see (34), 10N per propeller on average), the chosen sat-
urations correspond to have about 15 and 30% less than the needed average total
thrust.

Figure5 shows the nominal force (thin black line) and actual forces commanded to
each of the four propellers in the three saturation cases (blue, red, and green colored
lines, respectively). Presence of noise and saturation is clear form the plots.

Figure6 shows the projection on the p2 − p3 plane of the desired position maneu-
ver (black line) and the three closed-loop actual position trajectories obtained for
the three saturation cases (same color coding as the propeller forces). As expected,

0 5 10 15 20 25 30
0

2

4

6

8

10

[N
]

0 5 10 15 20 25 30
0

2

4

6

8

10

[N
]

0 5 10 15 20 25 30
0

2

4

6

8

10

[N
]

σ [m]

0 5 10 15 20 25 30
0

2

4

6

8

10

[N
]

σ [m]

σ [m]

σ [m]

(a)

(c)

(b)

(d)

Fig. 5 Effect of the noise and saturation on the force produced by each propeller. a Force f p
1 .

b Force f p
2 . c Force f p

3 . d Force f p
4

Fig. 6 Effect of the
force/torque saturation of
each propeller on the actual
trajectory

0 2 4 6 8 10 12

−4

−3

−2

−1

0

1

2

p
2

[m]

p 3
[m

]

millitsa@ece.neu.edu



110 S. Spedicato et al.

deformation of the trajectory is more pronounced for the 7N saturation value than
the 8.5N case. However, the controller is capable of maintaining a stable behavior in
all the four cases. A similar trend is observable on the evolution of the three velocities
components shown in Fig. 7b, d, f as a function of the arc-length σ .

On the contrary, the achieved closed loop attitude angles are almost indistin-
guishable from the desired one, see Fig. 7a, c, and e. The different behavior can be
explained in following way. The maximum achievable γ1 when the force of the pro-
peller is saturated at 7N is, from (34), equal to 2l·7N = 4.2Nm which is higher than
the maximum nominal torque γ1 needed by the maneuver, which is visible in Fig. 4b
(blue plot). Same discussion holds for the other torques. This shows how the con-
troller is able to let the saturation only affect the quantities whose degradation is
unavoidable (position and velocity in this case).
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5 Conclusion

In this paper we have developed an LQR based maneuver regulation controller in
order to make a quadrotor UAV perform three dimensional aggressive maneuvers.
This controller overcome the drawbacks that affect both path following and trajec-
tory tracking. We have shown how our maneuver regulation controller is robust with
respect to the uncertainty of model parameters and input saturations. As a prelimi-
nary step to test the controller on the real quadrotor we have performed numerical
computations on a quadrotor simulator with good physical fidelity. Given the promis-
ing performances of the controller we plan to test the controller on a real quadrotor
platform.
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Towards Modeling Real-Time Trust
in Asymmetric Human–Robot Collaborations

Anqi Xu and Gregory Dudek

Abstract We are interested in enhancing the efficiency of human–robot collabo-
rations, especially in “supervisor-worker” settings where autonomous robots work
under the supervision of a humanoperator.Webelieve that trust serves a critical role in
modeling the interactionswithin these teams, and also in streamlining their efficiency.
We propose an operational formulation of human–robot trust on a short interaction
time scale, which is tailored to a practical tele-robotics setting. We also report on a
controlled user study that collected interaction data from participants collaborating
with an autonomous robot to perform visual navigation tasks. Our analyses quantify
key correlations between real-time human–robot trust assessments and diverse fac-
tors, including properties of failure events reflecting causal trust attribution, as well
as strong influences from each user’s personality. We further construct and optimize
a predictive model of users’ trust responses to discrete events, which provides both
insights on this fundamental aspect of real-time human–machine interaction, and
also has pragmatic significance for designing trust-aware robot agents.

1 Introduction

In this paper, we consider methods that aim to increase the efficiency of human–robot
teams, by optimizing the robot’s level of performance with respect to an objective
function reflecting human satisfaction: trust. The specific class of human–robot col-
laborations that we address are those with supervisor-worker relationships, where the
human oversees and delegates work to a robot “worker”, and also has the ability to
take over control momentarily to correct the robot’s mistakes when necessary.We are
motivated to develop techniques to simultaneously improve the quality of the work
performed by the robot, and also reduce the human supervisor’s task load demands.
We believe that trust is the key underpinning towards realizing these objectives,
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namely by enabling the robot to sense and adapt to the human’s intentions through
trust assessments, and by encouraging the building of the human’s level of trust in
the robot leading to the intrinsic disposition towards task delegation.

This paper describes our latest contributions in quantifying and predicting real-
time changes in the human’s level of trust in the robot during interaction. This is
inspired by our previous research [20] on modeling and making use of human–robot
trust within a tele-robotics setting, where a human operator supervises a remotely-
located robot that is autonomously tracking terrain boundaries using visual process-
ing.Whereas our previouswork characterized the level of trust that the robot deserves
based on logical reasoning about its task performance, we take a more data-driven
approach in this work. Concretely, we attempt to predict the actual degree of trust
the user has in the robot, from moment to moment during interaction, by studying
experience-based metrics as well as human factors that give rise to subjective trust
attribution.

We report on a user study that collected empirical human–robot interaction data in
reaction to different controlled events. In particular, this study logged all experiences
and actions occurred during short interaction sessions, and also elicited questionnaire
responses reflecting each operator’smental state when interactingwith the robot. The
questionnaires were designed to quantify a number of factors that are known to influ-
ence human–robot trust, based on existing literature. We also present a descriptive
analysis of the resulting dataset that establishes several quantitative characteristics
of users’ trust responses to different events, which are both logical and consistent
with prior research. We further propose a parametric model for predicting reactive
changes in the user’s trust, and evaluate this novelmodel’s generalizability and ability
to predict the real-time progression of human–robot trust.

2 Background

Our work is inspired by an extensive literature across diverse disciplines observ-
ing the critical role played by trust in human teams. Trust is a very rich concept
in the modeling of human behavior, and it is subject to a multitude of interpreta-
tions under different contexts, such as within a society, an organization, or a mutual
relationship [16]. Within a mutual human–robot team, trust encompasses two major
elements:

• the degree of trust: a quantifiable subjective assessment towards another individual;
• the act of trust: the decision and behavior of relying upon an individual’s abilities
or services.

In this work, we focus solely on quantifying the degree of trust. This measure can
then be applied to mechanisms that encourage a human to adopt the act of trust, as
shown in our prior work [20].
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2.1 Related Work

Studies of trust in Human–Robot Interaction (HRI) historically evolved out of a
multi-decade literature investigating the interaction between humans and automation.
Several measurement scales of a human’s degree of trust in computer automation
have been previously proposed and evaluated [14, 17]. Other groups have quantified
how trust varies with respect to the performance and error rate of the human–robot
team [4, 7, 10], the nature of these failures [2], and the user’s mental load [7].

Lee and Moray [15] developed a temporal model for characterizing human trust
within a human–automation team setting. Our work shares several similarities with
the authors’ approach, and further extends analysis into the human–robot domain.

Among the earliest studies of trust in HRI, Hall [11] formulated a binary trust
measure assigned to each state of the world, and devised an update mechanism for
trust based on the robot’s experiences. Freedy et al. [9] investigated the effects of
mixed initiative robot control on a user’s trust within a military tele-robotics setting.
Hancock et al. [12] carried out ameta-analysis of empirical results from the HRI trust
literature, and established quantitative estimates of various factors influencing trust
across different interaction domains. Yagoda [21] gathered trust assessments from a
broad audience by showing videos of human–robot interactions and eliciting users’
trust responses through an online crowd-sourcing framework. Arkin et al. [1] studied
aspects of trust and deception in a tele-robotics context. Our research shares various
commonalities with all of these works, in the formulation, instantiation, elicitation,
and evaluation of human–robot trust.

Our study of human–robot trust is most similar to the work by Desai et al.
[5, 6], which carried out a multitude of investigations on trust within a search-and-
rescue tele-robotics setting. In particular, the authors quantified the effects on trust
of diverse interaction-level factors, including the level of autonomy, degree of robot
reliability, amount of situational awareness, etc. Likewise, in this work we begin
with a descriptive approach for studying human–robot trust, though at a finer time
scale of the interaction experience. We then expand on the analysis further to extend
towards a predictive model for the user’s real-time trust assessments.

2.2 Trust Characterization

Several studies have highlighted the influences of various factors on the degree of a
human’s trust in a robot (e.g. [6, 12, 15]). These factors include:

• human’s demographic attributes: e.g. age, gender, occupation;
• human’s attitudes and experiences: e.g. propensity to trust robots, prior experience
with robots and with task setting;

• human’s perception of robot attributes: e.g. adaptability, benevolence;
• robot’s task performance: e.g. internal automation failures, task errors;
• attributes of the interaction setting: e.g. communication quality, task complexity.
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A key distinction among these factors is their bases of trust, which can be cat-
egorized into two main classes: certain trust factors relate to notions of the robot’s
competence, such as its task accuracy and consistency.These differ conceptually from
factors related to the trustees intentions, pertaining for instance to the robots willing-
ness and benevolence. Following themajority of research in robotics and automation,
our work will take intention-centric bases of trust for granted, and assume that the
robots designers did not include deceptive behaviors into its programming.

Measures of trust have been quantified using a number of different formats in
the literature, including a binary representation [11], a continuous bounded measure
[9, 15], and a multi-dimensional measure [14, 17]. Each representation has its own
merits and drawbacks, and there is no “true” or perfect format unfortunately since
trust is fundamentally a non-observable construct. In this paper, we quantify human–
robot trust as 1-D bounded continuous measure, which enables both ease of user
feedback and the application of standard statistical analysis techniques.

2.3 Interaction Context

Our research revolves around a team that is comprised of an autonomous robot and
a human supervisor, collaborating on a common task. Ideally, the software agent
governing the robot’s autonomous behaviors is responsible for carrying out the bulk
of the workload, while the operator predominantly monitors of the task progression.
When the autonomous agent makes a mistake however, the human can actively
intervene and provide corrective help by overriding the robot’s commands. Given the
nature of this supervisor-worker relationship,we assume that the human’s intervening
commands will always supersede those generated by the autonomous agent.

We have chosen to study vision-guided navigation as our primary application
domain. Concretely, our human–robot setting consists of a human operator sharing
control with an autonomous vision-based agent [19] over an aerial vehicle, while
being tasked to track different terrain boundaries, such as coastlines and roads. Visual
navigation tasks are appealing because humans are naturally inclined to solve them
robustly and without effort. In addition, the necessary complexity in autonomous
solutions (e.g. [6, 8]) warrants the need of trust. Finally, these setups are relevant to
a wide variety of different robot platforms and application contexts.

Within our boundary tracking framework, the human operator is presented with
a graphical interface showing the live camera feed from the robot, as seen in Fig. 1.
The autonomous agent’s internal state is overlaid on top of this view, in the form
of the currently-tracked boundary curve and line fit, as well as the current steering
command. These overlays provide transparency to the autonomous agent’s sensing
and control processes, and therefore help the user understand the robot’s behaviors
more clearly. In addition, whenever the boundary tracking algorithm fails to detect
the boundary, the user can also readily perceive such faults by the absence of the
boundary-related overlays.
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Fig. 1 Our boundary tracking framework provides an interface that overlays the autonomous
tracker’s internal state representation on a real-time display of the robot’s camera view. Additional
text overlays pertain to our human–robot interaction study, which are discussed in Sect. 3

The operator can take over control of the vehicle at any time, by holding down
the mouse cursor over the camera display in the desired steering direction; these user
interventions are reflected by a change in the steering arrow’s color. The autonomous
tracker is always running and its internal visualizations are also continuously dis-
played on-screen, even during periods of manual control. This allows the user to
perceive when the agent has regained the tracked target, and thus also when to return
control back to the autonomous system.

3 Methodology

We developed a human–robot interaction study to collect empirical data towards the
analysis and modeling of real-time human–robot trust. In this study, users interacted
with our autonomous boundary tracking agent to control a simulated aerial vehicle.
Our simulation framework generates a bird’s-eye camera feed of a non-holonomic
fixed-wing aerial robot, based on real satellite imagery.
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Although our boundary tracker has been previously deployed on both fixed-wing
aerial robots [19] and quadrotors [20], we chose deliberately to target an aerial
robot simulation framework for our user study in contrast. This setup allowed us
to administer specific interaction experiences to different study participants in a
controlled and repeatable manner, and also eliminated pragmatic concerns such as
battery levels and fluctuations in environment conditions.

3.1 Event-Centric Perspective

We perceive a given period of human–robot interaction experience as a sequence
of discrete events, where each event corresponds to a salient change in the state
of the robot and/or the environment. Examples of such events within our visual
navigation setting include a sustained period of internal failures in the boundary
tracking algorithm, or a strong gust that pushes the aerial robot sideways and causes
it to lose track of the target boundary. By measuring the human’s change in trust in
reaction to different types of events, we can quantify the progression of human–robot
trust at a small time scale, namely short periods of interaction experience centered
around each event. This event-centric view also differentiates our investigations from
the majority of studies in the literature, which have characterized impacts on trust
from aggregated interaction experiences on longer-term time scales (e.g. [6, 9, 21]).

Concretely, our user study is comprised of a number of short interaction sessions
(<60s each), where in each section the task is to follow a straight road for about 30 s
till an intersection, make a predetermined turn, and then continue following the new
path. We used different road segments and varied the turn directions in each session,
in order to introduce diversity in the interaction experience and also prevent potential
learning effects. The autonomous boundary tracker is capable of following sides of
roads proficiently, but lacks the ability to switch between multiple target boundaries
at intersections. Participants in our study were explicitly informed of this limitation
prior to commencing the interaction sessions.

In this paper we focus specifically on events corresponding to robot failures,
i.e. periods of decreased reliability in the robot’s task performance. These drops in
reliability are achieved by changing the parameter settings of our boundary tracking
algorithm into a low-reliability state, where the autonomous agent poorly tracks
roadside boundaries and also exhibits frequent internal failures in a non-predictable
manner. We devised the following event scenarios, by programmatically toggling
between reliability modes at different times during the course of each session:

• Baseline: the boundary tracking agent is set to high-reliability state throughout
the entire session;

• PoorStart: the agent starts in the low-reliability state for 10 s and is then
switched into the high-reliability setting, prior to the intersection,
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• RobotFault: the agent is momentarily toggled into low-reliability state for a
10-s period in the middle of tracking the first road segment;

• Limitation: the agent is switched into low-reliability state at the road inter-
section, and then switched back into high-reliability state after 10 s.

We believe that robot operators typically behave in a rational manner, and will
attribute blame following robot misbehaviors differently based on the cause of each
failure. Our event scenarios are designed to elicit trust changes following different
types of failures, namely poor initial tuning of the autonomous agent (PoorStart),
algorithmic failure without any noticeable external cause (RobotFault), and fail-
ure due to limitations in the robot’s programming (Limitation).

3.2 Trust Factors

The main purpose of our trust modeling work is for an autonomous robot to have
the capability of predicting the human’s trust in real-time during interaction. Starting
from the rich corpus of factors that have been shown in the literature to influence
human–robot trust, we exclude factors that are ill-defined, and those that are not
possible for the robot to obtain, either via direct observation or by querying the
human operator. In addition, since our research context assumes that the robot is
always well-intentioned and is never adversarial, we also exclude all intention-based
factors from our investigations. Therefore, our study is designed to collect interaction
and user feedback data for quantifying the following experience-based trust factors:

• the robot’s task performance (i.e. distance between robot and tracked target);
• the autonomous agent’s internal failure rates;
• the frequency of interventions from the human operator;

In addition, our questionnaires elicit the following assessment-based factors:

• a pre-experiment survey: user demographics, general attitudes, and prior experi-
ence with robots and remote control (RC) tasks (following [5]);

• post-session questionnaires: assessments of the robot’s and user’s task perfor-
mances, as well as the robot’s perceived robustness and adaptability;

• a debriefing questionnaire: experiment-wide task load assessments (via Raw
TLX [13]), and post-hoc updates on trust propensity towards autonomous robots.

This study design highlights the important characteristic that human–robot trust
is dependent on factors at different time scales. In particular, we expect responses to
both the survey and debriefing questionnaires to be constant throughout the entire
study, in contrast to per-session user assessments. These experience-based factors
are summarized by statistics aggregated over the entire duration of each session,
as well as within a short window of time following an event. The former set of
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measures reflect a cumulative characterization of the interaction experience during
each session, whereas the post-event window-level statistics quantify immediate
reactions from both the user and the robot following a discrete event.

3.3 User Assessment Elicitation

In addition to the various questionnaires for gathering assessment-based trust factors,
we also asked users to indicate their degree of trust in the robot both before and after
each session. The majority of these user queries employed the Visual Analogue
Scale (VAS) [18] to elicit unipolar (“Likert-like”) and bipolar responses. The VAS
format, i.e. a continuous scale without tick marks (Fig. 2), was chosen for its superior
metric properties over N-point discrete scales [18]. We have iterated over the design
of our questionnaires, in order to mitigate common sources of biases [3].

3.4 Structure of Interaction Study

Figure3 depicts the different phases in our interaction study, beginning with the sur-
vey questionnaire.A set of tutorial slides then provided explanations of the interaction

Fig. 2 Questionnaires in our study are comprised predominantly of user assessments using a con-
tinuous Visual Analogue Scale (VAS) [18] (i.e. continuous slider without tick marks) as answering
format, as well as a few discrete-choice queries
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Fig. 3 The structure of our user study is designed around multiple controlled human–robot inter-
action sessions, which are supplemented by a number of questionnaires

and task context, the interface, as well as the robot’s capabilities (i.e. configurable
to track various types of boundaries) and limitations (i.e. incapability of changing
tracked targets deliberately). The tutorial also explicitly asked users to assume that the
autonomous robot was well-intentioned, and to therefore provide trust assessments
based solely on the robot’s performance and competence.

Next, participants interacted with boundary tracking robots during 6 distinct ses-
sions, corresponding to 2 initial practice sessions, and followed by the 4 event sce-
narios in a random, counterbalanced order. Each session began by asking users to
provide their initial trust assessments in the yet unseen robot, followed by the actual
interaction phase, and ending with a post-session questionnaire.

In the first practice session, participants were instructed to get acquainted with the
visual interface and robot controls during free roam, while tracking arbitrary terrain
boundaries. The autonomous robot agent was toggled into its low-reliability state
for short periods of time on several occasions, both to demonstrate robot failures as
well as to implicitly prompt users to practice intervening and taking manual control
of the vehicle. The second practice session consisted of a variant of the Baseline
scenario, and acquainted participants with the road-following task objective by pro-
viding a demonstration of a typical interaction experience.

Following the 6 interaction sessions, the study concluded with a debriefing ques-
tionnaire that collected assessments of the aggregated interaction experience, as well
as general feedback. This entire interaction study was completely automated, includ-
ing the event triggers and data logging components.

A key aspect of this study design is that the user’s trust assessments are affected
by a full-fledged autonomous agent, operating within a simulated environment. This
setup therefore provides conditions similar to a real world setting, while also enabling
experimental control to ensure consistent and repeatable experiences.

4 Interaction Study Results and Analyses

We recruited 30 participants from the School of Computer Science at McGill Uni-
versity to participate in our interaction study. The user population is comprised of 24
males and 6 females, and included 11 undergraduate students, 13 graduate students,
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2 professors, and 4 university personnel. Participants had varying degrees of expe-
rience operating and programming robots, although no user had prior interaction
experience with our boundary tracking system.

The resulting dataset encompassed 60 practice session entries and 120 non-
practice session entries. We carried out statistical analyses to investigate several
key aspects of this human–robot trust dataset, including order effects resulting from
our crossover session design, the effect of event scenarios on the amount of change
in users’ trust assessments, and the relative significance of various factors previously
identified in the literature on the influence of real-time human–robot trust.

4.1 Session Order Effects and Properties of Pre-session Trust

In order to mitigate learning effects of the crossover study design from introducing
unwanted biases, we explicitly emphasized, both during the tutorial and during pre-
session trust elicitations, that the experience from each session should be assessed
independently from previous ones, and that each session may encompass robots with
different reliability levels, differing task objectives, as well as distinct environments.

Figure4 shows the degrees of trust participants felt towards the boundary tracking
robot prior to the start of each session. A repeated measures analysis of variance
(rmANOVA) revealed no significant relationship between the mean pre-session trust
values to the session ordering, F(5, 145) = 0.30 (p = 0.91), although there was a
strongly significant effect from the different users, F(29, 145) = 24.18 (p < 1e−16).
We thus conclude that although trust assessments at the beginning of sessions varied
among individual users, these measures were not noticeably affected by the session
ordering.

Figure4 also indicates that the experiment’s population demonstrated slight pos-
itive bias for pre-session trust level that is above the uninformed prior response of
0.5. A one-way two-tailed Student’s t-test revealed that the mean of the pre-session

Fig. 4 Pre-session trust
assessments from users are
consistent across sessions
and do not show any
significant effects of the
session ordering. These
results from our study
population also demonstrate
slight positive bias in initial
robot trust assessments,
which are consistent with
prior findings in the
literature [6, 7]
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trust assessments across all users and all sessions (including practice sessions) was
significantly different from 0.5 (p < 0.05). This positivity bias is consistent with
similar findings in other human–robot studies [6, 7].

4.2 Effects of Event Scenarios

Figure5 depicts changes between pre- and post-session trust assessments, in response
to different events during the 4 main sessions. Repeated measures ANOVA revealed
significant effects on themean amount of trust changes both due to events,F(3, 87) =
16.61 (p < 1e−16), as well as due to users, F(29, 87) = 2.35 (p = 1.22e−03). Post-
hoc pairwise comparisons using the Tukey range test at the p < 0.05 level showed
non-significant differences in trust changes between Baseline & Limitation,
PoorStart & RobotFault, and PoorStart & Limitation.

Looking at the average user responses, the gain in trust in reaction to the high-
performance boundary tracker settings of Baseline is logically expected, and
similarly so are the losses in trust due to failures during the PoorStart and
RobotFault scenarios. Although the difference in the amount of trust lost between
PoorStart and RobotFault was not significant, Fig. 5 suggests that users
reactedmore lenientlywhen the robot in PoorStart startedwith poor performance
but then soon showed improvements, as opposed to when the initially-reliable robot
in RobotFault unexpectedly failed to track a straight road.

In contrast, the typical response of increase in trust for theLimitation scenario
may appear surprising at first, since the robot was programmatically switched into
the low-reliability mode when it reached the intersection. Nevertheless, we believe
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Fig. 5 Trust changes in response to different events are consistent with rational reactions based on
causal attribution. In particular, the slight increase in trust in the Limitation scenario suggest
that most users deliberately did not blame the robot for failing to execute a change in task objective,
given known limitations in its programming
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that users deliberately did not penalize these failures because they were actively
conscientious that the autonomous boundary tracker lacked the capabilities of car-
rying out changes in the task objective. Therefore, the robot’s momentary drop in
reliability following the intersection can be interpreted in analogy to a switch from
the Baseline to the PoorStart conditions, which is consistent with our post-
hoc pairwise comparative analysis. In summary, these results indicate that overall,
participants evaluated trust responses in a manner consistent to a rational mindset
that both considered causal event assessments, and carried out deliberations with the
robot’s capabilities and limitations in mind.

4.3 Descriptive Analysis of Factors Influencing Trust Change

A backwards stepwise linear regression analysis was carried out to identify the most
significant relationships between factors enumerated in Sect. 3.2, and changes to the
user’s trust level in response to different events. Starting from a full linear model
involving all considered trust factors, the session order, and event scenarios, we
applied stepwise regression using the Sum Squared Error (SSE) criterion, which
iteratively removed insignificant factors (when p > 0.1) and re-introduced relevant
factors (when p < 0.05). Interactions and high-order terms were disallowed to
preclude spurious associations between factors at different time scales. Experience-
based factors reflecting the immediate post-event reactions were computed over a
10-s window, corresponding to the duration of the pre-determined lapse into the
low-reliability mode. Also, since no failure events occurred during the Baseline
scenarios, event windows were chosen at random for the corresponding sessions.

Table1 provides a summary of the stepwise regression results. Starting with 52
trust factors at different time scales, only 22 factors remained in the final model.
Significant factors at the experiment-level time scale included demographic entries
(e.g. age, occupation), prior expertise and attitudes (e.g. driving and robot control
experience, willingness to use a self-driving car), as well as post-experiment assess-
ments (e.g. measures of mental demand and performance). Session-level factors in

Table 1 Descriptive analysis summary of human–robot trust factors using stepwise regression

Factor categories (Initial factor count) Final factor
count

DF Σ MS Min. p Avg. p Max. p

Survey & debriefing assessments (24) 13 15 4.25 <1e−10 <0.01 0.02

Post-session assessments (4) 2 2 1.27 <1e−16 <0.01 0.02

Experience during session (12) 4 4 0.30 <1e−2 0.02 0.04

Experience within 10s window (12) 3 3 0.21 <1e−3 0.27 0.79

Residual 84 0.01

DF: degrees of freedom
Σ MS: combined mean sum of squares
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thefinalmodel incorporated post-session user assessments of the robot’s performance
characteristics, as well as session-wide internal failure metrics. Finally, significant
window-level factors corresponded to measures of short-term external task errors.
Both the session order (p = 0.60) and event scenarios (p = 0.20) were excluded by
the regression process. The final model showed excellent fit to the data, with a Root
Mean Squared Error of RMSE = 0.11 and a goodness-of-fit of R2 = 0.83.

We hypothesize that because the event scenario was categorical, it lacked met-
ric precision in correlating to the quantitative amount of trust change, and was thus
dropped in favor of other non-discrete window-level and session-wide metrics that
characterized the interaction experience. More importantly, these experience-based
factors were dwarfed in statistical significance compared to users’ assessments, espe-
cially at the experiment-level time scale, as reflected by the aggregated Mean Sum
of squares (MS) and average p-value statistics in Table1. We therefore conclude that
the evolution of real-time human–robot trust is dependent on each user’s personal-
ity (e.g. expertise, beliefs, tendencies, and perceptions) more significantly than the
actual experiences and their causalities during interaction.

5 Predictive Real-Time Trust Modeling

We now develop an initial model for predicting trust changes in real-time human–
robot interactions, based on our statistical analyses above. This requires a critical
change inmethodology from our previous descriptive characterizations, which quan-
tified the relationships between trust and its related factors using all of the collected
dataset. In contrast, the main objective of predictive real-time trust modeling is to
estimate event-centric trust responses during interactions with potentially new users,
while havingminimal or no prior knowledge about these users. This is achieved using
the standard machine learning technique of Maximum Likelihood model parameter
learning through cross-validation.

Section4.3 previously revealed the strong dominance of personality-based factors
over experience-based factors on event-centric human–robot trust. Unfortunately,
such personalized information may not be available when the robot is interacting
with a new user. Therefore, we excluded factors at the experiment-level time scale
in this initial work towards predicting human–robot trust.

5.1 Parametric Event-Centric Trust Model

Our model for predicting changes in trust in reaction to interaction events is derived
from the same stepwise regression approach previously used in our descriptive analy-
sis. Specifically, event-based trust change ΔT

session ∈ [−1..1] is quantified as a
weighted linear sum (with weights ω) of both experience-based metrics at the post-
event reactionary windowed time scale (Epost-event

i ) and at the event-centric session
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level (Esession
j ), as well as provided user assessments following each session (Asession

k ).
This model is trained using supervised learning by computing the difference between
the user’s trust assessment before and after each session:

ΔT
session (W, Q) = 1

Q

[
round

(
Q · Tpost-session

) − round
(
Q · Tpre-session

)]

=
∑

∀i,j,k

(
ω0 + ωi E

post-event
i (W ) + ωj E

session
j + ωk A

session
k

)
(1)

This trust model has two parameters: the post-event window duration W , and the
quantization level Q for both the elicited pre-session and post-session trust assess-
ments. The window duration parameter W is related to the temporal sensitivity in
the predicted trust change, and allows our model to generalize to other HRI settings
potentially, such as turn-based episodic human–robot interaction settings. In addi-
tion, within our specific domain of visual robot navigation tasks, W can be adjusted
to optimize the predictability on trust changes from post-event experience-based
metrics, such as internal robot failures and the rate of user interventions.

The trust response quantization parameterQ addresses a separate concern, namely
that reported assessments within questionnaires may contain diverse sources of
bias [3]. Some of these biases were addressed in our study design by using the
Visual Analogue Scale (VAS) answer format, which exhibits desirable metric prop-
erties [18]. In conjunction, the Q parameter quantizes the user’s trust responses in
order to eliminate noise resulting from the variability in the exact pixel placement of
selections on the VAS answer scale. Quantized trust responses are also re-normalized
to facilitate comparisons between different quantization levels.

5.2 Parameter Learning

The predictive power of our trust model in Eq.1 depends on the values of its parame-
ters, namely the post-event window duration W , and the trust response quantization
level Q. We used a Maximum Likelihood (ML) supervised learning and validation
approach to determine optimal parameter settings. Concretely, we constructed a test
set by isolating data from a random 20% of users, and carried out parameter fitting
using 6-fold cross-validation on the remaining 80% of user data. We iterated over
11 window duration values of W = [0.5, 1, 2, 3, 4, 6, 8, 10, 12, 15, 20] seconds,
and across 13 trust quantization values, Q = [3, 5, 7, 9, 11, 15, 21, 31, 51, 71, 101,
201, 501]. Each stepwise regression model was built using the same procedure as
described in Sect. 4.3. The accuracy of each model was then evaluated using the Root
Mean Squared Error (RMSE) of the predicted trust changes in the cross-validation
set.

In addition, we quantified the generalizability of the chosen model parameters by
training and evaluating trust models on a variable-sized subset of data entries, after
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randomly excluding 20% of users into a separate test set. Training-set and test-set
RMSE values (i.e. RMSEtrain & RMSEtest) from multiple runs were aggregated to
reflect the typical level of generalizability for our trust model.

5.3 Results and Discussion

Our parameter fitting procedure trained over 800 stepwise regression trust models.
Among these, the model with the smallest RMSEtest revealed optimal parameter
values of W = 2 s and Q = 31 levels. Thus, within our boundary tracking task
domain, metrics reflecting the robot’s behaviors and the user’s interventions within
a 2-s post-event window was found to be most useful at predicting trust changes.
In addition, the large magnitude of the selected trust quantization level Q = 31
indicates that this trust model has the potential to provide fine-scaled predictions of
the quantitative change in the users’ trust assessments.

Figure6 depicts the progressions of the training-set and test-set errors averaged
over 50 independent runs. The prediction errors of models built using the full training

set were RMSE
train

(96) = 0.13 (S.D. = 0.01) and RMSE
test

(24) = 0.19 (S.D. =
0.05). The smooth asymptotic convergence in the training-set and test-set errors
suggest that a significant portion of our training set was required to allow for gener-

alization and avoid over-fitting. In addition, the small magnitude of RMSE
train

and
the gap after convergence between the training-set and test-set errors together indi-
cate the presence of high variance in our learning technique. This implies that our
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Fig. 6 Learning curves for our optimized trust model (W = 2, Q = 31), comparing the predictive
error of different-sized training sets (up to 80% of the entire dataset) and of a complementary test
set, averaged over 50 independent runs. The asymptotic gap between the two error curves indicates
that our learning algorithm exhibits high variance, which suggests that larger-sized datasets could
further improve the final model’s quality
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(non-regressed) trust model structure has sufficient expressibility, and we would thus
expect to gain further predictive power and generalizability by expanding the size of
our training dataset.

Finally, by interpretingRMSE
test

as the standard deviation in the typical prediction
error in trust responses for novel users, we deduce that 95% of times the predicted
values differ from actual trust changes by ±0.37 (recall that trust change values lie
in [−1..1]). We acknowledge that the quantitative performance of our trained and
regressed trust models in this work reflect only moderate levels of predictive power,
especially compared to the numerical precision of the chosen trust quantization level,
1/Q ≈ 0.03.We suspect that amajor source of the predictive error lies in the variability
among different users, which has been consistently shown in our analyses to affect
trust assessment, and therefore should be incorporated into our trust model in the
future to further improve its predictive power.

6 Conclusions

In this work, we characterized key aspects of real-time trust in supervisor-worker
human–robot teams, and illustrated these aspects concretely within a collaborative
tele-robotics setting. We also carried out a controlled user study to collect both inter-
action experience and user assessment data, and whose results quantified different
degrees of trust changes in reaction to various events during interaction. In partic-
ular, we found empirical support for the hypothesis that users in our interaction
study typically behaved rationally and attributed trust changes based on the cause
of each failure event. We further determined that the progression of human–robot
trust was predominantly shaped by each user’s personality, in comparison to the
influence from the actual experiences in the interaction. Finally, we developed an
initial, parametric model for predicting event-reactive trust changes within real-time
continuous human–robot interactions, and empirically characterized its performance
and generalizability.

We are currently working towards an extended version of our interaction study,
which will target a wider user audience and a more elaborate set of event scenarios.
We are also investigating ways to integrate personality-based factors into our real-
time trust model, in order to further improve its predictive power. Separately, we
are actively pursuing pragmatic applications of our real-time trust model to enable
robots to intelligently adapt its behaviors based on different types of human inter-
ventions [20]. We anticipate that this work and its extensions will culminate into a
robust real-time predictive trust model, which can then be applied to streamline the
efficiency of human–robot collaborations.
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Optimal Control for Viscoelastic Robots
and Its Generalization in Real-Time

Sami Haddadin, Roman Weitschat, Felix Huber,
Mehmet Can Özparpucu, Nico Mansfeld and Alin Albu-Schäffer

Abstract Inspired by the elasticity contained in human muscles and tendons,
viscoelastic joints are designed with the aim of imitating human motions by exploit-
ing their ability to mechanically store and release potential energy. This distinct
feature makes elastic robots especially interesting to the application of optimal con-
trol principles, as generating such motions is not possible by data-driven paradigms.
In particular, reaching peak velocities by using the stored energy in the springs is of
great interest, as such capabilities might open up entirely new application domains.
In this paper, we review our results on solving various optimal control problems for
elastic joints and full scale robot arms, as well as the experimental validation. Clearly,
solving optimal control problems for highly nonlinear full robot dynamics is feasi-
ble nowadays only numerically, i.e. offline. In turn, optimal solutions would only
contribute a clear benefit for real tasks, if they would be accessible/generalizable in
real-time. For this, we developed a framework for executing near-optimal motions of
elastic robot arms in real-time. In contrast to existing approaches, we use dynamically
optimal motions (i.e. offline solutions of optimal control problems) as given learn-
ing input and then apply generalization via Dynamic Movement Primitives (DMPs).
With this approach, we intend to overcome the well-known problems of optimal
control and data-driven learning with associated generalization: being offline and
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being suboptimal (In fact, data-driven approaches can only be applied if the solution
is already quite obvious for the human teacher. In case of highly nonlinear problems
these “intuitive” initial solutions are typically not available.), respectively.

1 Introduction

Humans are capable of highly dynamic motions such as throwing or kicking. This is
mainly possible due to their ability to store and release potential energy in their elas-
tic musculoskeletal system in combination with inertial energy transfer between the
rigid parts of the body. In robotics, however, intrinsic compliance is widely regarded
as a clear drawback, degrading the associated quality measures such as repeatability
and accuracy. Planning robot trajectories for rigid systems is one of the largest fields
of robotics research [2, 7, 18, 20]. Since rigid robots are usually supposed to execute
purely geometric tasks, the roles were distributed such that a low-level controller
ensures accurate tracking behavior, while trajectory generation may remain on kine-
matic abstraction level. Another approach to generate trajectories originates from
the learning community, where the learning-by-demonstration (LbD) paradigm is
very common. Typically, a desired motion is taught to a robot kinesthetically [4,
23]. Alternatively, human motion tracking is used as a trajectory reference. A very
popular, simple, and yet powerful scheme to efficiently encode these trajectories is
the Dynamic Movement Primitives (DMPs) approach [16]. Apart from generalized
replication of motions, DMPs allow also for incorporation of disturbance forces (for
collision avoidance or retraction) [27]. In summary, there exist numerous success-
ful motion generation approaches. However, a major drawback of the mentioned
schemes is that they work maximally up to kinodynamic level. Therefore, they can
never fully exploit the (often nonlinear) inherent dynamic capabilities of a robot.1

As industrial robotics is mainly concerned with path tracking at maximum speed,
several researchers considered this problem for rigid robots within the mathemat-
ical framework of optimal control (OC) [5, 25, 28, 29]. However, due to various
inherent limitations and drawbacks of rigid actuation, a new class of robots that
are equipped with intrinsically elastic actuation (or more general Variable Stiffness
Actuation (VSA)) was developed over the last decade [1, 3, 30]. Its potential capa-
bilities are expected to clearly outperform classical actuation by means of dynamic
performance, mechanical robustness, and energy efficiency. At the same time the
associated paradigm shift towards rather complex flexible jointmechanics introduced
some underlying fundamental research questions to be answered. Most importantly,
one wants to solve the problem of how to optimally store and release elastic energy
such that it enables the execution of explosive motions. This question got thoroughly
analyzed for 1 degree-of-freedom (DoF) elastic and VSA in [10, 12–15, 22], again

1Please note that in case of LbD we do not refer to a subsequent optimization according to some
cost function after the trajectories were obtained.
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with the tools from OC. However, apart from the analytic solutions for several basic
cases, full scale systems with their nonlinear input and state constraints could only
be solved numerically [6, 10, 11, 21], i.e. offline. Therefore, even though we know
elastic robotic systems can indeed produce motions never seen before, we cannot
access them in real-time. This brings us to the main contributions of our paper: First,
we summarize our results on optimal excitation of elastic robot arms to generate
explosive motions. For this, we present some interesting theoretical insights for the
1DoF case and experiments with the DLR Hand-arm system (Hasy). Then, we out-
line our approach to overcome the limitations of OC and LbD by combining them
into a single Optimal Motion Framework (OMF). Specifically, we

1. use dynamically optimal trajectories coming from solving complex nonlinear
optimal control problems as learning input,

2. encode them into an optimized dynamical system,
3. and use a metric based on the cost function or geometric distance for selecting a

near-optimal parameter set in real-time for generalization.

Somewhat related approaches can be found in [17, 19]. Our approach discriminates
from these existing techniques in several terms: First, we consider elastic systems
for the first time. Apart from being 4th order systems, they have several additional
constraints and nonlinearities to be considered. Furthermore, we combine entirely
model-based optimal control2 with generalization algorithms. Finally, we introduce
the estimated cost function coming from the optimal learning input as an underlying
generalization metric.

The paper is organized as follows. We review some of our results on how to opti-
mally use (variable) joint elasticity for execution of high speed motions in Sect. 2.
Section3 describes our concept of merging prototypical optimal control problems
with DMPs to finally generalize to unforeseen problems. Simulations and experi-
ments support the validity of the approach. Finally, Sect. 4 concludes the paper.

2 Optimal Control for Viscoelastic Joint Robots

2.1 Basics of Optimal Control

Let us consider the class of systems that is described by a set of first order differential
equations ẋ(t) = f (x(t), u(t)), where x denotes the state vector and u the control
input, respectively. The initial state is denoted by x(t0) = x0, the final constraints are
φ(x(t f ), t f ) = 0, and the set of path constraints is c(x(t), u(t), t) ≤ 0. Solving an

2In contrast to pure nonlinear optimization, OC offers the tools to give stronger hints for global
optimality of a solution.
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optimal control problem aims at finding the control input u∗ that minimizes a given
optimality criterion

min
u(t)

J = h(x(t f ), t f ) +
∫ t f

t0

g(x(t), u(t), t)dt, (1)

with h(x(t f ), t f ) being the terminal cost and
∫ t f

t0
g(x(t), u(t), t)dt the running cost.

Essentially, the optimality criterion denotes the task to be accomplished and may
take various forms.

2.2 Visco-Elastic Joint Dynamics

The dynamics of a full VSA arm can be described by the following set of equations

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ J (2)

Bθ̈ + τ J = τ m (3)

τ J = f (φ,σ) + DJ (q̇ − θ̇), (4)

where θ and q are the motor and link side position, respectively, and σ is the position
of the stiffness actuator. Note that σ is treated constant in this paper when considering
the dynamics of theHasy system in Sect. 2.4. M(q),C(q, q̇), g(q), and B are the link
side inertia matrix, the centrifugal and Coriolis matrix, the gravity torque, and the
motor inertia. τ m denotes the torque acting through the positioningmotor. The vector
τ J is the elastic joint torque, which is a nonlinear function of deflectionφ = θ−q, its
derivative φ̇, and σ. Generally, f (φ,σ) is chosen to have ∂ f (φ,σ)

∂φ
> 0 (increasing)

and ∂2 f (φ,σ)

∂2φ
> 0 (convex). The damping part of the joint torque due to joint damping

DJ is assumed to be of additive linear form. If f (.) = K J (q −θ), then one typically
calls the design Series Elastic actuation (SEA), with K J being the positive definite,
diagonal, and constant joint stiffness matrix. Please note that we typically assume
that it is possible to solve (4) for θ, given σ.

For a single joint with constant joint elasticity and damping (see Fig. 1) the con-
sidered system equations (2)–(4) simplify to

Mq̈ + DJ (q̇ − θ̇) + K J (q − θ) = 0, (5)

Bθ̈ + DJ (q̇ − θ̇) + K J (q − θ) = τm . (6)

Fig. 1 1-DoF visco-elastic
joint

B M

KJ

θ q

DJ

τm
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In the following, we shortly review some of our results on solving OC problems for
several 1-DoF cases analytically. Thereafter, numerical and experimentally verified
solutions for Hasy are described.

An overview of the problems we solved so far is depicted in Fig. 2. For exam-
ple, elastic 1-DoF joints with constant elasticity and damping that are controlled
via motor velocity, acceleration, or torque (grouped as SEA) were considered in
[14, 22]. Furthermore, different motor models and nonlinear joint torque/deflection
curves have been analyzed in [12, 13]. For the VSA case, we derived analytical
solutions for bounded input motor and stiffness/damping control in [15]. For the

1-DoF Systems N -DoF Systems

SEA

Velocity Input
θ̇d ∈ [θ̇min, θ̇max]

Unconstrained System

Limited Deflection φ

Acceleration Input
θ̈d ∈ [θ̈min, θ̈max]

Unconstrained System

Limited Motor Vel. θ̇

Torque Input
τm ∈ [τmin, τmax]

Unconstrained System

Limited Motor Vel. θ̇

Controller Input
θ̇d ∈ [θ̇min, θ̇max]

QA-Joint with
Real-World Constraints

Motor Models PT1,PT2

VSA

Velocity and
Stiffness Inputs

θ̇d ∈ [θ̇min, θ̇max]
KJ ∈ [KJ,min, KJ,max]

Unconstrained System

SEA

Velocity Inputs
θ̇d ∈ [θ̇min, θ̇max]

Unconstrained
Double Pendulum

Linearized Dynamics

Full Dynamics

Velocity and
Stiffness Inputs

θ̇d ∈ [θ̇min, θ̇max]
KJ ∈ [KJ,min,K,K J,max]

Unconstrained
Double Pendulum
Full Dynamics

Velocity and Stiffness
Motor Inputs

θ̇d ∈ [θ̇min, θ̇max]
τJ = f(θ, q, σ)

DLR Hand-Arm System
with

Real-World Constrains
Experiments: SEA,VSA

Simulations: SEA,VSA

Fig. 2 Considered OC problems for visco-elastic joint robots
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N-DoF case, the effects of full dynamics, variable stiffness, and finally full robot
dynamics, incorporating all relevant input and state constraints, as well as nonlinear
torque-deflection curves, were obtained [11]. The 1-DoF velocity controlled motor
dynamics (u1 = θ̇ = θ̇d ) with constant linear or nonlinear joint elasticity and con-
strained deflection give interesting insights into the problem, as explained next.

2.3 Time-Optimal Control for 1-DoF

The most important real-world state constraint to be considered when generating
optimal control policies is the maximum angular deflection φmax . Exploiting the
maximum potential joint energy E potmax = 1

2 K J φ
2
max to obtain the maximum addi-

tional velocity gain Δq̇max is the primary goal. The maximum link velocity one can
achieve in principle is

q̇max = u1max + ωφmax = θ̇max + ωφmax = θ̇max + Δq̇max , (7)

with ω =
√

K J
M being the system’s eigenfrequency. Figure3 shows the constructed

switching curves that can be obtained by bringing the problem into an ellipsoidic
form and finding the optimal motor velocity u1 = θ̇d , which is of bang-bang type
except for a possible singular arc [12]. The most important result is that the particular
solution (number of switching cycles and presence of singular arc) depends on the
energy ratio eSL , which is defined as

eSL := E potmax

Ekin
=

(
ωφmax

θ̇max

)2

. (8)

Equation (7) can now be written as

q̇max = θ̇max (1 + √
eSL). (9)

The switching curve indicates that the motor needs to reverse its direction of speed
each time the link speed grows more than two times the motor speed, i.e.

nc =
⌈

q̇max

2 θ̇max

⌉
=

⌈
1 + √

eSL

2

⌉
, (10)

where nc is the number of motor cycles. In Fig. 3 (upper left) eSL = 11 is chosen,
i.e. three intervals starting with u1max exist. If φmax is lowered, the trajectory may
intersect the switching curve S. Figure3 (upper right) visualizes this case, which
occurs only if φmax < u1max

ω
, respectively eSL < 1. Keeping u1 = u1max , once φmax

is reached would lead to a violation of the constraint. It is therefore optimal to follow
the constraint in this singular case.
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Fig. 3 Time optimal control strategy (M = 0.1 kgm2, K J = 100Nm/rad, u1max = θ̇max =
2 rad/s). a Phase plot (q̇,φ). b Motor Velocity θ̇ and Link Velocity q̇

Interesting to notice is that the results for constant K J can be generalized to
nonlinear f (.). From an energy point of view, also the maximum kinetic energy
of a nonlinear elastic joint Ekinmax depends on the maximum elastic energy and
the maximum motor velocity. In other words, (9) is still valid with esl now being
defined as

esl = E potmax

Ekin
= 2

∫ φmax

0 τJ (φ)dφ

M θ̇2max

=
(

φ̇max

θ̇max

)2

. (11)

Figure4 shows phase plots of these trajectories for different esl values of the DLR
QA-Joint, which has highly nonlinear joint torque characteristics [8]. esl is increased
by lowering θ̇max , while keeping E potmax and thusφmax , φ̇max constant. Since |φ̇(0)| =
u1max and switching of u1 changes φ̇ by 2u1max , the relative velocity φ̇nc, representing
φ̇ obtained with nc motor cycles is bounded from above:

φ̇nc ≤ (2nc − 1)θ̇max . (12)
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Fig. 4 Time optimal control for the DLR QA-Joint [8]
(
u1 = θ̇, as ≈ 26.34, bs ≈ 28.62,φmax =

σ = 11o, φ̇max ≈ 2.44 rad
s

)

Consequently, the link velocity after nc cycles satisfies q̇nc ≤ 2ncθ̇max , yielding a
similar relation for nc as in (10). For instance, with a single switching of the motor
(nc = 2), q̇nc can theoretically reach 4θ̇max at most. Figure4 shows that this velocity
is indeed obtained in a time-optimal way by one switching of the motor at φ = 0,
when esl = 9 or equivalently q̇max = 4θ̇max . Note that for esl > 9, the maximum
velocity q̇max cannot be obtained with one switching anymore. Next, we discuss key
results for the nonlinear N-DoF.

2.4 Optimal Control for N-DoF

For the nonlinear N-DoF case, it is not possible anymore to derive the desired final
state by physical reasoning anymore. Thus, theOCproblem has e.g. to be stated in the
form of maximizing link side velocity at given final time t f : J (u) = −ϑ(x(t f )) =
−vTCP(q, q̇) = −J(q)q̇, with J being the end-effector Jacobian.3 The following
numerical optimal trajectories are obtained with the nonlinear optimal control solver
GPOPS [24].

2.4.1 Simulation

Figure5 depicts results for the variable stiffness4 case without state constraints.
Basically, the solution is of bang-bang type for both, velocity and stiffness input,

3Please note that we explicitly are not interested in an integral energy-type cost term (except for
using it for slight regularization) that intends to minimize the energy of the task. In fact, the problem
we consider rather aims at maximizing the energetic state of the robot at a certain time instant.
4For this analysiswe consider the stiffness K J to be a direct control input, instead of being an implicit
relation coming from the torque-deflection curve and σ, meaning to chose τ J = K J (t)(θ − q).
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Fig. 5 Optimal solution for maximum link side velocity with constrained variable stiffness input
and full nonlinear dynamics

Fig. 6 Throwing experiment with Hasy

respectively. Following observations can be made. For t ∈ [0.1 s 0.15 s] link 2
“decouples” (K J,2 = K J,min) in order to swing back without “being held” by the oth-
erwise high joint torque. Then, during final acceleration, the rapid deceleration of the
first link (the motor velocity switches its sign) causes an inertial energy transfer into
the distal part. In addition to this effect, the stiffness behavior for t ∈ [0.15 s 0.2 s]
contributes an additional energetic input for link 2: Joint 2 switches to maximum
stiffness K J,2 = K J,max for rapid acceleration due to a jump in elastic joint force.
Shortly hereafter the first joint “decouples” at t ∈ [0.15 s 0.18 s] for preventing
unnecessary “pulling torque” to act on link 2. At final time, the link side velocity in
each joint exceeds the respective motor velocity multiple times.

In the following experiment (Fig. 6), the goal is to throw a ball as far as possible
by maximizing the throwing distance dBin . This optimal control problem is of course
strongly related to the already considered maximum velocity problem.
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2.4.2 Experiment

The experiment uses a shoulder and the elbow joint at fixed stiffness preset σ∗. The
ball launches in the fifth image at an angle of 45◦ and scores into the bin, which is
placed at ≈5.5m distance from the robot base.

Figure7 shows measurements vs. simulations for θ̇max = 2 rad/s in both joins.
The upper left plot depicts θ and q, the upper right one q̇, the lower left one the
absolute Cartesian velocity (which reaches 3.4m/s at launch), and the lower right
φ. Simulation and experiment are in well accordance, except for some additional
oscillatory behavior in simulation, as we do not consider the (rather low) friction
of the real system. If we assumed a stiff robot driving at maximum motor velocity
θ̇ = 2 rad/s, its maximum Cartesian velocity would be≈2.2m/s, i.e. the elastic robot
is ≈50% faster, see Fig. 7 (lower left).

In the following section, we review our optimal motion framework (OMF), which
enables the execution of near-optimal motions in real-time.
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Fig. 7 Experimental performance of the optimal throw with Hasy
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3 Optimal Motion Framework

3.1 Prototypical Optimal Control Problems

By nature, the motion generation problem is infinitely large and generally poorly
defined in the sense of what a desired motion should exactly achieve. Essentially, it
is idle to find a general optimal control problem that inherently contains all possible
instantiations and thus captures the essence of motion. Therefore, we pragmatically
resolve this dilemmaby introducing prototypical optimal control problems. These are
sought to find an optimal control input u∗ that generates a distinct type of qualitative
motion for a given robotic system and potentially a secondary system the robot is
associated to (e.g. an object to be manipulated, which is associated to a second
target dynamics z). The following classification aims at grouping motion behaviors
according to their “higher-level” target. We coarsely distinguish between reaching
type and tracking type. The motion type, the constraints c(x(t), u(t), t), and the task
vector ξ (containing, e.g., the goal location q f (reaching type) or the bin location
xBin in case of throwing (implicit target type)) define the respective optimal control
problem to be solved. More details on our classification from Fig. 8 can be found in
[31]. Please note that we outline the OMF on joint level for sake of clarity. Next,
the embedding of optimal trajectories into DMPs and the generalization step are
reviewed.

3.2 Encoding

Figure9 compares the overall structure of our OMF (lower) to classical learning
approaches (upper). We start from a given set of m task vector instantations ({ξk})
with the respective cost function and associated constraints. Basically, we solve the
prototypical OC problem for a certain grid of the task vector. Solving the optimal

1.) reaching

q0

qf

min
u

J(err(qf )|E, τJ , t)

2.) explosive

q0

|q̇max|eN (qf )

min
u

J(err(e)|t, E, τJ )

3.) explosive target

q0

q̇f

N (qf )

min
u

J(err(q̇f )|t, E, τJ )

4.) implicit target

q0

N (qf )

min
u

J(err(ż)|t, E, τJ )

ż = g(z, t,qf , q̇f )

5.) implosive

q0, q̇0

N (qf )

min
u

J(err(q̇f )|t, E, τJ )

6.) tracking

q0, q̇0

qf , q̇f

q(t)

7.) cyclic tracking

q0, q̇0

q(t)

Fig. 8 Grouping motion behaviors into reaching type (1-5) and tracking type motions (6-7)
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Fig. 9 Towards an optimal motion framework. w denotes weights of a suitable basis

control problem numerically yields sampled trajectories defined by link side position
q∗

k (ti ), velocity q̇∗
k (ti ) and acceleration q̈∗

k (ti ) in joint or operational space. Deploying
these trajectories into a second order differential equation (DMP)

f∗
k (ti ) = −τ 2q̈∗

k (ti ) + κ(ti )(q∗
k (τ ) − q∗

k (ti )) − Dτ q̇∗
k (ti ) (13)

with a total movement duration τ , a stiffness factor κ(t), and damping D we obtain
a force-based trajectory f∗

k (ti ) (see e.g. [9]). The dynamical force f∗
k (v), which is a

function of a canonical system v, is then encoded into an appropriate approximative
basis, involving several optimization steps. The approximative force is denoted f≈(v),
see e.g. [9]. Thereafter, wemay generalize themotion along t ∈ [0 · · · t f ] for different
goals g(ξ) by solving

q(t) = 1

τ 2

∫ t f

0

∫ t f

0
f≈(v) + κ(t)(g(ξ) − q) − Dτ q̇ dt dt + q(0) (14)

Note that the goal configuration g depends on the task vector ξ. From (14) we obtain
position, velocity, and acceleration in real-time, which can be inserted into (2). The
motor trajectories θ(t) can now be obtained by solving (2) for τ J and then apply (4).
However, this simple generalization approach works only well for new goals that are
close to the initial instantiations gk(ξk). Next, a modified generalization procedure
is introduced that solves this problem.

3.3 Generalization

In order to make use of the fact that “close” trajectories (DMPs) presumably encode
more relevant information for a new goal, distance-based weighting is applied for
the interpolation step. For the reaching movement generalization, we may apply the
method from [26] and get for each joint l the interpolated weights
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w∗
l (ξg) =

∑
∀k:σk≤δ

w∗
l (ξk)σ

−1
k

∑
∀k:σk≤δ

σ−1
k

. (15)

Equation (15) is a sum of kernel weights multiplied with the inverse of the geomet-
ric or cost-based distances between the previously learned and the new goal. σk is
defined as

σk = ||ηg − ηk || + ε, (16)

where ηg,ηk denote the new goal and k-th task vector (ξg, ξk) or goal cost function
value (Jg, Jk), respectively. ε prevents division by zero. Subsequently, some simula-
tions and experiments obtained with the OMF for reaching and throwing movements
are outlined.

3.4 Simulations and Experiments

3.4.1 Reaching Movements

Based on energetically optimal solutions of the reaching movement problem (find an
optimal path between inital and final configuration), near-optimal reaching motions
can now be executed in real-time for varying goals. For this, a grid of optimal
solutions with minimal required energy is calculated over the entire workspace,
see Fig. 10. The upper left plot depicts sampled optimal reaching movements for
the robot workspace. The 2DoF robot in stretched out configuration is indicated in
black. The color value indicates the value of J for every trajectory, i.e. the consumed
energy for the motion. The lower left plot shows a close up around y = (0.4, 0.95)T .
The optimal trajectories that are used for the learning step are indicated by the
crosses in the corner. The generalized DMP motion towards the new goal within
the rectangle is compared against the according optimal motion, which was not
used for learning. It was generalized inside this section by weighting kernel parame-
ters with inverse distance weighting (16). The two upper right plots show optimal
and DMP trajectories. The randomly generalized trajectory are compared with the
optimal trajectory (checked afterwards). Furthermore, the lower two plots on the
right show the difference between geometric and cost-based weighting. Figure11
provides a comparison between OC trajectories, DMPs with geometric weighting

(average Jerr = (
N∑

i=1
JDM Pi − JOCi )/

N∑
i=1

JOCi = 2.66%), cost-based generalization

(average Jerr = 4.61%), and a common 5th order polynomial interpolation (aver-
age Jerr = 48.03%). To sum up, the distance-based generalization yields the best
results for the examined task. However, in particular for strong nonlinearities in the
cost manifold we believe that the cost-based metric can e.g. serve as a first filter
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for rejecting samples too far away in the cost sense. However, this is left for future
investigation.

Next, we discuss the application of the OMF to execute optimal explosivemotions
for Hasy system in real-time.
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3.5 Throwing with the DLR Hand-Arm System

Three trajectories for different throwing distances ({ξi } = {[dBin,i 0 0]T }) were
obtained by solving the according optimal control problems.Non-optimized goals are
simulated for comparison between desired and resulting goal positions, see Fig. 12.
It depicts the full movement consisting of the throwing task and the subsequent
stopping motion (2-phase OC problem). These trajectories show the comparison
between online generated and optimized solutions. Again, the generalized motions
are very close to the optimal solution. Opening the hand for releasing the ball is
triggered at t = 1s. For validating the approach experimentally, the task is to throw a
ball into a bin that is manually placed by a human at unforeseen target locations.With
aMicrosoftKinect the according target distance dBin ismeasured. This parameterizes
the OMF instantaneously such that the robot can execute the throw. Figure13 depicts
a photo series of three different bin distances. The success rate to hit the bin is high (in
average 80%). Failures depend mainly on whether the ball can be placed repetitively
in the hand. This, however, requires some training by the operator.
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Fig. 12 Learning and generalization of optimal throwing movements. Optimal and generalized
throwing trajectories in Cartesian space with flight trajectory of the ball (top left). Learned trajec-
tories and velocities in joint space with resulting optimal motor trajectories and velocities (four
upper right). Generalized throwing trajectories and velocities in joint space with resulting motor
trajectories in comparison with optimal trajectories (lower four)
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Fig. 13 Throwing sequence for varying target (bin). The bin distance dBin is measured with a
Kinect sensor. All trials were successful scores

4 Conclusion

In order to to exploit the novel capabilities of intrinsically elastic arms and thus enable
robots to achieve human-like dynamic performance, it is essential to understand and
make use of their inherent flexible dynamics. In this paper we unveiled some of the
underlying properties of VSA arms and how to optimally store and release elastic
energy in their joints such that highly dynamic motions become possible. Due to the
significant nonlinearity and complexity of the problem, candidate trajectories cannot
be simply generated with the help of data-driven approaches (e.g. LbD). Instead,
rigorous model-based problem formulation have to be applied and optimal solutions
to be found with appropriate numerical solvers. In turn, one has to accept the cost
of larger computational efforts for finding a solution (in particular when considering
all relevant real-world constraints and the highly nonlinear flexible dynamics). This,
however, prevents real-time use of the controls/trajectories, making them an insight-
ful result but not applicable to real-world problems in dynamic environments. In order
to solve this dilemma, we introduced an approach for learning optimal motions and
generalizing them in real-time. The basic idea is to compute a sample set of opti-
mal trajectories that are encoded into DMPs for subsequent generalization in terms
of metric-based weight interpolation. The developed motion framework performs
a variety of near-optimal motions in real-time and was validated in simulation and
experiment on the anthropomorphic DLR robot Hasy.

Acknowledgments This work has been partially funded by the European Commission’s Sixth
Framework Programme as part of the project SAPHARI under grant no. 287513.

References

1. Albu-Schäffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimböck, T., Wolf, S.,
Hirzinger, G.: Soft robotics: From torque feedback controlled lightweight robots to intrinsically

millitsa@ece.neu.edu



Optimal Control for Viscoelastic Robots and Its Generalization in Real-Time 147

compliant systems. IEEE Robot. Autom. Mag.: Spec. Issue Adapt Compliance/Var. Stiffness
Robot. Appl. 15(3):20–30 (2008)

2. Biagiotti, L.,Melchiorri, C.: TrajectoryPlanning forAutomaticMachines andRobots. Springer,
Berlin (2008)

3. Bicchi, A., Tonietti, G.: Fast and soft arm tactics: Dealingwith the safety-performance trade-off
in robot arms design and control. IEEE Robot. Autom. Mag. 11, 22–33 (2004)

4. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. Hand-
book of Robotics, Chap 59 (2008)

5. Bobrow, J.E., Dubowsky, S., Gibson, J.S.: Time-optimal control of robotic manipulators along
specified paths. Int. J. Robot. Res. 4(3), 3–17 (1985)

6. Braun, D., Howard, M., Vijayakumar, S.: Exploiting variable stiffness in explosive movement
tasks. In: Robotics: Science and Systems (2011)

7. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Thrun, S., Kavraki, L.E.:
Principles of Robot Motion: Theory, Algroithms, and Implementation. MIT Press, Cambridge
(2005)

8. Eiberger, O., Haddadin, S., Weis, M., Albu-Schäffer, A., Hirzinger, G.: On joint design with
intrinsic variable compliance: Derivation of the DLRQA-joint. IEEE International Conference
on Robotics and Automation, pp. 1687–1694 (2010)

9. Gams, A., Petric, T., Zlajpah, L., Ude, A.: Optimizing parameters of trajectory representation
for movement generalization: robotic throwing. In: Proceedings of IEEE 19th International
Workshop on Robotics in Alpe-Adria-Danube Region, pp. 161–166 (2010)

10. Garabini, M., Passaglia, A., Belo, F.A.W., Salaris, P., Bicchi, A.: Optimality principles in vari-
able stiffness control: the vsa hammer. In: Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3770–3775 (2011)

11. Haddadin, S., Huber, F., Albu-Schäffer, A.: Optimal control for exploiting the natural dynamics
of variable stiffness robots. In IEEE International Conference on Robotics and Automation,
pp. 3347–3354 (2012)

12. Haddadin, S., Krieger, K.,Mansfeld, N., Albu-Schäffer, A.: On impact decoupling properties of
elastic robots and time optimal velocity maximization on joint level. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 5089–5096 (2012)

13. Haddadin, S., Weis, M., Wolf, S., Albu-Schäffer, A.: Optimal control for maximizing link
velocity of robotic variable stiffness joints. In: Proceedings of IFAC World Congress, pp.
6863–6871 (2011)

14. Haddadin, S., Laue, T., Frese, U., Wolf, S., Albu-Schäffer, A., Hirzinger, G.: Kick it with
elasticity: requirements for 2050. Robot. Auton. Syst. 57, 761–775 (2009)

15. Haddadin, S., Özparpucu, M.C., Albu-Schäffer, A.: Optimal control for maximizing potential
energy in a variable stiffness joint. In IEEEConference onDecision andControl, pp. 1199–1206
(2012)

16. Ijspeert, J.A., Nakanishi, J., Schaal. S.: Learning rhythmic movements by demonstration using
nonlinear oscillators. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 958–963 (2002)

17. Jetchev,N., Toussaint,M.: Trajectory prediction: learning tomap situations to robot trajectories.
In International Conference on Machine Learning, pp. 449–456 (2009)

18. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEETrans. Robot.Autom. 12(4), 566–580
(1996)

19. Lampariello, R., Nguyen-Tuong,D., Castellini, C., Hirzinger, G., Peters, J.: Trajectory planning
for optimal robot catching in real-time. In IEEE International Conference on Robotics and
Automation, pp. 3719–3726 (2011)

20. LaValle, S.M., Kuffner, J.J Jr.: Randomized kinodynamic planning. In IEEE Internatuinal
Conference on Robotics and Automation, pp. 473–479 (1999)

21. Mettin, U., Shiriaev, A.: Ball-pitching challenge with an underactuated two-link robot arm. In:
Proceedings of IFAC World Congress, pp. 1–6 (2011)

millitsa@ece.neu.edu



148 S. Haddadin et al.

22. Özparpucu,M.C., Haddadin, S.: Optimal control formaximizing link velocity of a visco-elastic
joint. In IEEE/RSJ Int. Conference on Intelligent Robots and Systems, pp. 3035–3042 (2013)

23. Park, D-H., Hoffmann, H., Pastor, P., Schaal, S.: Movement reproduction and obstacle avoid-
ance with dynamic movement primitives and potential fields. IEEE-RAS International Confer-
ence on Humanoid Robots, pp. 91–98 (2008)

24. Rao, A.V., Benson, D.A., Darby, C.L., Patternson,M.A., Francolin, C., Sanders, I., Huntington,
G.T.: Algorithm 902: Gpops, a matlab software for solving multiple-phase optimal control
problems using the gauss pseudospectral method. ACM Trans. Math. Softw. 22–60(2), 39
(2010)

25. Shin, K.G.,McKay, N.D.:Minimum-time control of robotics manipulators with geometric path
constraints. IEEE Trans. Autom. Control 30(6), 531–541 (1985)

26. Stark, A.: A Study of BusinessDecisions underUncertainty: The Probability of the Improbable.
Ph.D thesis, Boca Racon, USA Florida (2010)

27. Stulp, F., Oztop, E., Pastor, P., Beetz, M., Schaal, S.: Compact models of motor primitive vari-
ations for predictible reaching and obstacle avoidance. In IEEE-RAS International Conference
on Humanoid Robots, pp. 589–595 (2009)

28. Todorov., Li, W.: A generalized iterative LQG method for locally-optimal feedback control
of constrained nonlinear stochastic systems. In: Proceedings of the 2005 American Control
Conference, pp. 300–306 (2005)

29. Stryk, O.V., Schlemmer,M.: Optimal control of the industrial robot manutec r3. Computational
Optimal Control. International Series of Numerical Mathematics 115

30. van Ham, R., Sugar, T., Vanderborgth, B., Hollander, K., Lefeber, D.: Compliant actuator
designs: Review of actuators with passive adjustable compliance/controllable stiffness for
robotic applications. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)

31. Weitschat, R., Haddadin, S., Huber, F., Albu-Schäffer, A.: Dynamic optimality in real-time: A
learning framework for near-optimal robot motions. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 5636–5643 (2013)

millitsa@ece.neu.edu



K-Redundant Trees for Safe and Efficient
Multi-robot Recovery in Complex
Environments

Golnaz Habibi, Lauren Schmidt, Mathew Jellins and James McLurkin

Abstract This paper presents a self-stabilizing distributed algorithm to recover a
large number of robots safely and efficiently in a goal location. Previously, we
designed a distributed algorithm, called DMLST, to recover robots [1]. Our approach
constructed a maximum-leaf spanning tree for physical routing, such that inte-
rior robots remained stationary and leaf robots move. In this paper, we extend our
approach to k-DMLST recovery that provides k-connectivity in the network,meaning
that each robot is connected to the goal location through k trees. This redundancy pro-
vides stronger network connectivity by reducing the probability of losing the parent
during recovery. We also propose an efficient navigation algorithm for the motion of
robots which guarantees forward progress during the recovery. k-DMLST recovery
has been tested and compared with other methods in simulation, and implemented on
a physical multi-robot system. A basic recovery algorithm fails in all experiments,
and DMLST recovery is not successful in few trials. However, k-DMLST recovery
efficiently recovers more than 90% of robots in all trials.

1 Introduction

Many practical applications of multi-robot systems, such as search-and-rescue,
exploration, mapping and surveillance require robots to disperse across a large geo-
graphic area. Often overlooked the need to recover the robots to a goal location after
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the application is complete. In our previous work, we designed a self-stabilizing dis-
tributed algorithm, called DMLST, to safely and efficiently recover large populations
of robots with limited sensing in complex and unstructured environments [1].

Wedefine safety as the ability to recover the robotswhile providing aguarantee that
we do not leave any behind. We define efficiency as the comparison between actual
and optimal execution time. The execution time is defined as the time that is required
for all the robots to reach the goal location. We desire a self-stabilizing distributed
algorithm; an algorithm that produces a desired configuration, i.e. a recovered group
of robots, from any connected configuration in a bounded time.

The DMLST recovery algorithm works by building a maximum-leaf spanning
tree, with the robot at the goal location as the root. Robots who are not leaves remain
stationary, forming a stable, connected routing tree that the leaf robots use to move
towards the goal location. Our assumption in DMLST recovery was that network
communication failures between the stationary robots were rare. In practice, this was
not the case, and a network failure can leave an entire subtree with no connection to
the root robot. [2]

In this paper, we construct k-redundant trees, which provide k independent paths
from each robot to the root of the trees, illustrated in Fig. 1. Should a network con-
nection fails in the stationary routing tree, each robot will still have k − 1 edges to
use for navigation while the connection is down. This k is a user-specified parameter,
increasing k provides more reliable recovery, but at the cost of efficiency, as more
robots need to remain stationary and act as routing node.

We also present an enhancement to our navigation algorithm from our previous
results. As leaf robots navigate to the source, certain network configurations could

Fig. 1 Two redundant trees for 20 robots in a maze environment. Red lines show the first tree
and blue lines show the second tree. Arrows indicate the direction from child to parent. The star
highlights the root, or source, of the tree while green circles indicate the mobile leaf nodes. Leaf
robots are mobile, others remain stationary. Using two redundant trees produces a reliable and
robust recovery algorithm
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create a liveness fault—the leave robots could get stuck between two parents and
make no progress towards the root. Our improved algorithm takes a user-supplied
parameter to determine when to move towards one parent or another, which elimi-
nates this liveness fault while still producing efficient navigation paths and reducing
physical interference from inter-robot collisions.

The paper is organized as follows: The related work are presented in Sect. 2.
Section3 presents our communication assumptions and model of robots.We propose
k spanning trees in Sect. 4 and briefly describe DMLST algorithm. Section5 explains
k-DMLST recovery and angle-based navigation. Section6 analyzes the features of
k-DMLST recovery algorithm. We present experimental results in Sect. 7. The paper
is concluded in Sect. 8.

2 Related Work

There are some studies in multi-robot system recovery. Batalin [3] used stationary
nodes as navigation guides, but these stationary nodes remained stationary and were
not recovered. Lavalle [4] used a simple quantized control law, a group of agents
with limited sensing achieved rendezvous and gathered in a location [4]. However
robots gathered anywhere in the space and there is no specific location defined as a
goal location for the recovery. Moreover, this work does not use the realistic model
for sensors. Li and Rus [5] developed a distributed algorithm for sensor networks to
guide robots to a target, but it did not guarantee inter-robot connectivity during the
recovery. Previously, we have designed DMLST algorithm to recover all robots at the
goal location [1]. However, some robots lost their connection with their parents and
could not arrive the goal location. This paper is an extension of DMLST algorithm
by providing k-connectivity during recovery. In this method, each robot is connected
to the goal location through k-redundant trees which makes the stronger connectivity
during recovery. We propose a construction similar to k-connected k-dominating set
(k-CDS) as a backbone to balance efficiency and fault tolerance [6]. There are several
studies in k-connected k-dominating set [6, 7], but to the best of our knowledge,
none of them have been applied for multi-robot systems. We are motivated by k-
edge connected k dominating set to construct a fault tolerant structure. A graph is
k-edge-connected if it remains connected whenever fewer than k edges are removed.
To build a safe and efficient recovery algorithm, we propose a stronger construction
than k-edge connected in which each node is k-edge-connected.

3 Model and Assumptions

We assume that the robots network starts in a dispersed, but connected state. There
are no assumptions on the size or shape of the network or of the environment. The
communication network is an undirected unit disk graph, G = (V , E). Each robot is
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modeled as a vertex, u ∈ V , where V is the set of all robots and E is the set of all
robot-to-robot communication links. The neighbors of each robot u ∈ V are the set
of robots within communication range r of robot u with a line-of-sight connection,
denoted N(u) = {v | {u, v} ∈ E}. Each robot sits at the origin of its local coordinate
system, with the x̂-axis aligned with its current heading. Each robot can measure the
angle with respect to its own x̂-axis to each of its neighbors.

Each robot is modeled as a small disk with a pose which is defined as u.pose =
(x, y, θ). The robot has a differential drive and can rotate in place and translate up to a
maximum speed vmax. When the robots collides with the environment or other robots,
obstacle sensors detect those collisions and low-level behaviors maneuver the robot
away from any collision. We do not model the physical interference caused by the
collisions with robots in simulations [8], hence the dimension of the robot is ignored
in simulation. However, this interference affects the experimental results in Sect. 7
and is further discussed there.

Algorithm execution occurs in a series of synchronous rounds. A synchronizer
allows us to model an asynchronous distributed system as a synchronous distributed
system [9]. This synchronizer simplifies analysis and is straightforward to imple-
ment in a physical system [10]. At the end of each round, every robot u broadcasts a
message, u.message, that is received by all of its neighbors v ∈ N(u). Since its neigh-
bors are doing the same, robot u will also receive a v.message from each neighbor
v ∈ N(u) by the end of each round. All of the pseudocode described below runs at
the end of each round; after the robot has received messages from all neighbors, but
before it transmits its own message. Each message contains a tuple of integers of
the form: (u.id, u.hop, u.ChildrenCount, u.SelectedList, u.Stationary). Each robot u
has a unique id, u.id. A distinguished goal robot, RG, is located at the goal location.
It transmits a broadcast flood throughout the network, and the field u.hop contains
the number of hops robot u is from the source of the broadcast message. Using these
hops, we define Nh(u) ≡ {v ∈ N(u)|v.hop = u.hop}, Nh−1(u) ≡ {v ∈ N(u)|v.hop <

u.hop} and Nh+1(u) ≡ {v ∈ N(u)|v.hop > u.hop}. The definitions of the other fields
will be described in Sect. 4, but herewe note that the size of each field is atmost log2n,
i.e. the number of bits required to identify a robot. This produces a total message of
constant size.

4 K-DMLST and K-Redundant Spanning Trees

We extend our DMLST algorithm [1] to generate k-redundant spanning trees with
keeping themaximumnumber of possible leaves. In our approach,we call k-DMLST,
each node selects k parents from Nh−1 with maximum number of children. If there
are |Nh−1| < k for a node, the node selects all of its Nh−1.

k-DMLST algorithm (Algorithm 1) calls DMLST function at most k times (line
5). DMLST returns Selectedparent in each iteration t = 1, . . . , k, which is added
to SelectedList, and removed from CandidateList. CandidateList is initially set to
Nh−1. Each robot shares its SelectedList with its neighbors. Robots in SelectedList
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(a) (b) (c)

Fig. 2 Redundant trees: The network edges are in gray and the source is a green star. a The first
tree with edges (red) and leaves (green). b The second tree with edges (blue) and leaves (green).
c The two trees from a and b are combined. Robots in yellow color select robot A and robot B as
their parents in the first tree and the second tree respectively

become internal nodes, and the rest become leaves of the trees. Our goal is to build k
trees with the maximum number of leaves to increase the number of moving robots
during recovery. This produces an approximation to a Maximum Leaf Spanning
Tree. Figure2 shows two redundant trees in the network of robots in a complex
environment. Robots in yellow color selects robots A and B as their parents in the
first and the second tree respectively.

Algorithm 1 SelectedList = KDMLST(u, N(u))

1: Do forever
2: ParentCount ← 0
3: CandidateList ← Nh−1(u)

4: while (ParentCount < k) ∧ (CandidateList �= ∅) do
5: SelectedParent ← DMLST(u,CandidateList)
6: add SelectedParent to SelectedList
7: Remove SelectedParent from CandidateList
8: ParentCount++
9: end while

DMLST function is a main part of k-DMLST that we have proposed in our pre-
vious work [1]. The following section briefly explains DMLST algorithm.

4.1 Distributed Maximum Leaf Spanning Tree Algorithm

DMLST algorithm contains three main tasks which happen concurrently in the net-
work of robots G = (V , E): (1) Robot RG broadcasts the message to build an ad-hoc
network and all robots compute their hops value, the depth of the tree [9]. (2) Each
robot u ∈ V selects a parent SelectedParent from Nh−1 in a fashion intended to max-
imize the number of children per parent. Having two or more ∈ Nh−1(u) with the
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maximum number of children, the robot chooses the parent with minimum id with
some probability p. Otherwise, the robot remains undecided and waits for the next
round. This allows information from its neighbors’ decisions to reach robot u and
breaks the symmetry. (3) Each robot u ∈ V reads all the messages, v.message, from
its neighbors v ∈ N(u) and calculates u.ChildrenCount, which is the number of chil-
dren that have actually selected robot u in SelectedList, and undecided children.
u.ChildrenCount of robot u is broadcasted to its neighbors at the end of the round.

4.2 K-Redundant Trees Properties

K-DMLST allows each robotwith hop h to select k parentswith hop h − 1 if |Nh−1| ≥
k. There is an exception for robots with hop h = 1 which select only the source as
their parent. As Fig. 3 shows, K-DMLST algorithm generates at least k independent
paths from each node with hop h to the source. To explain that, we draw a tree rooted
from node A with hop = h, which is in layer = h and ended in layer = 1. The edges
in this tree indicates the links between a robot and its selected parent. Therefore, we
construct a tree with branching factor of k, This tree generates k ≤ p ≤ kh, where p
is the number of independent paths from node A to the layer 1. As illustrated, there
are at least k independent paths from an arbitrary node A in layer h to the source in
a k-DMLST structure.

To measure the reliability of k-redundant trees, we compute the probability of
network failure F(c, k) as a function of k and c in Eq.1, where k is the number of
redundant trees and c is the probability of the failure of an edge between a node and
its parent:

F(c, k) = ck (1)

Fig. 3 k-redundant paths
from robot A with hop h to
the source. Horizontal lines
show the depth of network
which we call layer, Node A
selects k parents with hop
h − 1 in layer h − 1. Since
each node selects k parents
in a lower layer, a tree rooted
from A is generated. There
exists similar tree for each
nodes in the network, except
for nodes in layer 1, which
select only the source as their
parent
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(a)

(b)

(c)

Fig. 4 a The average distribution of Nh+1, Nhand Nh−1 from left to right for 12 networks of 1000
robots. The Communication range is 1 with the distribution of neighbors based on bearing to the
source. bThe distribution of all neighbors with their percentage. c The size ofNh against the average
degree for the same networks

By using k-redundant trees, the probability of network connectivity failure decreases
by increasing k. However, it is true only when each node has |Nh−1| ≥ k, to be able
to generate at least k-redundant trees. Otherwise, the number of distinct redundant
trees is less than k and the connectivity cannot be strengthened by increasing k.
Not all networks can provide this condition. Figure4a shows that the distribution of
neighbors is based on the robot’s bearing to the source. As Fig. 4b, c illustrate, the
average |Nh−1| is 23% of all neighbors. Therefore, |Nh−1| ≥ k requires a network
with Δ ≥ k

0.23 , where Δ is the average degree of the network. As we discuss in
Sect. 6, it is possible to construct a network that supports desired k-redundant trees
by multi-robot recovery.

Although k-redundant trees increase fault tolerant, The number of leaves decreases
by increasing the number of redundancy k. The more parents that are selected, the
less leaves produced. When k goes to infinity, only nodes on the boundary of the
network can be leaves, and all others are selected as parents and become internal
nodes. Figure5a shows leaves converges to the robots in the green shaded area when
k goes to infinity leaves, where r is the communication range in a unit disk graph.
This estimation is only true when the network density is infinity and no voids in the
network. For a circular environment with the source in the center, the number of
leaves, l, converges to the number of nodes at the annular ring of the circle (Fig. 5b):
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(a) (b)

Fig. 5 a For K= infinity leaves are converging to the green shaded area in an illustrated environ-
ment. Internal nodes in the white area, the source is indicated by a red star. r is the communication
range. The hop layers and communication areas are in solid and dashed circles respectively. Number
of hops is also shown. Some nodes are shown in purple to show that how robots in the boundary
select all their neighbors as parents. b Leaves tends to in a Annular ring area with radius r for
k= infinity, X and r are the radius of environment and communication range respectively

lim
k→∞

l(n, k)

n
= πX2 − π(X − r)2

πX2
= 2Xr − r2

X2
(2)

where, r is the communication range, X is the radius of environment, n is the network
size. By substituting X = cr, where c is a real positive value, we can simplified the
Eq.2 as follows:

lim
k→∞

l(n, k)

n
= 2c − 1

c2
(3)

Figure6a shows the percentage of number of leaves for different k-redundant trees
in a circle environment with the radius of X = 4.7r and Δ = 100. This figure illus-
trates how the percentage of leaves decreases by increasing k, The number of leaves
becomes 0.36 for k = 101. Since the degree is not infinity, this result is a little lower
than our estimation which is 0.3803. The stretch of the network also affects on the
result. The stretch s is defined as the ratio of the transmitted path to the shortest
path [11, 12] and s ≥ 1 for a random graph. For s > 1 the depth of the network
exceeds the radius of network and forces some robots to be selected as the parents
of the leaves in the stretched boundary. Therefore, the number of leaves is signifi-
cantly decreases. We decreased the stretch from 1.12 to 1.04 by removing the nodes
with hop 6 for same network of Fig. 6a. Figure6b illustrates the leaves are mostly in
an annular ring for k = 101. Figure6c shows the percentage of leaves increases by
increasing the degree of the network such that it tends to 1 when the degree goes to
infinity. When |Nh−1| ≥ k for each robot, a newly added robots does not need to be
selected as parent and becomes a leaf. if k is limited, there exists a certain Δ after
which all added robots become leaves and the percentage of leaves is ultimately one
when Δ goes to infinity. Figure6c also shows the rate of increasing the number of
leaves reduces when k increases.
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(a) (c)(b)

Fig. 6 aThe average percentage of leaves versus the number of trees (solid), 1 ≤ k ≤ 101, networks
radius is X = 4.7r and Δ = 100 is compared with the estimated number of leaves (dashed) in an
annular ring. b The same network with leaves in green and internal nodes in red, source is at the
center in blue. c The average percentage of leaves for 4 ≤ Δ ≤ 36, 12 networks for each degree

5 DMLST Recovery Algorithm

As robots move towards the source and trees are updated, internal robots become
leaves and move towards the goal location. In this way, the number of moving robots
increases so that all the robots move toward the source and ultimately reach the
goal location. The proposed recovery algorithm depends on frequent updates of the
broadcast communication tree. We assume that the trees are updated faster than the
robots’ motions [13]. This assumption will also enforce our hardware experiments
to prevent disconnection. Algorithm 2 shows how robots become stationary or start
moving during execution of the recovery algorithm.

We have proposed a mid-angle navigation to decrease the collision during the
recovery [1]. However, the proposed navigation did not guarantee forward progress
during robots navigation, because a navigating robot may not find a new parent when
it reaches the mid-angle point between two NavigationGuides and gets in stuck and
never be recovered.

Algorithm 2 k-DMLST Recovery algorithm
1: Do forever
2: BroadCast messages from RG and compute hops
3: Construct trees by k-DMLST algorithm
4: for each Robot u do
5: if u.ChildrenCount = 0 then
6: u.Stationary ← 0
7: AngleBasedNavigation(u)

8: else
9: u.Stationary ← 1
10: Robot u stops moving
11: end if
12: end for
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(a) (b)

(c) (d)

Fig. 7 a Mid-angle navigation fault: a navigating robot starts from position E and stops in the mid-
angle point E′ between its two guides C and D. Solid lines show the connectivity between robots
in the network, navigation path is shown in dash line. There is no more progress afterwards in E′,
because none of robots A and B are visible from the navigating robot. b The path flow of robots
(black circles) when they move towards two guides (blue circles) with angle-based navigation,
threshold is α = 0.7π rad. c The path efficiency and the number of collisions per meter during
the angle-based navigation for different values of threshold α. d Angle-based navigation path for a
robot that starts moving from the boundary of a circle (initial position in blue circle, 6 hops away
from the source) and moves to the source (at center of the circle) through 1000 robots. α = 0.7π
rad, mid-angle navigation path in black and direct navigation is in blue. Gray and white regions
represents the position of robots with even and odd hops respectively

Fig. 7a shows a case in which a robot in position E′ stops moving because it
cannot find the new parents. Moving directly towards the parent ensures forward
progress, because the navigating robot ultimately finds the parent with lower hop
when orbiting around its current parent. However, the number of collisions between
parents and children increases. To improve the efficiency of the navigation, we pro-
pose an algorithm which combines mid-angle navigation and direct motion towards
the parent.We define α as the angle threshold for switching between these two states,
meaning that a navigating robot leaves mid-angle state to direct navigation when the
angle between the robot and its two guides reaches the threshold α. Figure7b shows
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Algorithm 3 Angle-based Navigation
1: Do forever
2: if |Nh−1| > 1 then
3: SelectedGuide ← two random guides from Nh−1
4: else
5: S ← Nh
6: if S �= ∅ then
7: SibGuide ← {S0 ∈ S, bearing(S0, SelectedGuide) is minimum}
8: Add SibGuide to SelectedGuide
9: else
10: SelectedGuide ← Nh−1
11: end if
12: end if
13: if SelectedGuide.size > 1 then
14: GuideAngle ← angle between u and SelectedGuide
15: if GuideAngle < α then
16: mid-angle navigation: Turn towards the bisector of GuideAngle
17: else
18: direct navigation: Turn towards SelectedGuide
19: end if
20: else
21: Turn towards SelectedGuide
22: end if

the navigating paths towards two NavigationGuides by using angle-based navigation
with α = 0.7π rad.

Algorithm 3 describes angle-based navigation with forward progress guarantee.
The navigation state is switched from mid-angle to direct navigation in line 13.
Using angle-based navigation improves the efficiency of recovery while the number
of collisions decreases comparing to direct navigation. We have to trade-off between
the number of collisions and the path efficiency. Path efficiency is defined as the
ratio of the shortest path to the navigated path. We define time efficiency as the ratio
of optimal time, or the time to travel the shortest path, to the navigating path. A
Collision decreases time efficiency by reducing the speed of the robot by 1

10 at the
collision. We measure the number of collisions to measure the time efficiency.

The result in Fig. 7c shows that path efficiency decreases when the threshold
changes fromα = 0 rad, i.e. direct navigation toα = π rad, i.e.mid-angle navigation.
However, the number of collisions, does not change byvaryingα.We selectα = 0.7π
rad to achieve a good efficiency while the number of collisions is tolerable (Fig. 7d).

6 Discussion

6.1 Correctness of DMLST Recovery Algorithm

We show the correctness of the recovery algorithm in three terms: safety, forward
progress and self-stabilization.
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Safety: Previously, we have shown a DMLST recovery has safety [1]. k-DMLST is
an extension of DMLST has not only all properties of DMLST algorithm, but also
has stronger structure in that each robot has k stationary parents. This constraint
guarantees connectivity even if communication between a robot with k − 1 of its
parents fails.

Progress: In order to guarantee forward progress of our algorithm, we need to show
two things: first, our trees alwayshas at least onemoving robot; second,moving robots
are navigating towards the source. Leaves are moving robots, and it follows from the
definition of a tree that there is always at least one leaf. k trees have also at least one
leaf which is a robot with maximum hop value. Demonstrating motion in the correct
direction requires us to show that robots with fewer hops in the tree are geometrically
closer to the source. The proof in Li’work [5] shows in this type of geometric,
distributed BFS algorithm cannot have a local minimum in the number of hops, or
basins of attraction for navigating robots. Therefore, robots in such approaches with
fewer hops are always closer to the source, and always move toward the source.
Our angle-based navigation always guarantee forward progress by the combination
of moving to the point between two guides with same or fewer hop and moving
directly to the guide with fewer hop which are closer to the source, meaning that the
navigating robots always move towards the source never moves away from the goal
location.

Self-Stabilization: k-DMLST includes k DMLST algorithms. In our previous work,
we have shown that DMLST is self-stabilizing [1]. Therefore, k-DMLST is a self-
stabilizing algorithm, meaning that starting from any arbitrary configuration, or
adding any a disturbance in position, state or population, the algorithm will elim-
inate the effects of this perturbation after a predictable number of communication
rounds [14].

6.2 Generating k-Redundant Trees by Recovery

To construct k-redundant trees, we need to build a network such that there is enough
neighbors to satisfy |Nh−1| ≥ k for each robot to select k parents. We build this
network by using multi-robot recovery. As leaves move towards the source, each
node has more neighbors and eventually |Nh−1| ≥ k to generate k-redundant trees.
Figure8 shows how the number of selected parents converges to k = 3 as the recovery
progresses. This figure also illustrates the deviation of selected parents is decreased
to zero as the recovery proceeds so that at a certain time all robots select three parents
and k = 3 redundant trees are produced. We implement k = 3 redundant trees in a
real multi-robot recovery system in Sect. 7.
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Fig. 8 The average of number of selected parents with its standard deviation during the recovery
process. The number of selected parent for each robot converges to 3, as desired, during recovery.
This illustration ignores counting robots that are one hop away from the source and select the source
as their parent. At time t= 292s, all robots sees the source and select RG as their parent. Recovery
is finished at time t= 360s

7 Experiments on Robot Hardware

We have tested k-DMLST algorithm for k= 0, k= 1, and k= 2 on real robots in
a maze-like environment (Fig. 9). Once the goal robot is selected as a source, the
k-redundant tree is generated and leaf robots start moving to the goal location. In
k = 0, called basic recovery, it does not mean there is not any tree. The broadcast
tree is generated, but the parents do not wait for their children, i.e. all robots move
toward their Nh−1. As illustrated in Fig. 9, the basic recovery algorithm is not able
to cope with the corners in this environment, so some robots become disconnected
during recovery trials. In k = 1 DMLST recovery, or simply DMLST recovery, only
one tree is generated and each robot has at least one stationary parent [1]. DMLST
is usually able to move all robots to the goal location with an occasional robot on the
edge of the network being left behind. For better performance, each robot’s bump
sensors help it move away from environmental walls and other robots.

While some robots become stationary parents and wait for their children to move,
a child may encounter an obstacle and move out of communication range to avoid
physical contact. TheDMLST networkwith k = 2 ismore likely tomaintain connec-
tivity at these critical points in the environment by providing k parents for each robot
and therefore successfully more robots are recovered. Figure10a also compares the
performance of k-DMLST recovery for k = 0, 1, 2with the ideal shortest path recov-
ery in the same experiment. We have also plotted the percentage of recovered robots
versus the time in which last robot is recovered in this experiment (Fig. 10b). The
result is also summarized in Table1, which confirms that increasing k decreases the
speed of recovery, time efficiency. Instead, the percentage of recovery, i.e. recovery
accuracy, increases. In fact, we have to trade-off between time accuracy and recovery
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Fig. 9 Screen shots from real experiments for robot recovery. The goal location for all figures is
in green color. The maze environment has two corners with 180 ◦. Area dimensions: 183cm ×
233cm, Corridors: 53cm wide with lengths of either 61 or 102cm for short and long segments
respectively, Robot diameter: 11cm, robot communication range: 100cm. Each robot measures the
angle with its neighbor with a limited resolution of pi/8. First row (left to right) Basic recovery;
The network becomes disconnected along the left corridor and before both 180 ◦ turns. These 8 lost
robots are shown in a red ellipse. Second row (left to right) DMLSTRecovery; The network remains
connected around all but one corner, and 16 of 17 robots are able to recover to the goal location.
Third row (left to right) k = 2 DMLST Recovery; All robots are able to successfully navigate the
environment and are recovered at the source

(a) (b)

Fig. 10 Real experimental result: aThe comparison of ideal (black), basic (green), DMLST (blue),
and k-redundant DMLST (magenta) recovery performance in a maze environment for 9 trials. The
percentage of robots that reach the goal location is illustrated against recovery time. Ideally, all
robots recover along the shortest path to the source, as indicated by the 100% recovery rate of the
black curve. b The scatter of recovery data for the same experiment of (a). The percentage of robots
that reach the goal location is illustrated against the time the last robot has been recovered
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Table 1 Safety and time efficiency of recovery algorithms

Recovery method Recivery time (s) Unsuccessful
trials (%)

Accuracy (%)

Average std

Basic 125 100 46.5 20.3

DMLST 380 77.8 84.7 18.5

2-DMLST 520 44.5 97.2 3.3

accuracy to have an acceptable safety and efficiency in a recovery. We also define
successful trial as an experiment in which 100% of robots are recovered.

To confirm k-redundant trees are generated during a recovery, 25 robots were
placed in an open environment with desired number of selected parents k = 3
(Fig. 11a). The number of selected parents by each robot was collected over radio
for each communication round. As Fig. 11a, initially there are not three redundant
trees. As illustrated in Fig. 11b, the standard deviation approaches zero with time as
the average number of selected parents converges to 3, indicating that all robots have
selected k parents and k-redundant trees are generated.

Thoughmore successful, the k-redundant DMLST recovery requiredmore time to
complete due to the reduced number of leaves. The errors encountered during recov-
ery were largely caused by physical interference between robots, especially around
corners where parents and children tend to clump. This problem was minimized by
implementing a parent bump behavior that allows a child to push its parent slightly
out of the way upon collision. However, the 180◦ corners in this environment still
present a challenge to network connectivity, and are the worst-case scenario for this
kind of recovery.

(a) (b)

Fig. 11 a Approximately Three Redundant Trees for 25 robots in an open environment. Red edges
highlight the first tree, while blue edges show k = 2 redundancy and green show k = 3 redundancy.
b Real experimental result: Average number of selected parents versus time for 25 robots over 12
trials. Approaches k = 3, indicating that k-redundant trees were produced
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8 Conclusion

We have proposed k-DMLST algorithm which is an extension of DMLST algorithm
to generate k-redundant trees for strengthening the connectivity. k-DMLST algo-
rithm achieves a higher connectivity than DMLST during the recovery. However, the
number of moving robots decreases. We have also proposed an angle-based naviga-
tion algorithm to navigate robots efficiently through the created spanning trees while
minimizing the number of collisions. The recovery algorithm has three properties:
forward progress, safety and self-stabilizing. Extensive simulation results and hard-
ware experiments have demonstrated the effectiveness of our approach, even in the
worst-case environments, and show clear improvement over previous approaches.
While basic recovery failed in all trials and DMLST recovery succeeded in most of
trials, k-DMLST recovery was quite successful to recover more than 90% of robots
in all trials. 10% of failure was due to hardware issues and physical interference.
Only one case of failure happened because of rare double communication failure.

References

1. Habibi, G., Mclurkin, J., Maximum-Leaf Spanning Trees for Efficient Multi-Robot Recovery
with Connectivity Guarantees, In: Proceedings of the Symposium on Distributed Autonomous
Robotic Systems, pp. 1–14 (2012)

2. Muriel,M., Finn, S.G., Barry, R.A., Gallager, R.G., Fellow, L.: Redundant Trees for Preplanned
Recovery inArbitrary Vertex-Redundant or Edge-Redundant Graphs, 7(5), pp. 641–652 (1999)

3. Batalin,M., Sukhatme, G., Hattig,M.:Mobile robot navigation using a sensor network, In: Pro-
ceedings of IEEE International Conference on Robotics and Automation, ICRA ’04, pp. 636–
641 Vol. 1 (2004) [Online] http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
1307220

4. LaValle, S.M., Liberzon, D.: Rendezvous without coordinates. In: Proceedings of 47th IEEE
Conference on Decision and Control, pp. 1803–1808 (2008). [Online] http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=4739343

5. Li, Q., Rus, D.: Navigation protocols in sensor networks. ACMTrans. Sensor Netw. 1(1), 3–35
(2005)

6. Dai, F., Wu, J.: On constructing k-connected k-dominating set in wireless ad hoc and sensor
networks. J. Parallel Distrib. Comput. 66(7), 947–958 (2006)

7. Li, Y., Yin, R., Liu, H., Hao, X.: A Reliable Connected Dominating Set Algorithm in Wireless
Sensor Networks Related Work, vol. 6, pp. 2583–2592 (2012)

8. Maratic, Interference as a Tool for Designing and Evaluating Multi-Robot Controllers. In:
Proceedings of AAAI-97. AAAI Press, pp. 637–642 (1997)

9. Lynch, N.A.: DistributedAlgorithms.MorganKaufmann Publishers Inc., San Francisco (1996)
10. McLurkin, J.: Analysis and implementation of distributed algorithms for Multi-Robot systems,

Ph.D. thesis, Massachusetts Institute of Technology (2008)
11. Enachescu, M., Wang, M.: Reducing Maximum Stretch in Compact Routing, no. 0339262, pp.

977–985 (2008)
12. Kleinrock, L., Silvester, J.: Optimum transmission radii for packet radio networks or why

six is a magic number. In: Conference Record, National Telecommunications Conference,
Birmingham, Alabama, pp. 4.3.2–4.3.5, December 1978

millitsa@ece.neu.edu

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1307220
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1307220
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4739343
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4739343


K-Redundant Trees for Safe and Efficient Multi-robot Recovery … 165

13. McLurkin, J.: Measuring the accuracy of distributed algorithms on Multi-Robot systems with
dynamic network topologies. In: Proceedings of the International Symposium on Distributed
Autonomous Robotic Systems (DARS) (2008)

14. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)

millitsa@ece.neu.edu



Adaptive Inter-Robot Trust for Robust
Multi-Robot Sensor Coverage

Alyssa Pierson and Mac Schwager

Abstract This paper proposes a new approach to both characterize inter-robot trust
in multi-robot systems and adapt trust online in response to the relative performance
of the robots. The approach is applied to a multi-robot coverage control scenario,
in which a team of robots must spread out over an environment to provide sensing
coverage. A decentralized algorithm is designed to control the positions of the robots,
while simultaneously adapting their trust weightings. Robots with higher quality
sensors take charge of a larger region in the environment, while robots with lower
quality sensors have their regions reduced. Using a Lyapunov-type proof, it is proven
that the robots converge to locally optimal positions for sensing that are as good as if
the robots’ sensor qualities were known beforehand. The algorithm is demonstrated
in Matlab simulations.

1 Introduction

Multi-robot systems have the capacity to carry out large scale tasks efficiently. How-
ever, in order to be practical in real-world settings, multi-robot systems should be
robust to the deficiencies of individual robots. In this work we consider the prob-
lem of decentralized coverage control in the case when different robots may have
different, but unknown, sensing qualities. We propose an online, adaptive method
to compensate for the relative differences in sensing quality using only information
from the robots’ sensor readings. The robots estimate a “trust weighting” online,
which they use to adjust their sensing load.

The necessity for adaptive trust can be illustrated through several examples. First,
consider a situation in which a group of robots is deployed over a region to take
pictures following some disaster, such as an earthquake or building collapse. The
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quality of sensors may degrade differently, for example, due to dust or cracks on the
camera lens.Our algorithmaccounts for the sensor quality and adapts trustweightings
accordingly. Even in the most benign situations, sensor creep can occur causing
uneven degradation in sensing performance. As sensor creep occurs in the group,
adaptive trust weightings adjust for the lower-performing robots and increases the
overall integrity of the group data collected.

A common strategy for coverage control, first proposed byCortés et al. is based on
Voronoi tessellations of the environment [2, 3]. This strategy drives all robots to the
centroids of their Voronoi cells, also referred to as the move-to-centroid controller.
It is known from previous research that the centroidal Voronoi configuration has
optimal properties for minimizing distances to points [4], as well as applications
in data compression [5]. Other extensions have been proposed with the weighted
Voronoi cell where the weightings account for differences in agent performance and
sensor qualities. Pavone et al. illustrated that using weighted Voronoi diagrams, also
known as Power Diagrams, the different cell weights allow for different agents to
take on varying sensing responsibility [12]. Another method considers the sensing
radius as the Voronoi weighting [13], which is useful in a heterogeneous group of
robots. Another application defined the weight as a measure of energy-efficiency of
a robot, allowing the group to compensate for low-energy robots [9]. Marier et al.
have used the Voronoi weightings to quantify sensor health of each robot, assigning
low-performing robots smaller areas of coverage and higher sensing costs [10, 11].

While there is a wide variety of existing research on weighted Voronoi cells with
respect to robot performance, most assume the correct weightings are known a priori.
In contrast, our work proposes an algorithm to adapt trust weightings online using
only comparisons between a robot’s sensormeasurements, and those of its neighbors.
We integrate a measure of sensor discrepancy into a cost function for the group, and
use this to derive an adaptation law for each robot to change its trustweightings online,
while simultaneously performing a Voronoi based coverage control algorithm. We
prove that the system converges to a local minimum of the cost function using a
Lyapunov proof. The weightings serve as an adaptive way to assess trust between
agents and improve the overall sensing quality of the group.

2 Problem Set-Up

Consider a set of n robots in a bounded, convex environment Q ⊂ �2. A given
point in Q is denoted q, and let the position of the i th agent be pi ∈ Q. Prior
coverage control algorithms use the standard Voronoi partition of the environment.
Let {V1, . . . , Vn} be the Voronoi partition of Q, with each cell satisfying the Voronoi
definition

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − p j‖, ∀ j �= i}.

For our work, we use the weighted Voronoi partition, also known as the Power
Diagram, with each weighting wi serving as the trust weighting for robot i . Let

millitsa@ece.neu.edu



Adaptive Inter-Robot Trust … 169

Fig. 1 The regular (blue)
and weighted (green)
Voronoi cell for a six-robot
configuration. Here, robot 2
has a lower weighting than
the other robots and robot 6
has a higher weighting,
which is reflected in the
changes in cell area

{W1, . . . , Wn} be the weighted Voronoi partition of Q, with each cell satisfying

Wi = {q ∈ Q | ||q − pi ||2 − wi ≤ ||q − p j ||2 − w j , ∀ j �= i}. (1)

The trust weighting for robot i is wi , and it has the effect of increasing or reducing
the size of its associated Voronoi cell. Figure1 illustrates the differences between a
weighted and standard Voronoi cell.

In Fig. 1, both the regular and weighted Voronoi cells are drawn to illustrate the
effect of theweightings on theVoronoi cell boundaries. As shown, the trust weighting
of robot two is lower than its neighbors, giving it a decreased cell area. Conversely,
the trust weighting of robot six is higher, giving it the increased area.

For our bounded region Q, we also define an integrable function φ : Q → �>0

to represent the areas of importance in the environment. Areas with large values
of φ(q) are more important than those with small values, and all the robots have
knowledge of this function. When the robots do not know this function, techniques
have been developed to learn it online from sensor data [16]. We also introduce the
sensing function γi (pi , q) to model the relationship between sensor health and data
sensed by the robot. This function uses a quadratic approximation to model how the
health affects a sensor reading. Unlike φ(q), γi (pi , q) may take different values by
different robots looking at the same point. For example, if robot i uses a camera for
sensing, γi (pi , q) may be the brightness of the pixel looking at q while the robot is
located at pi . Robot i’s camera positioned at pi may have a different value for some
point q than robot j’s camera positioned at p j .
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2.1 Locational Optimization

Before introducing our problem formulation, we will state the basic nomenclature
and results from Locational Optimization. A complete discussion can be found in
[3]. We can formulate a cost function for the sensing network over the area Q as

H (p1, . . . , pn) =
n∑

i=1

∫

Vi

1

2
‖q − pi‖2φ(q)dq. (2)

Note that sensing cost increases as robots move further away from high values of
φ(q). Intuitively, a low value of H would indicate a good configuration of the
robots for coverage of the environment. Two other useful quantities to define from
this formulation are the mass and centroid of a Voronoi region Vi , respectively, as

MVi =
∫

Vi

φ(q)dq, and CVi =
∫

Vi
qφ(q)dq

MVi

.

Given that φ(q) is strictly positive, both MVi and CVi are analogous to physical
masses and centroids of the Voronoi cells. Although there is a complex dependency
between robot position and the geometry of the Voronoi cells, a surprising result
from locational optimization [4] is that

∂H

∂pi
= −

∫

Vi

(q − pi )φ(q)dq = −MVi (CVi − pi ). (3)

Equation (3) implies that the critical points ofH correspond to the configurations in
which all robots are located at the centroid of their Voronoi cell, or pi = CVi for all i .
Critical points can either correspond to local minimum, maximum, or saddle points.
Cortés introduced a gradient-based controller that is guaranteed to drive the robots
to the critical points corresponding to local minimum [3]. The controller we use
here also has this property. We restrict ourselves to only considering local minima of
H since global optimization of (2) is known to difficult (NP-hard). Thus, when we
refer to optimal coverage configurations, we mean locally optimal configurations.
Variations on the control lawwhich attempt to findglobalminima through exploration
are discussed by Salapaka et al. [14] and Schwager et al. [15].

Our formulation introduces trust weightings for each agent as an additional opti-
mization variable. These weightings are used in calculating the weighted Voronoi
cell, also known as the Power Cell, for each agent, given in (1). We still wish to
formulate this as a locational optimization problem, and use a modified cost function
written

W (p1, . . . , pn, w1, . . . , wn) =
n∑

i=1

∫

Wi

1

2

(‖q − pi‖2 − wi
)
φ(q)dq, (4)
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where Wi is the robot’s weighted Voronoi cell, and wi is the robot’s individual trust
weighting. Note that this is almost identical to the formulation in (2), except the
integral is calculated over the weighted Voronoi cell instead of the standard Voronoi
cell. Additionally, we have added wi to the integrand, giving it the same form as the
weighted Voronoi cell definition (1).

Similar to the original cost function, we can also define the mass and centroid of
the weighted Voronoi cell, respectively, as

MWi =
∫

Wi

φ(q)dq, and CWi =
∫

Wi
qφ(q)dq

MWi

.

From this, we can take the partial derivative of the cost function with respect to agent
positions, and we find

∂W

∂pi
= −

∫

Wi

(q − pi )φ(q)dq = −MWi (CWi − pi ), (5)

which implies that critical points of W will also correspond to robots positioned
at the centroids of their weighted Voronoi cells [10]. Using (5), we will introduce
a controller similar to the Cortés controller that only moves the robots towards the
local minima.

2.2 Robot and Sensor Model

In this section, we describe our model for the dynamics of the robots and the quality
of the sensor. First, we assume that the robots have integrator dynamics, where

ṗi = ui,1, and

ẇi = ui,2. (6)

Here, ui,1 is the control input to the robot, and ui,2 is an adaptation law for the
weightings. We can equivalently assume there are low-level controllers in place to
cancel existing dynamics and enforce (6). We also assume that the robots will be
able to communicate with their neighbors and share information about data sensed.
The communication network is defined as an undirected graph in which two robots
share an edge of the graph if they share Voronoi cell boundaries. This is also known
as the Delaunay graph. We can then write the set of neighbors for any robot i as
Ni := { j |Vi ∪ Vj �= 0}. Additionally, robots are able to compute their own weighted
Voronoi cells, as defined by (1), which is a common assumption in the literature [3,
10, 14].

To model the effect of sensor health on performance, we consider a specific form
for the sensor function γi (pi , q). This relates the impact of health as a quadratic
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approximation of the actual function near points of comparison. While in practice it
is not necessary to know γi , for our convergence proofs we assume that γi can be
approximated by

γi (pi , q) = −α
(‖q − pi‖2 − hi

)
, (7)

where hi is some health offset indicative of sensor performance and α is some scaling
factor.Note that this equation forγi (pi , q) shares a similar structurewith theweighted
Voronoi cell definition (1). It is not necessary for the robots to know hi orα for a given
sensor so long as γi (pi , q) can be measured from the robot’s sensor. For example,
imagine that γi (pi , q) conveys pixel brightness captured from a camera. While the
robot may not know the camera health, it is still capable of obtaining pixel brightness.
The α and hi variables shape the approximation of how the health affects the quality
at some point q from pi . We believe this is a valid model for sensor quality, as the
performance of sensing some point q decreases as q moves away from the sensor at
pi . This also allows different sensors to have a different performance. We also note
that γi (pi , q) can be extended to any 2D sensor model, not just cameras. Another
example to consider is an implementation where the robots have lidar sensors to map
an environment topography, and γi (pi , q) is the elevation measurement at point q
for the robot’s sensor positioned at pi .

3 Decentralized Control

The main goals of our work are to (1) drive the robots to an optimal coverage config-
uration in the environment and (2) adjust trust weightings to account for variations
in sensing performance. To accomplish these goals, we propose one control law to
change the positions of the robots and one adaptation law to change the weightings
of the robots. We will then prove that both of these control laws will drive the robots
to converge asymptotically to a stable equilibrium configuration corresponding to a
local minimum of the sensing cost function.

With respect to the position controller, we will use the control law

ṗi = ui,1 = kp(CWi − pi ), (8)

where kp is a positive proportional gain constant, and CWi is the centroid of the
weighted Voronoi cell. This controller is commonly referred to as the move-to-
centroid control law, first proposed by Cortés [3] and extended and modified in [1,
10, 16]. While the original control law used the unweighted Voronoi cell centroid,
CVi , it does not impact the performance of the controller to use the weighted Voronoi
centroid, CWi [10, 13].

For the weightings, we propose a new adaptation law
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Fig. 2 For neighbors i and j
the green line highlights
their shared Voronoi cell
boundary. In the weightings
adaptation law, sensing data
is compared along points in
this boundary

i

j

ẇi = ui,2 = kw

MWi

∑

j∈Ni

(∫

bi j

γi (pi , qc)dq −
∫

bi j
γi (pi , qc)dq + ∫

bi j
γ j (p j , qc)dq

2

)

(9)

where kw is a positive proportional gain constant, and bi j is the cell boundary line
between neighboring agents i and j . Essentially, this compares values of sensing data
between two neighbors over shared points along their boundaries. Figure2 illustrates
the shared boundary.

The control law ui,1 is referred to as the positional controller, and the control law
ui,2 is the weightings adaptation law. The behavior of the system with these control
laws is formalized in the following theorem.

Theorem 1 Using the positional control law (8) and the weightings adaptation law
(9), the robots converge to an asymptotically stable local minimum of the sensing cost
function W (p1, . . . , pn, w1, . . . , wn) (4). Furthermore, the positions of the robots
satisfy

‖pi − CWi ‖ → 0 ∀ i ∈ n, (10)

and the weightings satisfy

(wi − w j ) → (hi − h j ) ∀ i, j. (11)

Proof We will first show that the controllers drive the system to stable equilibria by
using the cost functionW as a Lyapunov function candidate. We will then introduce
a new Lyapunov function to show that the adaptation law for the weightings, ui,2,
also drives the weightings to the set defined in (11).

Consider our cost functionW in (4) as a Lyapunov-like function. Taking the time
derivative of this function yields

Ẇ =
n∑

i=1

∫

Wi

(q − pi )
T φ(q)dq ṗi +

n∑

i=1

∫

Wi

1

2
φ(q)dqẇi .

We can break this expression into two parts as
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Ẇ1 =
n∑

i=1

∫

Wi

(q − pi )
T φ(q)dq ṗi , Ẇ2 =

n∑

i=1

1

2
MWi ẇi .

Plugging in our adaptation law ui,2 (9) for ẇi , Ẇ2 simplifies as

Ẇ2 =
n∑

i=1

1

2
MWi

kw

MWi

∑

j∈Ni

(∫
bi j

γi (pi , q)dq − ∫
bi j

γ j (p j , q)dq

2

)

=
n∑

i=1

kw

4

∑

j∈Ni

∫

bi j

[
γi (pi , q) − γ j (p j , q)

]
dq

= 0.

Now consider Ẇ1. By plugging in our controller ui,1 (8) for ṗi , the time derivative
of the cost function becomes

Ẇ = Ẇ1 =
n∑

i=1

∫

Wi

(q − pi )
T φ(q)dq

[
kp(CWi − pi )

]

=
n∑

i=1

−kp MWi ‖CWi − pi‖2 ≤ 0. (12)

Using La Salle’s Invariance Principle [8], the robots converge to the largest invariant
set such that Ẇ = 0. From (12), when pi = CWi for all i , then Ẇ = 0. From our
control law (8), when pi = CWi , ṗi = 0 for all i , therefore the centroidal Voronoi
configuration pi = CWi ∀ i is the largest invariant set. By La Salle’s, the robots
converge to the centroidal configuration, proving (10) from Theorem1.

In order to prove (11) from Theorem1, consider a second Lyapunov-like function,

V =
n∑

i=1

1

2
‖wi − hi‖2

with time derivative

V̇ =
n∑

i=1

(wi − hi )
T ẇi

=
n∑

i=1

(wi − hi )
T kw

2MWi

∑

j∈Ni

∫

bi j

[
γi (pi , q) − γ j (p j , q)

]
dq.

To simplify this expression, we notice from (7) that

γi (pi , q) − γ (p j , q) = −α
(‖q − pi‖2 − hi − ‖q − p j‖2 + h j

)
.
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However, we are evaluating point q at the cell boundary, so it will satisfy (1)

‖q − pi‖2 − wi = ‖q − p j‖2 − w j .

Combining these expressions, we find

γi (pi , q) − γ (p j , q) = −α
(
wi − w j − hi + h j

)

The difference in sensing quality is constant between two neighboring robots along
the boundary bi j . Thus, when we plug this into our expression for V̇ , we obtain

V̇ =
n∑

i=1

(wi − hi )
T kw

2MWi

∑

j∈Ni

−α
(
wi − w j − hi + h j

) ∫

bi j

dq

=
n∑

i=1

(wi − hi )
T αkw

2MWi

∑

j∈Ni

(
w j − h j − wi + hi

)
di j (13)

where di j is the length of the boundary bi j . It is advantageous to re-write this expres-
sion in matrix form. To do so, we will define

w̃ =
⎡

⎢⎣
w1 − h1

...

wn − hn

⎤

⎥⎦ , M−1 =

⎡

⎢⎢⎣

1
MW1

0 0

0
. . . 0

0 0 1
MWn

⎤

⎥⎥⎦ , and

L =

⎡

⎢⎢⎣

. . . Li j∑
j∈Ni

di j

Li j
. . .

⎤

⎥⎥⎦ , Li j =
{

−di j for j ∈ Ni

0 otherwise
.

Hence from (13) we can write the derivative of the Lyapunov function in matrix
form as

V̇ = −αkww̃T M−1Lw̃.

M−1 is a diagonal matrix of positive entries and L is the weighted Laplacian of the
neighbor graph, which is known to be positive semi-definite [6, 7]. It can be shown
that the product M−1L is positive semi-definite, which allows us to state

V̇ ≤ 0

To complete the proof, we use La Salle’s Invariance Principle to find the largest
invariant set such that V̇ = 0. The invariant set is defined as when w̃ is in the null
space of L . From graph theory, we know this occurs when w̃ is a vector of identical
entries, i.e. w̃i = w̃ j for all neighbors. This can also be written as the set of all wi

such that
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wi − hi = w j − h j ∀ i, j ∈ n

or
(wi − w j ) = (hi − h j ) ∀ i, j ∈ n,

proving (11) from Theorem1. �
Remark 1 This proof shows that using the controller ui,2 (9), our weightings con-
verge to a set of values relating the robot trust weightings back to sensing perfor-
mance. Overall, the convergence of the weightings implies they will reach static
values, which in conjunction with the move-to-centroid controller means that the
robots will find final locations in the environment. Although changing the weight-
ings creates a change in boundaries and thus a change in the cell centroids, the
weightings eventually converge to an invariant set, which means the positions of the
robots will eventually reach their centroids.

Remark 2 Theorem1 guarantees convergence to a relative difference between the
weightings and the health factor, not the direct health value. This is as expected, since
from our problem setup, trust is a relative notion among neighboring agents with no
external authority. Additionally, weighted Voronoi cell boundaries are calculated
from a relative difference (1), as any constant offset would be canceled out on either
side.

Remark 3 The convergence of the robots to locally optimal locations in the environ-
ment is as good as if the correct robot trust weightings were known beforehand. If
the weightings are correct, it implies all robots will agree in compared sensing data
values. In this case, ẇi goes to zero (9), while the positional controller ṗi remains
the same (8).

Remark 4 One simplification of the weightings adaptation law is to compare the
sensing values between neighbors at any subset of points in bi j , including a sin-
gle point, instead of across the entire boundary. The motivation to compare sensing
functions at fewer points, as illustrated by Fig. 3, is that it may be quicker and compu-
tationally easier than the boundary calculation, albeit less robust. Corollary1 shows
that this simplification of any subset of points still maintains convergence of the
weightings to an invariant set, as well as convergence of the location of the robots to
their centroids.

Corollary 1 The claims of Theorem1 also hold true for the adaptation law

ẇi = ui,3 = kw

2MWi

∑

j∈Ni

(
γi (pi , qc) − γ j (p j , qc)

)
, (14)

where qc is any point in bi j .

Proof Using (14) in place of the previous adaptation law (9) and noting that the
weighted graph Laplacian becomes the normal graph Laplacian [6], the same proof
and arguments hold from Theorem1. �
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Fig. 3 For neighboring
robots i and j , the weighted
midpoint qc (green) lies
along the shared Voronoi
boundary (blue)

i

j

qc

4 Simulation Results

Simulations were carried out in aMatlab environment. The controllers in (8) and (14)
were applied to a group of n = 10 robots. Riemann sums were used to approximate
integrals in calculating the controllers, the weighted Voronoi cell masses and cen-
troids, and the cost function (4). The environment Q was defined as a square region.
The information density function φ(q) was defined as constant in Scenario A and B,
and as a sum of two Gaussian functions, with peaks in the upper right quadrant and
lower left quadrant in Scenario C.

All robots are initializedwith randompositions, and three scenarios are included in
this paper. Scenario A starts with equal weightings but unequal sensing performance.
Scenario B starts with unequal weightings but equal sensing performance. Scenario
C starts with randomized weightings and health factors for all agents.

4.1 Scenario A

In this scenario, all robots start with equal trust weightings. However, robot i = 2 has
a lower sensor health h2, which implies it is not performing at its expected ability.
The initial weighting and health values are

w0 = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
h0 = [1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0].

Over the course of the simulation we notice that the weighting w1 decreases as a
result of its lower health. Figure4 shows a comparison between final configurations
with and without the adaptive trust weightings, while Fig. 5 shows the global sensing
cost and trust weightings over time.
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Fig. 4 Final configurations without adaptive weightings (left) and with adaptive weightings

0 5 10 15
−20

−15

−10

−5

0

5

10

15

Time (sec)

C
os

t

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Time (sec)

W
ei

gh
ts

 (
w

i)

Fig. 5 Left Global sensing cost of the system over time. Right Convergence of weighting values
over time. Values for w2 are shown in green, while the rest of the group is shown in blue

We can see in Fig. 4 that without adaptive trust weightings, the lower-health robot
is able to get an equal share of the environment sensing load. With the adaptive
weightings, its contribution is reduced to improve the overall group quality. To verify
the system converges as predicted by Theorem1, see Fig. 5.

The values of the global cost function decrease over time, a result of the move-
to-centroid controller ui,1. In addition, by looking at the new weighting values, we
see that the weight w2 did indeed drop in value, while the other weights remained
equal. The final values for the weightings taken after 100s were

w f = [1.07, 0.27, 1.07, 1.07, 1.07, 1.07, 1.07, 1.07, 1.07, 1.07],
w − h = [0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07].

Consistent with our predictions, the difference between wi and hi is equal in value
for all robots. Note that the values of wi do not converge to the exact values of hi ,
only the difference.
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4.2 Scenario B

To illustrate the converse of Scenario A, we create a situation in which the robots are
performing equally, but robot i = 3 has been initially assigned a lower trustweighting
than the rest of the group.We show that theweightingswill eventually converge to the
same value when the sensing healths are equal. Initially, the weightings and sensing
healths were assigned to be

w0 = [1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
h0 = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0].

As we have stated previously, it is not necessary in practice to know the sensor health
hi , but we will assign these values in simulation to show functionality. With all of
the sensing health values set equal, we expect that the weightings will coverage to
equal values as well.

Figure6 shows the final configurations with and without adaptive weightings. By
using the adaptive weightings, the incorrectly-assigned trust weighting is corrected
at robot three is given a more-equal share of the sensing load. Figure7 shows the
cost plot and the weightings over time.

From the plot of the weightings, we see that w3 moves towards the other weights
over time. The final weightings values after 100s were

w f = [0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92],
w − h = [−0.08, −0.08, −0.08, −0.08, −0.08, −0.08, −0.08, −0.08, −0.08, −0.08].

As predicted, with all health values equal, the weightings converge to equal val-
ues. Note that even though the health hasn’t changed, the values of the weightings
decrease. From Remark2, we know that the decrease is not important, so long as
the difference between all agents is equal. It makes no difference on the Voronoi
configuration if the weightings are all 0.92 or 1.0, because the relative difference is
the same.
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Fig. 6 Final configurations without adaptive weightings (left) and with adaptive weightings
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Fig. 7 Left Global sensing cost of the system over time. Right Convergence of weighting values
over time. Values for w3 are shown in green, while the rest of the group is shown in blue

4.3 Scenario C

The previous two scenarios used simple initial values to show in detail how the
weightings adapt over time. In this scenario, the weightings and the sensing health
factors were initialized as random numbers drawn from the uniform distribution over
[0,1] to illustrate more complex functionality. The initial values were:

w0 = [0.66, 0.63, 0.29, 0.43, 0.02, 0.98, 0.17, 0.11, 0.37, 0.20],
h0 = [0.49, 0.34, 0.95, 0.92, 0.05, 0.74, 0.27, 0.42, 0.55, 0.94].

Similar to before, the simulation was run in Matlab, with initial and final config-
urations shown in Fig. 8. We expect that our weightings controller will drive the
difference wi − hi to equal values amongst the group while still maintaining cov-
erage control. From Fig. 8, we see the algorithm is able to accomplish a centroidal
Voronoi configuration from randomized initial positions.
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Fig. 8 Initial (left) and final configurations of the robots
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Fig. 9 Left Global sensing cost of the system over time. Right For each agent, the difference w − h
is plotted, showing convergence to a common value

To verify that this indeed is a better final position, we can see the cost function
decreases to a final value in Fig. 9. We also observe that the final values of w − h,
taken after 100s, are

w − h = [−0.15, −0.15, −0.15, −0.15, −0.15, −0.15, −0.15, −0.15, −0.15, −0.15].

These values show convergence to the common invariant set described in Theorem1.
Figure9 shows that all of these weightings relative to their respective health factor
converge over time. Note that this plot is the relative difference w − h, which is
different than what is plotted in Scenario A and B.

We plot the difference w − h to better illustrate the convergence, as plotting
the actual values of the weightings would seem random and erratic. From this, we
see all values coming into agreement, as predicted by (11). In conjunction with the
decreasing cost function, we can verify that the final position is locally optimal and
stable.

5 Conclusion

In this paper we have described a method for quantifying robot-to-robot trust in a
multi-robot coverage control application. Specifically, we allow the robots in the
group to compare values of data sensed with their neighbors, and using an adaptive
control law, adjust their weightings to better account for their performance. These
trust weightings adjust the placement of the weighted Voronoi boundaries between
neighboring robots. By controlling the weights on each Voronoi cell, we are able
to adjust a robot’s cell size relative to its neighbors, which is analogous to creating
trust relationships between neighboring robots. The weightings adaptation law was
proven to converge to an asymptotically stable invariant set, which is shown to be as
good as knowing the health factors directly. The positional controller was similar to
positional controllers in previous works in that it moved robots towards the centroid
of their Voronoi cells.
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Our method can be used to incorporate the robot sensor degradation into the
overall decentralized algorithm while maintaining stability and performance. This
will provide robustness in real-world coverage control applications. First, it can adjust
for variations in the degradation of sensing performance caused by external factors,
such as dust on a camera lens. Second, it provides robustness against sensor creep
over long periods of time. Finally, in applications where there may be malicious
robots in the group, these trust weightings can provide insight into identifying and
mitigating against malicious robots. Future extensions of this work aim to further
investigate the relationship of trust and adversarial robots. This paper provides the
framework for quantifying trust, but additional steps are still needed to ensure that
the impact caused by adversarial robots is limited. Another extension is to apply
this concept of trust to applications beyond coverage control, such as multi-agent
mapping, target tracking, or search.
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AIST Humanoid Robotics Challenge

Kazuhito Yokoi

Abstract This paper presents the challenges assigned to humanoid robots by
National Institute of Advanced Industrial Science and Technology (AIST). Since
the Ministry of Economy, Trade and Industry of Japan initiated a research and devel-
opment (R&D) project on humanoid robotics, AIST has developed platforms for
humanoid robotics research and conducted R&D on humanoid robots applications.
Particular attention has been developed to the requirements of industries using the
platforms. Following TEPCO’s Fukushima Daiichi Nuclear Power Station accident
in 2011, DARPA started the DARPA Robotics Challenge (DRC) to promote inno-
vation in robotic technology for disaster-response operations. In the DRC, partici-
pating robots are assigned a series of challenging tasks that indicate their suitability
for disaster response. This paper presents AIST Humanoid Challenge related the
DRC-selected tasks.

1 Introduction

Building machines that resemble humans is not only an interesting scientific chal-
lenge but also a practical engineering endeavor. With physical form resembling
humans, humanoid robots present as potential proxies or assistants of humans per-
forming human-oriented tasks in real world environments. Currently, humanoid
robotics is extensively researched in universities, research institutes, and companies
around the world. Among these, National Institute of Advanced Industrial Science
and Technology (AIST) has been actively developing Humanoid Robotics for more
than ten years.

Why is our research focused on humanoids? Many non-humanoid robots, such
as Roomba, da Vinci, and Quince, have proven useful. However, we believe that
humanoid robots possess five features that render them especially suitable for per-
forming human tasks. These features are listed below.
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• The human-like shape of humanoid robots evokes emotional feelings in humans.
• Humanoid robots can work in environments designed for humans.
• Humanoids can expand their ability by using machines and equipment currently
used by humans.

• Humanoid motions can be easily interpreted and predicted by humans.
• Humanoids can perform diverse tasks.

To realize these features, AIST has developed a humanoid robotics platform
(HRP). The HRP series includes humanoid robot HRP-2, HRP-3, HRP-4 and soft-
ware platforms OpenHRP and Choreonoid. We have undertaken several trials. The
first of the above features has been demonstrated on HRP-2 and HRP-4C. Regarding
the second feature, the human-like shape and functionality of humanoids is compat-
ible with working environments that are dangerous to human workers, for example,
where there is contamination risk from radiation, virus, or chemical materials. The
third feature is realized in Robonaut 2 which operates alongside human astronauts
in the International Space Station and HRP-1S which drives industrial vehicles sim-
ilarly to human operators. The forth feature has been demonstrated in HRP-2 which
has cooperated with a human expert as a novice. Regarding the fifth feature, the
Humanoid Robotics Project (HRP) of Ministry of Economy, Trade and Industry
(METI) of Japan, has allocated four different tasks to the same humanoid robot
hardware, each implemented by different software.

Despite the above attempts, we have yet to realize a heavy-duty humanoid robot
that can operate in real hazardous environments. The TEPCO’s Fukushima Dai-ichi
Nuclear PowerStation accident in 2011 is expected to be completely decommissioned
more than 40years from now. Thus, we should begin minimizing human exposure
to the radioactive environment by mid-to-long-term research and development of
robotics and automation technology.

The DARPA Robotics Challenge (DRC) initiated in 2012, promotes innovative
robotic technologies for disaster-response operations. DRC teams are developing
robotic systems that will successfully complete a series of challenging tasks; Vehicle,
Terrain, Ladder, Debris, Door, Wall, Valve, and Hose, that are relevant to disaster
response.

The following section discusses the AIST Humanoid Challenge related tasks
selected by the DRC.

2 AIST Humanoid Challenges

2.1 Driving an Industrial Vehicle

Substantial advantages are gained when humanoids operate machines generally used
by human beings. Specifically, humanoids can operate themachine without requiring
substantialmodifications [1]. Furthermore, like human beings, humanoids can extend
their operational skills to other machines. Given the strong demand for unmanned
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industrial vehicles that can drive in hazardous areas, we selected driving industrial
vehicles as our target task [15]. Using a tele-operated humanoid robot to operate an
industrial vehicle confers several advantages. When a tele-operated humanoid robot
is placed in the cockpit of an industrial vehicle, the vehicle instantaneously becomes
tele-operated. A tele-operated humanoid robot can not only operate the vehicle, but
can also exit the vehicle and perform ancillary activities, such as checking the vehicle.
In this task, we assessed whether the humanoid robot could operate typical classes
of industrial vehicles such as lift trucks and backhoes.

In the first set of experiments, the tele-operated humanoid robot was employed as
a proxy driver of a lift truck. The humanoid robot was set in a standing posture as
shown in Fig. 1 [4].

Second, we challenged the humanoid robot to drive a backhoe, the most typical
construction machine, using the following three technologies:

• the “protection technology” which protected the humanoid robot against shock
and vibrations of its operating seat and against the influences of the natural envi-
ronmental influences such as rain and dust;

• “full-body operation control technology” which controlled the humanoid robot’s
total body movements while walking. The robot was installed with autonomous
control capability to prevent it from toppling; and

• the “remote control technology” which instructed the humanoid robot to perform
total body movements under remote control. The remote control tasks were exe-
cuted by the remote control system.

When tele-operating a humanoid robot in various situations, it is often desirable to
change the tele-operation method to one that ensures easy operation. Therefore, we
introduced three operational modes, namely, riding, sitting down and manipulating
levers, which are selected by the robot depending on its task.

Fig. 1 Tele-operated
humanoid robot driving a lift
truck
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Fig. 2 Tele-operated
HRP-1S driving the backhoe

1. The playback mode: The robot is governed by a reference motion pattern gen-
erated by the program off-line. This mode is adopted for seating. Note that the
seating motion pattern is easily reproduced by setting the height of the seat.

2. The manual mode: The robot is manually tele-operated by the remote control
device. Both the master arm device and the master foot device can be used. The
arm and leg control is applied after seating and head control.

3. The semi-automatic mode: The operator directs a partial command of a whole
body motion, and the robot automatically calculates the rest of the motion. This
mode reduces the responsibility of the operator in the manual operation and is
applied during walking toward the backhoe.

Remote operation tasks, comprising a sequence of riding, driving, and excavating,
were successfully executed by the tele-operated humanoid robot (Fig. 2).

2.2 Travel Across Uneven Terrain

When the humanoidwalks across uneven terrain, its swinging footmay unexpectedly
strike the terrain. Such unexpected contact occurs in three ways. During a preplanned
landing, when a swinging foot contacts the terrain early in the single support phase, it
experiences a high horizontal impact force that may topple the robot halfway through
thewalking. Therefore the swinging legmust be able to absorb an unexpected contact
force. Moreover, the foot contact becomes a physical constraint. During such a colli-
sion, the robot must also re-plan its foot trajectory. The other unexpected contacts of
the swinging foot occur immediately preceding and following the preplanned landing
time. In these cases, the instant a contact is detected, the swing motion is halted by a
pattern generator and the walking phase immediately switches from single support
phase to double support phase.
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To prevent contact-induced tripping and balance loss, we counteract horizon-
tal collisions of the swinging foot during walking. Robust bipedal walking across
uneven terrain was realized by collaboration between the reactive pattern generation
of the center-of-gravity/zero-moment-point (COG-ZMP) controller and the swinging
motion of the robot. Two primary procedures of this system are (1) Set the impedance
gains of the feet to appropriate values for the walking phase, (2) Update the desired
landing position and immediately convert it to a COG pattern which stores the action
as a detecting/releasing contact [9]. Balance control is improved by Capture Point
(CP) control, whose controller essentially behaves as a conventional balance con-
troller. We analyze the transfer function of the balance controller and introduce a
new state variable which integrates the CP and the ZMP to truncate the long-term
offset of both controls [10].

The validity of the proposed balance controller was verified through experiments
involving the humanoid robot HRP-2. Snapshots of the walking experiment at 1 s
intervals are shown in Fig. 3. The robot must walk between square blocks (area =
(8 × 8) cm2; height= 1cm) and hard rubber cylinders (diameter= 10cm; height=
1cm) are randomly placed on the floor. In this experiment, the preplanned step
length was 0.2m and the walking cycle was 0.8 s. All feedback loops were run

Fig. 3 Photographic
sequence of HRP-2 walking
on uneven terrain. a t = 4.0 s,
b t = 5.0 s, c t = 6.0 s, d t =
7.0 s, e t = 8.0 s, f t = 9.0 s,
g t = 10.0 s, h t = 11.0 s
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Fig. 4 Photographic sequence of HRP-2 stepping over an obstacle 15cm high and 5cm wide
(increased to 18cm height and 11cm wide when safety boundaries are imposed). The images are
captured at 0.64 s intervals [14]

at 1ms intervals. The support phase was synchronized with the reaction force, and
transited from a single to a double support phase during contact.

Unlike wheeled or crawling robots, legged robots can walk over objects. This
ability is conferred in HRP-2 by implementing dynamic motions rather than a quasi-
static approach. In this implementation, the robot can negotiate obstacles without
needing to cease its motion, and can more rapidly negotiate higher obstacles. The
method, based on the work of Kajita et al. [6], determines the required CoM height
trajectory for stepping over large obstacles. It also implements a dynamic pattern
generator for stepping over large obstacles [14].

In Fig. 4, the robot is photographed stepping over an object 15cm high and 5cm
wide (with height and area safety boundaries of 3cm and (2× 3) cm2 respectively).

2.3 Removing an Obstacle in the Path

If the path of the humanoid robot is blocked by an insurmountable, the robot should
remove the object. Small lightweight objects are effectively removed by carrying.
Pickup and replacement tasks are commonly performed by humans, generally with-
out difficulty. However, if the humanoid robots are to successfully perform the same
tasks, the hand reaction forces require appropriate consideration. We attached force
sensors to the wrists and ankles of the humanoid robot, enabling the robot to sta-
bly carry an object without knowing the mass or COG position of the object. To
prevent the humanoid robot from falling while carrying an object, we modified the
position of the waist depending on the magnitude of the force applied to the hands.
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Fig. 5 Photographic
sequence of HRP-2 carrying
an 8.5kg object [2]. a t =
0.0 s, b t = 3.0 s, c t = 6.0 s,
d t = 9.0 s, e t = 12.0 s, f t =
15.0 s, g t = 18.0 s, h t =
21.0 s

The position of the COG of the object within the horizontal plane is now identifiable
from the force sensor information. From the identified physical parameters of the
object, a walking pattern is generated [2]. A series of snap-shots of this experiment is
shown in Fig. 5. HRP-2 first squats down (Fig. 5a and b), captures an object (Fig. 5c, d
and e), and raises it (Fig. 5f, g and h). The weight of the carried object was 8.5kg.

Large heavy objects are effectively removed by pushing. To achieve stable pushing
by a humanoid robot, regardless of the objects mass, the arms are controlled by the
impedance control and foot placement is planned in real-time according to the result
of object manipulation [3]. The heavier the object, the slower the humanoid robots
walking pace when pushing the object. This method was realized by separating the
pushing phase from the stepping phase. In the pushing phase, the force applied to the
tip of the robots arms is controlled without stepping. The pushing effort determines
the length of each step. Snapshots of HRP-2 pushing a 10kg table are shown in
Fig. 6. Although the motion of the table was disturbed between 12 and 20s, HRP-2
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Fig. 6 Photographic
sequence of HRP-2 pushing
a 10kg table [3]. a t = 0.0 s,
b t = 10.0 s, c t = 12.0 s,
d t = 14.0 s, e t = 18.0 s,
f t = 22.0 s, g t = 32.0 s,
h t = 42.0 s

maintained balance by adaptively changing its gait pattern depending on the amount
of pushing required.

2.4 Opening a Door and Walking Out

A door presents a strong barrier to mobile and flying robots directed to enter a room.
When the humanoid robot encounters a door, the following conditions should be
satisfied.

• One hand of the humanoid robot can reach the door knob;
• the humanoid robot can overcome the reaction force exerted by the door;
• no part of the humanoid robot except the arm should contact the door; and
• the humanoid robot avoids the wall surrounding the door.
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Fig. 7 Photographic
sequence of HRP-2 opening
a door and exiting a room
[12]

The above conditions were satisfied by a planning method that calculates the
positions and orientations of the humanoid robot enabling the robot to select a suitable
set of these parameters [11]. Figure7 displays snapshots of HRP-2 opening a door
and exiting the room.

2.5 Using a Power Tool to Fasten a Bolt

Humansmanipulate conventional tools by handmechanisms. Since the hand ofHRP-
2 is a one degrees-of-freedom (DOF) gripper, HRP-2 cannot use a power tool with a
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Fig. 8 HRP-3 three-fingered
hand with 6 DOF [7]. a Pitch
axis view. b Roll axis view

Fig. 9 Demonstration of the
use of a power tool [7]

push type switch or a trigger. The hand of HRP-3 was designed to both grasp objects
and use an electrical driver equipped with a trigger. Figure8 shows the developed
hand of HRP-3, which has three fingers and a total of 6 DOF.

Figure9 demonstrates the humanoid robot engaged in bridge construction work.
In this figure, HRP-3 leans against the bridge using the left hand and fastens a bolt
with an electric drill grasping in the right hand. It is assumed that HRP-3 cannot
move closer to the bridge. This motion was generated by applying the whole body
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operation method to the humanoid robot, which also enables the robot to overcome
environmental obstacles [5]. From this demonstration, we confirmed that HRP-3 can
potentially manipulate power tools.

2.6 Reaching a Valve in a Complex Environment

Since a humanoid robot has many DOF, complete tele-operation is difficult using
ordinary input devices, especially in highly constrained environments. To tackle
this problem, we developed a reaching-motion planning and execution framework
tailored for exploration missions by human-operated humanoid robots in hazardous
environments such as nuclear plants. This framework offers low-level but practical
autonomy, allowing the robot to plan and execute simple tasks, such as reaching
a target object, within a reasonable timeframe. The efficiency of this framework
benefits the human operatorwho can thenmaneuver the robotwithoutwaiting several
minutes for the planning results. The efficiency of this action is improved by two
procedures. First, a reaching motion is rapidly planned by solving inverse kinematics
to approximate the mass distribution and kinematic structure. If the robot is working
in environments not completely known, the proposed planner can access measured
voxel maps. The second procedure executes the planned path while compensating
the approximation error in real time without violating other constraints.

Simulations confirmed that the HRP-2 humanoid in an environment constrained
with pipes takes approximately one second to plan its reaching motion. Figure10
presents snapshots of the executed reachingmotion. The right arm passes through the
narrow passage between a pipe and its lower body and reaches the target position. The
planned path consists of nine configurations. Snapshots in Fig. 11 show a reaching

Fig. 10 Reaching motion executed by the right arm [8]

Fig. 11 Reaching motion executed by the left arm. The robot lowers its body to avoid its left
shoulder colliding with a pipe [8]
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motion by the left arm. As evident in the figure, the robot lowers its body to avoid
collisions between its left shoulder and a pipe. The planned path consists of 14
configurations.

3 Behavior-Level Operation System for Humanoid Robots

Among the AIST Humanoid Challenges discussed above, “Driving an industrial
vehicle” and “Using a power tool to fasten a bolt” were performed by a tele-operated
humanoid robot. The remaining tasks were autonomously achieved by the humanoid
robot. Although tele-operation systems enable the operator to continuously guide the
robots motion, the benefits of such high flexibility may be offset by excessive time
consumption. The operator will become overtired if he/she must constantly guide
the robot even through routine, commonly-performed motions. The most efficient
system would provide the operator with a discrete behavior-level control option. To
realize this option, we have constructed perceptual and motional behaviors; locating

Fig. 12 Cooperation
between operator and
humanoid robot in locating
and confirming a fridge
handle position [13]
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objects, deciding whether a volume is reachable, reaching for objects, and opening
and closing doors. These behaviors facilitate online operations of humanoid robots.

The proposed behavioral-level operation was assessed on a simple task; removing
a can from a refrigerator. This operation is depicted in Figs. 12 and 13. Throughout
the task, the operator and the robot cooperated in the following sequence:

• The operator sent a “locate fridge handle” command by clicking the command
dialogue box.

• The robot located the fridge handle in its view.
• The recognition result appeared in a pop-up image, and the walking distance
required to approach to the handle appeared in the console output.

• The operator confirmed the recognition result was correct, and triggered walking
by clicking on the command dialogue.

• The robot generated walking motion towards the fridge handle.
• The operator sent an “open fridge” command by clicking the command dialogue
box.

• The robot generated an opening fridge motion by reaching toward the handle and
opening the fridge door.

• The operator sent a “take can” command by clicking the command dialogue box.
• The robot generated a “take can” motion by reaching toward the can and grasping
it.

Fig. 13 Cooperation
between operator and
humanoid robot in taking a
can from the fridge with the
left hand [13]
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• The operator sent a “pickup can” command by clicking the command dialogue
box.

• The robot generated the motions required to pick up the can and close the fridge
door.

4 Conclusion

As the DRC Finals approach, the competence of the humanoid robots is expected
to approximate that of a two-years-old child. The robots should autonomously obey
simple commands such as “Clear the debris in front of you” or “Close the valve”.
More complex tasks sequenced from chains of simpler tasks will require guidance
from human operators. Nonetheless, disaster response robots show great promise in
mitigating the effects of future disasters.

Currently, the perceptional and motion behaviors implemented in our behavior-
level operation system are insufficient for humanoid disaster response robots. Devel-
oping a sufficiently sophisticated system is a lofty but not unattainable goal.
We believe that robotics technology will support decommission of the TEPCO’s
Fukushima Dai-ichi Nuclear Power Station.
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A Scripted Printable Quadrotor: Rapid
Design and Fabrication of a Folded MAV

Ankur M. Mehta, Daniela Rus, Kartik Mohta, Yash Mulgaonkar,
Matthew Piccoli and Vijay Kumar

Abstract Robotic systems hold great promise to assist with household, educational,
and research tasks, but the difficulties of designing and building such robots often
are an inhibitive barrier preventing their development. This paper presents a frame-
work in which simple robots can be easily designed and then rapidly fabricated and
tested, paving the way for greater proliferation of robot designs. The Python pack-
age presented in this work allows for the scripted generation of mechanical elements,
using the principles of hierarchical structure andmodular reuse to simplify the design
process. These structures are then manufactured using an origami-inspired method
in which precision cut sheets of plastic film are folded to achieve desired geometries.
Using these processes, lightweight, low cost, rapidly built quadrotors were designed
and fabricated. Flight tests compared the resulting robots against similar micro air
vehicles (MAVs) generated using other processes. Despite lower tolerance and pre-
cision, robots generated using the process presented in this work took significantly
less time and cost to design and build, and yielded lighter, lower power MAVs.
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1 Introduction

Robotic systems by their very nature can be highly capable and versatile, providing
enhanced actuation and automation abilities to enable otherwise untenable activities.
Robots can be useful by themselves [1], or can assist in conducting unrelated research
[2]. Robots are also useful in furthering educational goals [3].

However, the tightly coupled nature of mechanical, electrical, and software sub-
systems in a robot often demand sophisticated engineering skills to design and build
an appropriate device. Computer-aided design (CAD) packages can be expensive and
arcane, and numerous such tools are often required. The varied toolsets and design
environments cause unique specialized robots to be created from the ground up for
each application, with little design reuse across projects.

High prototyping costs and turnaround times are also impediments to robot devel-
opment. Conventional fabrication techniques for mechanical and electrical compo-
nents typically require trained technicians operating sophisticated machinery, and
thus take significant investments of time and money. Recent developments in 3D
printing technologies have done much to ameliorate such effects, allowing a vast
variety of solid parts to be fabricated in a home environment. Nonetheless, such
3D printers still take hours to produce parts, making incremental improvements and
rapid turnaround untenable.

Ultimately, robot creation currently tends to remain an expert’s domain. In order
for robotics to become prevalent, then, the entire process from conception to con-
struction needs to be modified.

A key element to simplify the design process is to enable modular design. By
breaking up a robot into functional subsystems, new designs can be made from pre-
viously developed and tested components of other robots. These modules can span
disciplines—robotic subsystems necessarily involvemechanical, electrical, and soft-
ware components. As more robots get designed in the system, the corpus of available
components will grow; eventually robot development can transition to making high
level functionality decisions and designing by connecting components from libraries.

Alternate fabrication processes are also necessary to ease robot development. As
design often involves repeated testing with incremental improvement, a quick and
cheap method of rapidly iterating prototypes can greatly increase the number of
build-test-refine cycles, resulting in more varied and successful robots.

With these goals in mind, a new process was developed for rapid robot devel-
opment. A quadrotor micro air vehicle (MAV) system was selected as a simple but
nontrivial instance of a robotic specification. Its mechanical structure is basic enough
to concisely demonstrate themodular code-based design, while its resulting behavior
and performance is rich enough to demonstrate the relevance of this process.

Mechanical airframes were designed using a set of scripts in the Python program-
ming language, then fabricated by folding a sheet of cut plastic. The flight control
board and software were designed using existing library modules. The completed
MAV was then flown to analyze it’s performance. Data from these flights were com-
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pared across similar robots created using alternate design and fabrication techniques
to characterize the scripted printable process.

The contributions presented in this paper include:

• the new scripted design platform and printed folding fabrication process for pro-
ducing mechanical structures,

• a specific lightweight, low cost, and rapidly designed and manufactured MAV
generated using them, and

• a comparison of these to other conventional processes and MAVs.

In particular, this process outshines other robot design methodologies by:

• allowing extensive modular design, to the level of simply connecting existing
modules to generate a final robot,

• requiring easily available low cost software, hardware, and raw materials,
• fabricating the designs in considerably shorter time,
• producing lighter yet robust mechanical structures,
• enabling rapid iteration through the use of scripted design.

This paper begins inSect. 2with a discussion on the various rapid fabricationmeth-
ods available for creating mechanical structures, and compares them to the folded
plastic process that is the focus of this work. Section3 follows by outlining methods
for designing mechanical structures—existing CAD programs are compared against
the scripted designmethodology developed herein. Themodular design of the control
system, now common in hardware and software development, is explained in Sect. 4.
Section5 describes the setup in place to characterize the robots and presents the data
from those flight tests. The conclusion in Sect. 6 examines the results presented in
this work.

2 Rapid Fabrication Processes

Awide variety of conventional manufacturing processes can be used to generate cus-
tom parts to meet arbitrary size, weight, and strength requirements of robotic com-
ponents. However, these generally require considerable time, expense, and expertise.
Rapid fabrication processes trade off precision and specificity for ease of use and
build speed; some of these are described below. In particular, a process is proposed in
which precision cut plastic sheets are folded to realize desired 3D geometries. This
has the benefit of producing extremely light structures in a small fraction of the time
required by other methods.

2.1 3D Printing

3D printing is an additive manufacturing technique that has gained widespread pop-
ularity for producing rapid prototypes. It owes this popularity in large part to the
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Fig. 1 A fleet of quadrotor frames weighing 4–15g were manufactured using 3D printing tech-
nologies and folding. Source materials included ABS, PLA, photopolymer plastics, and polyester

relatively low cost of raw materials and hobbyist tabletop machines and to the ease
of producing a part from a CAD specification when compared to traditional machin-
ing practices. However, 3D printing can still take on the order of hours per part.
Furthermore, 3D printing is not always cost effective.

This method was used to produce a number of quadrotor frames, some of which
are shown in Fig. 1. An industrial-grade printer was used to fabricate a frame out
of acrylonitrile butadiene styrene (ABS), a common thermoplastic, a hobbyist grade
printerwas used tomake frames out of polylactic acid (PLA), another common source
material, while a desktop printer was used to make frames with a photopolymer.
Fabrication of these structures took between one to three hours. The parts ranged
in weight from 6g to upwards of 15g, based on the configuration options set during
manufacture. The lightest part was nothing more than a hollow shell, with a single
layer of plastic forming the surface of the geometry (at 0% infill).

2.2 Plastic Sheet Cutting

Precision cutting can be used to generate arbitrary 2D parts from potentially inex-
pensive solid plastic sheets. This method has distinct benefits over other machining
methods; though laser cutters are more expensive than the cheapest 3D printers,
higher precision is achievable at a lower cost than professional grade printers or con-
ventional machining. Alternately, desktop paper or vinyl cutters can accomplish a
similar task for a fraction of the price. Design and machining requires simpler CAD
tools and demands less skill from a designer. And fabrication is fast—parts generally
take on the order of minutes to cut. However, precision cutting is limited to directly
producing strictly 2D designs.

2.3 Origami-Inspired Folding

Inspired by the traditional Japanese art of origami, folding is an efficient method of
creating 3D structures from planar fabrication processes such as the sheet cutting
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Fig. 2 The folded frames on the right aremade from design files generated by the developed Python
package like the one on the left. A laser cutter or desktop vinyl cutter operates on a sheet of plastic,
cutting along the blue lines and perforating along the red lines

Fig. 3 Automated scripts can quickly and easily apply complex modifications to the generated
designs, such as the addition of lattice shaped speed holes on each solid wall of the quadrotor frame

described above. Using 2D processes such as cutting or laser machining, folding
patterns can be formed on a thin flat substrate similar to creasing a sheet of paper to
create a tendency to fold along these creases. The resulting perforation lines can be
manually or automatically [4] folded in both mountain and valley directions. This
approach produces printed 2D precursors that are subsequently folded into rapidly
and easily fabricated 3D robots [5–7]. Quadrotor frames designed using the Python
package described below can be seen in Figs. 2 and 3. These designs were cut out
of sheets of polyester (PE) film using a commercial laser cutter. Arbitrary thickness
film could be used: the lightest frames, made using 0.005” thick stock with a latticed
design, weighed less than 3g; the strongest structures, made with unbroken 0.010”
film, weighed just under 8g.

3 Mechanical Design

Robot mechanical design involves generating 3D geometries that meet structural,
kinematic, and dynamic requirements for specific robot abilities. There are a number
of software tools that engineers can use to aid in this process; some programs are
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compared below. The new work presented in Sect. 3.3 is a Python-based scripted
design package, developed to provide a more beginner-friendly tool that can allow
for powerful automation, modular design, and widespread sharing and reuse of com-
ponents and scripts.

3.1 Commercial CAD Software

Among professionals in the robotics community, mechanical design is most often
done using commercial CAD packages such as SolidWorks and AutoCAD. Solid-
Works is known for its user-friendly interface and 3D capabilities, while AutoCAD
is often used for its command-line power at 2D drawings. Both programs are highly
featureful when it comes to making sophisticated designs, but are very expensive.
They also require significant processing power and graphics hardware to operate.

In addition to their high cost, the underlying proprietary nature of these tools
inhibits widespread sharing or collaborative design. Binary source files inhibit the
effective use of sophisticated distributed version control systems to fork and merge
designs and changes. Furthermore, though scripting options exist in such programs,
they are not well developed; rather than being able to automate repetitive design
decisions, most tasks are left to the user to implement.

For this work, SolidWorks was used to design quadrotor frames to be 3D printed.
The design was quickly implemented from scratch by an experienced designer, and
the entire geometry was manually drawn and each dimension was individually con-
strained. Though dimensional changes were easy to implement, larger scale config-
uration modifications required starting a completely new design.

3.2 OpenSCAD

OpenSCAD is a free open source cross-platform 3D CAD program. It takes C-style
text-based programs as input to generate 3D geometries by hierarchically applying
primitive operations to basic shapes. With a low cost to entry given both the free pro-
gram and minimal hardware requirements, it has become popular among hobbyist
designers. The text-based source enables widespread sharing and modification, as
demonstrated in online communities such as Thingiverse [8]. It also enables simple
reconfiguration by rearranging themodular definitions of constituent elements. How-
ever, though scripted, it is primarily focused on object generation, with only basic
automation options. Nonetheless, again due to its text-based input, other scripting
languages can be used to automate OpenSCAD program generation.
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3.3 Python

Python is a user-friendly scripting language with an extensive collection of modules.
With a large community of users, it has been used to interface to CAD programs, as
well as generate CADdesigns directly. In this work, a Python packagewas developed
to directly generate 2D design files for the origami-inspired folded plastic sheet
fabrication process.

This package leverages hierarchical design principles to build a library of building
blocks from which to generate mechanical designs. Much like OpenSCAD, oper-
ations on basic geometries are included in the package, from which scripts can
assemble more complicated geometries. However, because Python is a fully featured
programming language, and the internal representation of the designed geometries
are fully available in userspace, many design tasks can be fully automated. This
greatly simplifies the modification and extension of existing designs, even by non-
expert designers.

The basic unit of design for folded robots is the face, a polygon that represents a flat
continuous section of the source sheet. Faces can be joined at folded edges to make
3D structural elements. For example, a beam is formed by an array of rectangular
faces as shown in Listing1. These elements form the basic building blocks in the
package’s library. Other building blocks include additional structural elements such
as various polyhedra to form bodies, wheels, etc.; as well as combining forms such
as tabs and slots, hinges, and pleats.

Listing 1 A simple beam is formed by joining a number of rectangles along folded edges

1 class Beam(Drawing) :
2 def __init__( self , length , thickness , shape=3):
3 Drawing. __init__( self )
4
5 r = Rectangle( thickness , length)
6 self .append( r . times(shape , ’e3’ , ’e1’ , ’ r ’ , FOLD) )

Complicated mechanical design can then be reduced to hierarchically combining
simpler building blocks with appropriate joints. Though this package focuses on the
folded plastic process, a similar approach can include other fabrication methods.

A quadrotor frame is a simple illustrative example that can clearly demonstrate
this design process. The frame itself is hierarchically composed of submodules:

• a belt comprises a rectangular face with tabs and slots for mounting,
• a motor mount includes a belt along with notches for the motor to sit against,
• an arm is created by attaching the motor mount to the end of a beam.

The quadrotor frame can then be generated by symmetrically joining four suchmotor
arms. Example code demonstrating this composition can be seen in Listing2.

Listing 2 Modular hierarchical design of the constituent motor arms for a quadrotor

1 class Belt (Rectangle) :
2 def __init__( self , thickness , length) :
3 Rectangle . __init__( self , thickness , length)
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4
5 t = tabs .BeamTabSlot( thickness , thickness )
6 self . attach ( ’e2’ , t . tabs . times(2 , ’e0’ , ’e2’ , ’mt’ , FLAT) , ’mt0.e0’ , ’mt0’ ,

FLAT)
7 self . slots = t . slots . times(2 , ’e0’ , ’e2’ , ’ms’ , FLAT)
8
9 class MotorMount() :
10 def __init__( self , thickness , motor_diameter) :
11 self . belt = Belt ( thickness , pi ∗ motor_diameter /2 . )
12 self . notch = Face((( thickness , 0) , ( thickness /2. , thickness /2. ) ) ) . f l ip ()
13
14 def connect( self , beam) :
15 beam. attach ( ’r0 .e2’ , self . notch , ’e0’ , ’m0’ , FLAT)
16 beam. attach ( ’r1 .e2’ , self . belt . slots , ’ms0.e0’ , ’s0’ , CUT)
17 beam. attach ( ’r2 .e2’ , self . notch , ’e0’ , ’m1’ , FLAT)
18 beam. attach ( ’r3 .e2’ , self . belt , ’e0’ , ’mt’ , FLAT)
19
20 class MotorArm(Beam) :
21 def __init__( self , length , thickness , motor_diameter) :
22 Beam. __init__( self , length , thickness , 4)
23
24 m = MotorMount( thickness , motor_diameter)
25 m.connect( self )

This code is straightforward to generate—a user-friendly interface can automati-
cally synthesize code like this from intuitive graphical input. Furthermore, once such
components have been designed and committed to the library of parts, the details
of their implementation are no longer relevant. New designs can be formed through
combinations of these underlying building blocks. Existing designs can be easily
reconfigured by adjusting the composition parameters of the constituent modules.

In addition to the modularity, another benefit of this method of design comes from
its scripting abilities. An automated script was able to generate matching tabs and
slots to attach the faces for each beam based on overall geometry. Another script was
used to perforate each solid face with lattice-like speed holes, as shown in Fig. 3.
Though such scripts take some time and expertise to develop initially, they can then
be applied at will. In contrast to manual design tools that require repetitive placement
of each feature, this process enables future designs to apply a short snippet of code
to modify the entire design, regardless of complexity, as seen in Listing3.

Listing 3 Scripting capabilities allow repetitive or complexmodifications to be easily encapsulated
and shared

1 import quad
2 import la t t ice
3
4 q = quad.Quad( radius = 75)
5 la t t ice . la t t ic i fy (q)
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4 Control System

4.1 Electronic Hardware Design

Similar to the Python package formechanical design, the controller for these vehicles
employed modular design to quickly develop highly customized circuits from an
electrical design library of component modules. Expert schematic designers create
self contained schematic sheets for various electronic subsystems using EAGLEPCB
Design software; experienced PCBdesigners can create accompanying board layouts
for these schematics. Complex boards can then be compiled from these libraries by
inexperienced users by stitching the desired components together. The generated
hardware designs can be sent out to commercial foundries to get manufactured. The
result is indistinguishable from an expert designer’s board yet consumes less time
and skill to compile.

The quadrotor hardware comprises six library modules. An ARM Cortex M4
STM32F373 microprocessor forms the central controller, interfacing with an Atmel
AT86RF212 900MHz Zigbee transceiver for wireless communication and an
InvenSense MPU-6050 six degree of freedom MEMS gyro plus accelerometer for
inertial sensing. A voltage regulator module regulates power to these components.
Four instances of DC brushed motor drivers complete the flight control board. A
USB connection to the microprocessor allows for programming and direct computer
communication. Because both the USB and wireless blocks are used, an identical
board can connect to a host computer, enabling bi-directional wireless communica-
tionwithout needing special basestation hardware. The final board is less than 15cm2

and can be made in a single layer process.

4.2 Software

The software driving a quadrotor controller needs to stabilize both its attitude dynam-
ics as well as its position. The attitude controller needs a high update rate to handle
the fast dynamics of the small frames; this then allows a position controller to run at
a slower rate.

4.2.1 Onboard Controller

The low level software package complements the electronic hardware. A software
library for each electronic module exists in the database. Their inclusion is done
via preprocessor statements indicating the hardware’s pin location. Future versions
will extract this data from the schematic files automatically. Additional libraries are
included in the samemanner and range fromLEDmanipulation to timers to brushless
motor vector control. The quadrotor uses the Zigbee radio, IMU, serial packetization,
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and LED manipulation libraries, while the basestation uses the same libraries plus
the USB and minus the IMU.

The microcontroller estimates its attitude at 2kHz, rate limited by the IMU output
data rate. A PD attitude controller runs on the microcontroller with target attitudes
received over the radio from a basestation computer. Motor speeds are controlled
by pulse-width modulation (PWM) commands to the motor drivers. In addition to
maintaining stable hover, the autopilot wirelessly reports the measured inertial rates,
calculated orientation, and commanded control inputs for data logging, post process-
ing, and analysis.

4.2.2 Base-Station Software

The outer loop position control is implemented using a pose and yaw estimate gen-
erated at 100Hz by an external motion capture system from Vicon Motion Systems
[9]. The position controller is a simple PID controller as described in [10] with an
integral terms added for the 3 axes.

5 Flight Testing

In order to evaluate the relative merits of the fabrication methods, a common design
for a quadrotor frame was realized in the different processes. An additional frame of
similar dimensions, but a more traditional design was used as a control. These frames
were then outfitted with the same controller and actuators and flown through a series
of tests. The flight tests consisted of both autonomous hovering and controlled flight
using the control system described above. A full summary of the frames tested in
this work is presented in Tables1 and 2. These fabricated devices were compared
against a commercially available option, the NanoQuad from KMel Robotics [11].

Data collection for the flight parameters of the various models was conducted
in two phases. Power consumption during hover was measured while tethered to a
power supply, yet still carrying its battery, as seen in Fig. 4. To measure dynamic
parameters, the power supply was disconnected and the battery was used. The data
logged during the untethered flights included the position of the quadrotor and all
feedback indicated in Sect. 4.2.1.

To ensure reasonable comparisons between the different frames, the vehicle con-
trollersweremodified for each frame. Frequently, quadrotors are described as a fourth
order system (although they can go above fifth order), and are divided into two sec-
ond order PD controllers. Separation of time scales allows us to do this if the inner
controller is significantly faster than the outer. The inner, high speed, onboard PD
controller controls vehicle attitude and outputs motor PWM commands. The outer,
lower speed, offboard controller controls vehicle position and commands vehicle
attitude. In both cases, there is negligible natural damping (from wind resistance)
and no returning force around the hover condition in the horizontal directions. Thus,
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Table 1 A comparison of the design of the various quadrotor frames built and flown

Design process Fabrication method Material

(A) SolidWorks Laser Cut 1/16” Acrylic

(B) Python script Laser Cut + Fold 0.005” PE

(C) Python script Laser Cut + Fold 0.010” PE

(D) Python script Electronic Cut +
Fold

0.005” PE

(E) SolidWorks Fused Deposition
Modeling

ABS

(F) SolidWorks Stereolithography Photopolymer

(G) (N/A) Purchased Carbon fiber

all proportional and derivative effects come from the controllers alone. Examining
the vehicle’s attitude behavior along one of the principal axis, after taking the Laplace
transform, the simplified transfer function becomes:

Y(s)

U(s)
= Kp + Kds

Is2 + Kds + Kp

where Kp and Kd are the proportional and derivative gains, and I is the vehicle’s
moment of inertia along that axis.
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Table 2 A comparison of the performance metrics of the various quadrotor frames

Fabrication
time (min)

Frame
mass (g)

Total
mass (g)

Hover
power (W)

Power to
mass (W/g)

Hover STD Rise
time (s)X (cm) Y (cm) Z (cm)

(A) 1 3.9 38.9 9.9 0.254 1.08 1.26 0.05 0.344

(B) 8 4.0 39.0 10.2 0.262 1.13 0.98 0.11 0.352

(C) 8 7.6 43.0 10.4 0.242 1.12 1.93 0.11 0.374

(D) 10 4.0 39.0 10.2 0.262 0.66 0.66 0.08 0.400

(E) 58 15.2 51.0 11.2 0.220 2.22 4.94 0.16 0.480

(F) 150 7.4 42.4 10.4 0.245 1.23 1.11 0.12 0.366

(G) (N/A) 74.9 17.2 0.230 1.50 1.42 0.21

Fig. 4 A folded plastic
quadrotor is tethered to a
laboratory supply to measure
power consumption during
controlled hover

Solving the for the poles:

s =
−Kd ±

√
K2

d − 4IKp

2I

we see that the poles converge at Kd = √
4KpI . This corresponds to critical damping,

which was the target for the experiments. In reality, the coefficient of 4 does not yield
critical damping due to sensor error, time delays, etc. The coefficient and Kp for the
inner control loop were found manually while Kd was adjusted according to the
formula above for each frame. The same process was repeated in the outer control
loop, replacing I for the mass.

5.1 Comparison of Airframe Properties

Airframe comparisons were broken down into three categories: production, frame
characteristics, and assembly. Production comparisons include fabrication time, labor
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time, material costs, andmachine costs. Frame characteristics aremass, stiffness, and
brittleness.

The fabrication time of 2D designs are markedly lower than their 3D counterparts.
These range from 1 to 2min using a laser cutter, and 4min using a desktop electronic
crafts cutter. Only frame (A) from Table1 required no manual labor to construct
the frame. The foldable frames can be folded by an inexperienced person without
directions or tools in less than 30min, while an experienced person can complete a
frame in as little as 6min. Depending on the 3D printer type, the removal of support
material (scaffolding used during the printing process) takes a comparable time to
folding, and can require more equipment like acid baths or high powered water guns.
The folded frames are the cheapest material-wise. The 0.005” polyester frames, (B)
and (D), cost roughly $0.13 USDwhen bought in quantity and the 0.010” frames, (C)
are $0.25. They were cut on both $35,000 laser cutters and $250 electronic cutting
machines with similar results. The 1/16” acrylic frame uses $0.75 of material, but
cannot be cut with the low cost electronic cutter. The 3D printed ABS, (E), or PLA
frames are $0.75 not including support material, which could bump it up to $1.00,
and were printed on $30,000 machines. Hobby versions of this machine are now in
the low $1000 range. The control frame, (F), cost $11 to print on a $20,000 machine.
In contrast, the commercial option (G) costs on the order of $4000.

The frames’ masses vary greatly, ranging from 3.9 to 15.2g. While in general,
frame mass corresponds to frame rigidity, the folded frames have a small amount
of play due to the clearances required to feed tabs through slots. The ideal solution
appears to be to 3D print extremely light frames like the white frames found in Fig. 1.
Unfortunately, 3D printers have a minimum thickness on the order of the polyester
sheets used for folding. At theminimum thickness, eachwall of the vehicle is a single
layer thick, which is very brittle in the FDM style of 3D printing. Note that none
of these frames were tested since their layers delaminated before any significant
testing could be completed. Furthermore, frame (A) broke in a hard landing after
flight testing was complete. Because it is flat, it is particularly weak in the vertical
direction. Tubular or rod shapes with uniform materials like the folded polyester and
the photopolymer did not experience this problem. These frames are also compliant
without being brittle, contributing to their high tolerance to damage.

The stiff, 3D printed frames were quick and simple to assemble. Features like
press fits for the motors not only kept the motors in place, but also aiming the motors
in the proper direction. Utilizing the belts mentioned in Sect. 3.3, the folded frames
easily accepted the motors. Care was required during assembly, however, since the
play in the frames could cause the belt to grab the motor on an angle, resulting
in motors facing several degrees off of vertical. Frame (A) had no mechanism for
aligning motors as it is a thin, 2D design. Motors are aligned by eye and held in
place using hot melt adhesive. The first flight of this frame resulted in uncontrollable
yawing. Only after careful remounting was it a competitive frame.
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Fig. 5 The position error during hover for folded quadrotors, frame B (left), frame C (middle)
and the laser-cut quadrotor, frame A (right) demonstrate performance comparable to commercial
options

5.2 Comparison of Flight Characteristics

A plot of the hover performance of the folded frames (frame B and frame C) and
a laser-cut frame (frame A) is shown in Fig. 5. The deviation of the position from
the desired setpoint, summarized in Table2, demonstrates hover performance better
than or on par with that of research grade quadrotors [10, 12].

Though the full system mass was largely dominated by the control electronics
and battery, the lighter frames generated by the cutting processes consumed notably
less power in hover. With a lighter control platform (such as the 2g controller from
[13]), this benefit would be further magnified.

However, the folded frames were also less efficient, consuming more power per
unit mass than those produced by conventional technologies. The relaxed tolerances
of the folded structures resulted in misaligned motors; these then generated antag-
onistic thrust, increasing the required ratio of power consumption to effective lift.
Furthermore, the more compliant frames leached energy from lift into the bending
modes of the frame.

The impact of the of motor misalignment is further evident from the control
signals to the four quadrotor motors. Figure6 shows the motor PWM values during
hover for the same quads as in Fig. 5. Though the position errors are similar for these
quadrotors, the relative motor PWM values vary significantly. The large difference
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Fig. 6 Motor PWM during hover for folded quadrotors, frame B (left), frame C (middle) and the
laser-cut quadrotor, frame A (right)
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Fig. 7 The step response for a 0.15m step in X-direction for frame B (left), frame C (middle) and
frame A (right) demonstrates the agility and accuracy of the airframes. The position error about the
setpoint can be further improved with a custom designed trajectory for each frame

in commanded output between the four motors is due to the torques required to
compensate for the parasitic moments generated by off-axis alignment.

To compare the dynamic response of the different frames, we gave a step input
of 0.15m in the X-direction and looked at the resulting position response. These
are shown in Fig. 7 and summarized in Table2. The lighter frames are more agile—
the constant control effort exerted by the motors has a greater effect given lower
mass. Frame A, being made of a more flexible 2D sheet, displays greater amplitude
oscillations than the stiffer folded structures.

6 Conclusions and Future Work

This paper introduced a new system to simplify the process of robot design. To
evaluate the system, both the process and the resulting robot must be considered.
The data presented above (and summarized in Table2) displayed notable advantages
of this system along both fronts.

The combination of the folded plastic fabrication method with the Python script-
based modular design environment significantly reduced both design cost (both of
raw materials and necessary hardware and software tools) and time (to both generate
and fabricate complete designs). Combined, these benefits greatly ease the viability
of iterated design-build-test cycles, critical for robot design optimization. Alongwith
the simpler design environment, this system can bring the process of robot creation
into the hands of non-experts.

Thiswork identified areaswhere this systemcanbe improved.Most notably, future
work will focus on simplifying the user interface. This system reduces complicated
robot design down to assembling component modules; a user-friendly interface can
confine engineering expertise exclusively tomodule generation, thus eliminating any
specialized skills required to synthesize robots. The system will also be expanded to
combine the modular design of the both mechanical and electrical subsystems into
a combined framework, further simplifying the process.
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The robots generated by this system display benefits over those generated by
current processes. In the case of mobile robots and especially MAVs, minimizing
system weight while maintaining robustness is a key design goal. It is in this that the
folded plastic process particularly shines. The high strength, low weight mechanical
frames enabled reliable, high performance MAVs comparable to existing technolo-
gies, though at the nominal expense of efficiency due to lower overall stiffness. These
parameters can be tuned by systemdesign andmaterial selection, and so future design
effort can work towards ameliorating compliance in the structure.

In addition to robot design, the system presented in this paper is also valuable
in determining avenues of future robotics research. Conventional quadrotor control
algorithms assume symmetric parallel motor axes; imperfect alignment and folding
tolerances can lead to inefficient or poorly controlled flight. Though mechanical
design effort can attempt to lessen such variations, an important orthogonal direction
for future research revealed through this work is to develop robust control algorithms
that allow robots to identify their dynamics and self-tune controller gains.

Supplemental Multimedia

A video of the work presented in this paper can be accessed from:
http://people.csail.mit.edu/mehtank/ISRR2013/ISRR2013.mp4
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The Solving by Building Approach Based
on Thermoplastic Adhesives

Fumiya Iida, Liyu Wang, Luzius Brodbeck, Derek Leach,
Surya Nurzaman and Utku Culha

Abstract While, in nature, changes of morphology such as body shape, size, and
strength play essential roles in animals’ adaptability in a variety of environment, our
robotic systems today still severely suffer from the lack of flexibility in morphology
which is one of the most significant bottlenecks for their autonomy and adaptability.
With the ability to autonomouslymodify ownbody shapes ormechanical structures in
surroundings, robotic systems could achieve a variety of tasks in flexible and simple
manners. For this reason, we have been investigating technological solutions based
on a class of unconventionalmaterial, the so-called ThermoplasticAdhesives (TPAs),
with which the robots are able to construct their own body parts as well as connect-
ing and disconnecting various mechanical structures. Based on our technological
exploration so far, in this paper, we introduce the concept of “solving-by-building”
approach, in which we consider how autonomous construction of mechanical parts
can help robots to improve performances or to “solve” problems in given tasks.
Unlike the conventional adaptive systems that can only learn motor control policies,
the ability to change mechanical structures can potentially deal with a significantly
more variety of problems. By introducing some of the recent case studies in our
laboratory, we discuss the challenges and perspectives of the solving-by-building
approach based on TPAs.
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1 Introduction

Every biological organism exhibits many different forms of growth and self-
replication in some parts of its life cycle if not the entire life. While there are many
variations, the biological growth can be usually associated with the changes of vol-
ume, size, shapes, and the other mechanical properties such as rigidity, and all of
which are driven by the underlying mechanisms of developmental processes such as
cell growth, cell differentiation, or morphogenesis. These processes are fundamen-
tal for the biological systems because they determine both micro- and macroscopic
details of organisms in self-organizingmanners. For example, every biological organ-
ism starts its life from a single cell which is repeatedly replicated itself into organs
with multiple cells that function as bones, skins, blood, and nervous circuitry [9, 24].

The concept of self-organizing systems has been investigated for many decades
because of its substantial roles in biological systems [21]. Originally started as the
theoretical exploration of cellular automata, reaction diffusion systems, or simulated
nervous systems, a number of different aspects of self-organization processes have
been reproduced in the engineered systems [18]. In particular, during the last decade
or so, the self-reconfigurable and self-assembling systems have been intensively
studied for this purpose. These approaches generally employ mechatronic modules
that can be programmed to autonomously connect and disconnect to each other such
that shapes and structures can be flexibly modified on the fly according to given task-
environment. [5, 6, 13, 25, 31, 32]. Similarly, more complex interactions between
moduleswere also investigated to understand the notions of self-organization in struc-
ture formation, where stochastic physical interactions betweenmechatronic modules
were exploited [12, 30].

More recently, there has been a growing interest in the use of soft and deformable
materials to construct flexible robots [8, 11], and along this line of research, we have
been also investigating an alternative technical solution to enhance the capability of
modifying mechanical structures of robotic systems. The innovation lies in the use
of soft material, the so-called Thermoplastic Adhesives (TPAs, also known as Hot
Melt Adhesives, HMAs) which is integrated into a robotic platform for both free-
body fabrication, as well as bonding assembly of mechanical parts. Because of the
TPA’s unique mechanical characteristics, our approach provides the robotic systems
a substantially more flexible capability in changing their own body structures with
more precision, complexity, and diversity.

Based on our achievements so far, the goal of this article is to introduce the
concept of “solving-by-building” approach. Unlike the conventional adaptive robots
that rely on motion learning to deal with a variety of task-environments, the ability
to modify mechanical structures allows the systems to handle substantially more
complex problems in given task-environments, although there are still a number
of challenges ahead of us. By introducing some of the recent case studies in our
laboratory, in this article, we discuss the challenges and perspectives of this approach.
Note that this paper focuses only on the conceptual design principles of this approach,
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with a rather restricted description of technical details. For those interested, technical
details can be found in the publications referred to in the sections below.

We structure the rest of this article as follows. First, in Sect. 2, we explain the basic
concept and enabling technologies of the proposed framework. In Sect. 3, we discuss
the fundamental technical challenges of this approach. And finally, Sect. 4 discusses
the implications, perspectives and applications based on the obtained knowledge
so far.

2 Solving by Building Approach

Building an autonomous system is highly complex processes in which many knowl-
edge, know-hows, skills, and operations are involved. For example, developers need
to know about material properties, fabrication methods of parts, electronics and con-
trol, and how to test the complete systems and improve the entire organization of the
systems. For investigating self-organization of autonomous systems, it is essential
to automate the building processes partially or entirely. Although it might look an
unsolvable challenge, this section discusses how such a problem can be systemat-
ically investigated by introducing the concept of “solving-by-building” approach,
and explains the core enabling technologies that we developed for this purpose.

2.1 Conceptual Framework

For building an autonomous systems, developmental processes can be usually gen-
eralized into a set of similar steps as illustrated in Fig. 1. Given a target task and
environment, a developmental process starts with a step of body design, in which
source materials are determined; materials are processed; parts are fabricated and
assembled; and sensory-motor circuitry is implemented. Then, once the body design
step is completed, the next step deals with control design where physics models are
firstly determined; and then the control policy is developed. Essentially the body and
control design steps should be sufficient to enable the target systems functional for
the target task-environment, although, in reality, a number of design iterations are
necessary by conducting the interaction analysis. Typically the developed system
is tested in the real-world task-environment, and the physical system-environment
interactions are analyzed. For example, when a robot manipulator is developed for
pick-and-place tasks, the robot behaviors are analyzed with respect to stability and
robustness of gripping forces of objects, or speed and energy expenditure of the
entire sequences. The interaction analysis is essential to identify problems in task
execution or to increase performances. The outcome of analysis is then feedback to
improve body and/or control design.
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Fig. 1 Framework of the solving-by-building approach. A typical developmental process of
autonomous systems is abstracted into four stages, i.e. Body Design, Control Design, Interac-
tion Analysis and Task Execution. Usually human designers execute all these steps, but the robotics
research of motor learning attempts to automate the process of control design (i.e. data obtained in
interaction analysis can be used to improve control design). In contrast to the learning processes,
the solving-by-building approach considers to automate the body design processes based on the
feedback from interaction analysis

For reducing the amount of time and efforts in the system development processes,
one can apply a “learning” mechanism which could automatically analyze physical
system-environment interactions and autonomously adjust parameters related to
physics models and/or control policies in the control design. The learning process
can be typically generalized by an objective function that basically describes the
target performance of the system in uncertain and dynamic task-environment, and
the the outcome of analysis is feedback to adjust parameters in physics models and
control policies.

In contrast, the motivation of the “solving-by-building” approach considers how
the outcome of interaction analysis can be feedback to the body design step in Fig. 1.
More specifically, in the solving-by-building approach,we also assume certain objec-
tive functions that can be used for quantitatively evaluation in the interaction analysis
step, whereas the main difference from the learning mechanisms is to use the evalu-
ation results to improve the processes in the body design step. With such a feedback
mechanism, the systems should be able to broaden the adaptability in a broader range
of uncertainties and changes in task-environment including those that the conven-
tional learningmechanisms cannot dealwith. In the rest of this article,we discuss how
such feedback mechanisms can be practically applied to real-world robotic systems
and identify the challenges and perspectives.
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2.2 Enabling Technologies

The concept of solving-by-building approach is not a new one. In biology, the impor-
tance of morphological changes has been known for many decades, and in the field
of complex systems and artificial life, there have been a number of “virtual robots”
investigated for our in-depth understanding of the nature of adaptivity and autonomy
[2, 14, 23]. However, there have not been much research activities that explored the
technological means for this concept except for some case studies [1, 7, 17].

A real-world autonomous system is usually composed of a significant amount of
different components, and automating the building processes requires considerable
diversity in technologies. For a systematic investigation of this highly challenging
problem, we have been focusing on one of the most fundamental yet technolog-
ically feasible aspects of building processes, which is the automated construction
of passive mechanical structures. In nature, passive mechanical structures such as
limbs, tendons, skins, hairs and nails are not generating forces and electric signals
by themselves, but they are known to play significant roles in biological systems to
be adaptive and autonomous. Automating the building processes of passive mechan-
ical components is, however, not trivial if they have to be useful for robots with-
out human intervention. As in the conventional self-reconfigurable systems that we
introduced in Sect. 1, the morphological changes of robotic systems require so much
mechatronic infrastructure for designing overall geometric shapes, moving parts,
connecting and disconnecting components, for example. The use of mechatronic
subsystems to achieve these self-reconfiguration processes requires complex hard-
ware and control routines, and a simpler and more robust enabling technology seems
to be necessary.

From this perspective, we have been investigating a simple technological solution,
i.e. thermoplastic adhesives (TPAs), to be used for both formation of geometric shapes
as well as connectivity control. TPA is a solvent-free polymer that exhibits two
distinctive phases depending on the temperature [16]: At low temperatures typically
below 60 ◦C, it is a solid plastic, while it becomes liquid at high temperatures over
140 ◦C. This transition is bi-directional and repeatable such that a solid TPA cube at
room temperature, for example, can be heated up and deformed into arbitrary shapes,
and the modified structure can sustain its shape by being cooled down. An important
mechanical characteristic of TPA is its adhesion property that can be controlled
through the bi-directional phase transition (Fig. 2). In the liquid phase, TPA is highly
adhesive to almost any materials and it forms a large bonding strength as it is cooled
down. Quantitatively, the bonding strength of TPA is approximately 1 MPa at room
temperature, and it can be exponentially reduced by increasing temperature of the
bonding surface [26, 28, 29] (Fig. 2).

We have developed a robotic manipulator that can exploit the TPA’s mechani-
cal characteristics for the demonstration of solving-by-building approach (Fig. 3).
The manipulator is equipped with two specialized mechanisms at the end effector:
First, the robot manipulator has the so-called thermo-connector equipped in the end-
effector. The function of thermo-connector is heating and cooling of its flat surface
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Fig. 2 Material properties of thermoplastic adhesives (TPAs) thatwe employed in our projects. (Top
figure) Bonding strength of TPAs is exponentially decreased as thematerial temperature rises, thus a
small change of temperature is sufficient to control adhesiveness in this material. Bonding strength,
however, varies depending on the surface energy of bonding substrates, which is exemplified by
copper and aluminum. Adapted from [29]. (Bottom figure) The stress-strain characteristics of TPAs
is plotted under a room temperature. This figure indicates that TPAs are elastic but can take a stress
up to 2 MPa

(i.e. the connection surface in Fig. 3) such that the surface can be used for liquifying
and solidifying TPAs in physical contact. For example, if the surface temperature is
above the melting point of TPAs, the surface can liquify the material on it, which can
initiate a bonding of TPA to the surface by cooling the surface subsequently. Alter-
natively, a bonded TPA on the connection surface can be separated by re-heating
the surface to the melting point. In order to control the surface temperature effec-
tively, the connection surface is made of copper because of its characteristics of heat
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Fig. 3 An example of solving-by-building platform. (Left figure) The robotic manipulator that
equips with the TPA handling devices (i.e. TPA Supplier and Thermo connector) at the end-effector.
The robot base is a five-axis servo-controlled manipulator that is fixed on the ground and controlled
by an external host computer. (Right top figure) A CAD design of TPA Supplier, which consists
of melting cavity, nozzle and servo motor. A commercially available TPA stick is inserted into
the melting cavity by the servomotor, and a liquified TPA material can be extruded from the noz-
zle. (Right bottom figure) A schematic design of the thermo connector, which consists of surface,
Peltier element, and power resistors. Surface temperature of the connecting surface can be elec-
trically regulated through Peltier element for cooling and the power resistors for heating. Adapted
from [3, 4]

conductivity. An increase of temperature is achieved by power resistors attached the
connection surface, and a cooling is done through a Peltier element which transfer
the heat from the surface to heat sinks.

And the second mechanism is to utilize the adhesive property of TPA in the
process of additive fabrication, in which variations of mechanical structures can be
fabricated by placing a liquid-phase TPA flow and solidifying it [4] (Fig. 4). For
example, when a thread is placed to form a spiral shape on a flat table, it cools
down into a solid flat disk at room temperature, and an upright wall can be formed
by accumulating a thread vertically. Although such additive fabrication processes
usually employ other thermoplastics such as acrylonitrile butadiene styrene (ABS)
or polylactic acid (PLA), we found it possible to use TPA for the same purpose by
specifically developing a TPA handling device that regulates the flow of liquid-phase
TPAunder the kinematic control of a robotmanipulator. So far our experimental setup
is capable of continuously and smoothly extruding TPA thread with the minimum
diameter of 1mm, and the process is destabilized when fabricating with a smaller
diameter. It is also important to mention that both the Young’s modulus and tensile
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Fig. 4 Additive fabrication and part assembly based on thermoplastic adhesives. (Upper figures)
The robotic manipulator equipped with the TPA supplier (Fig. 3) controls a TPA flow for additive
fabrication. By regulating the TPA flow rate and speed of the end effector, the robot is able to
construct a cup-like structure. (Lower figures) The same robotic manipulator operates a “bonding
assembly” process: First the manipulator builds a stick-like structure by additive fabrication, then
it is attached to thermo-connector. The manipulator then extrude a small amount of TPA on the
cup-like structure such that the cup and the stick structures can be glued into one structure. Adapted
from [26]

strength of TPA are as high as 10MPa at room temperature, which allows to flexibly
develop mechanical components with sensible structural strength.

3 Scalable Structure Formation

The additive fabrication technology is a promising solution for automatically con-
structing mechanical structures because it can construct almost any mechanical
shapes as long as their geometries are within the reachable range of the manipu-
lator [10]. Additive fabrication, however, is not sufficient to enable robots to achieve
the solving-by-building approach, but there are still a few fundamental challenges
to be solved. First, additive fabrication does not fully consider assembly/integration
processes which are crucial in the body design of autonomous systems. In order to
achieve the solving-by-building systems, the robots have to not only create variations
of mechanical structures but also autonomously assemble or disassemble the parts
into their own body plans. Second, there are severe limitations of thematerials used in
additive fabrication, and, as a result, it is not possible to generate variations of struc-
tures in terms of material properties. The material properties such as visco-elasticity,
density, and friction are essential mechanical characteristics that makemost of robots
functional and useful, although they cannot be flexibly adjusted in the conventional
additive fabrication devices. And third, additive fabrication does not allow structure
construction in large scales, especially those larger than the size of their mother
device [22]. The ability to construct larger structures is one of the unique function of
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living organisms which makes them functional and robust in uncertain and dynamic
environments as exemplified in tree growth and multi-cellular organisms in nature.

To tackle these fundamental challenges, we have been focusing on the thermoad-
hesive property of TPAs to be used in the robotic systems, and investigating the
implications of the technological solutions in the context of the solving-by-building
approach. Interestingly, as explained in the case studies in this section, control of
adhesiveness in robotic systems is a very powerful strategy that complements most
of the aforementioned challenges in the conventional additive fabrication techniques.

3.1 Functional Structure Formation

The solving-by-building approach should be able to simplify the problems associ-
ated with robotic applications. In nature, we find numerous examples of this kind
such as animals extending parts of their bodies to easily find and capture food, spi-
ders and social insects constructing their nests, or other creatures growing hairs and
antenna to increase sensitivity of receptors.What could be common requirements for
such mechanical structures for our robotic systems, and how can we systematically
investigate the technical challenges in our solving-by-building platforms? Since we
restrict our research to construct only passive mechanical structures in this article,
it is reasonable to consider how the constructed mechanical structures can cover
desired lengths, areas, volumes while they could also sustain a certain amount of
force and load.

Such mechanical structures need to satisfy two basic challenges: First the struc-
tures have to be fixated somewhere either in the environment or parts in the robot’s
own body, because floating structures are usually not very useful. For this reason,
TPAs are an ideal material because it has the relatively large adhesion characteristics,
and once a structure is constructed, it can be bonded to almost any solid connecting
surfaces. And the second challenge is to design and construct mechanical structures
that fulfill the size and strength requirements within the amount of given source
materials. Essentially, the challenge here is to minimize the use of source materials
while maximizing the size (i.e. lengths, areas, or volume of the structures of interest)
and the strength (i.e. resistive load or pressure).

From this perspective, we have been exploring how our robot manipulator can
autonomously construct minimummechanical structures based on TPAs that can be,
at the same time, fixated to the robot itself or to the given structures in environments.
More specifically, as the first step of systematic investigations, we have developed
a model based controller for the robot manipulator that is able to, on the one hand,
make solid threads made of TPAs, and on the other, attach them onto the given frame
structure (Fig. 5) [15]. For constructing a functional yet efficient structure that can
support certain load on it, it is necessary to design the thread diameters along with
the number of threads that are loaded, but we found that they can be realized based
on a model based controller which considers physics models of extrusion process,
as well as deformation of TPA threads under ambient cooling processes.
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Fig. 5 Efficient construction of passive structures. The time-series photographs show how the
robot manipulator can produce a set of TPA threads bonded onto an aluminum frame. The robot
manipulator controls both its own axes and TPA Supplier such that it can keep the bonding of every
thread to the frame while generating a constant diameter with certain tension. (Bottom right figure)
At last, we tested the strength of the generated mesh structure by putting two aluminum blocks

The unique mechanical characteristics of TPAs can be also exploited for loco-
motion in a free 3D space. Inspired from the dragline locomotion of spiders, we
developed a miniaturized TPA supplier such that it can be implemented onto a small
and light-weight mobile robot that can locomote on the thread made by the robot
itself (Fig. 6) [27]. This dragline locomotion is a typical use case of the solving-by-
building concept, in which locomotion can be simplified and adaptable because of
the building processes of mechanical structures. More specifically, aTPA thread that
is made by the robot can be bonded to almost anywhere on a ceiling, and the robot
can generate and extend the thread on the fly such that the robot can walk down
by controlling the clamping mechanism at a certain speed. The robot is also able
to vary the diameter of TPA thread flexibly between 1 and 5mm depending on the
payload and a safety factor required for the application. It is, however, important to
mention that this particular application requires a dedicated holding mechanism that
facilitates the control of thread formation during high-payload locomotion.

3.2 From Additive Fabrication to Bonding Assembly

In order for a solving-by-building robot to construct even larger structures, it is
necessary to “ingest” source materials that are available within the robot’s reach,
and use the materials to construct the structure. Here we consider, for example, the
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Fig. 6 Vertical locomotion with the solving-by-building approach. a A prototype of the mobile
fabrication machine is equipped with a miniaturized TPA supplier and a motorized clamping mech-
anism. The TPA supplier generates a thread that is clamped by a holding mechanism to sustain
the body weight of the robot. b Diameter controllability of the thread made by the robot. Diameter
can be controlled by adjusting amount of TPA supplied (i.e. TPA mass regulated by the activa-
tion time ΔtI of the TPA supply motor). c Thread diameter can be controlled also by the amount
of deformation time ΔtII , which indicate the activation time of the clamp mechanism. Adapted
from [27]

Fig. 7 A demonstration of the solving-by-building approach. The robot manipulator employs both
the TPA supplier and thermal connector for picking and placing passive wooden cubes as well as
bonding them together. A constructed stack is also shifted and bonded further with an additional
stack in order to construct a long beam beyond the robot’s own reach. Adapted from [3]

robot to visually (or blindly) identify the materials to be collected, manipulated, and
assembled together to construct a structure, ideally tailored into a desired specific
geometry. Figure7 shows the demonstration of our robotic manipulator in which
a long stick-like structure was constructed to extend the robot’s own reach [3]. In
this demonstration, we assumed that a number of passive wooden cubes are available
within the reach of the manipulator, and considered how the robot is able to construct
a single-supported beam structure by using the cubes. For this purpose, the robot
needs tomanipulate the cubes and bond them together by using the adhesive property
of TPA.
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Fig. 8 Scalable extension of passive structures. Showing two types of extension: HMA only (left
figure) and passive objects bonded by TPAs (right figure). Plots in lower figures show maximum
payload forces Fp until failure for varying extension length. Failure modes differ: HMA only fails
by bending (w > wmax), for extension with passive objects, bonding strength is critical. Partially
adapted from [3]

This process of body extension that we call “bonding assembly” process is sig-
nificantly more powerful than the additive fabrication process particularly when a
larger structure needs to be constructed. Figure8, for example, shows a simple com-
parison between the structured made by additive fabrication and bonding assembly
processes with respect to the load exerted under single support [3]. Here we consid-
ered the beam is supposed to resist a payload Fp at the end, and compare lengths of
beams that are able to support the payload. The experimental results in Fig. 8 indi-
cates that, although the beam built by the additive fabrication can grow only up to
20cm under no load, the beam made by the bonding assembly can reach further by
at least four times.

This experimental results illustrated the complex nature of design problems for the
solving-by-building approach based on thermoplastic adhesives. In general, adhesive
materials such as hot melt in our system are usually softer (i.e. lower Young’s mod-
ulus), thus harder to build larger structures, whereas stronger materials (i.e. higher
modulus such as ABS and PLA, those typically used for additive fabrication) are, in
contrast, not very adhesive to many types of bonding surfaces. An interesting insight
we gained from the experiments above, however, is that the solving-by-building
robots can take advantage of a soft adhesive material to construct larger structures
when strong externalmaterials can bemanipulated. It is still an open questionwhether
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soft-adhesive material would be better than non-adhesive strong ones, but it is impor-
tant to explore the degree to which soft-adhesive materials can be used to create a
large variety of structures.

Given the basic understanding about the mechanical characteristics of the pro-
posed approach, it is also important to investigate algorithmic aspects for scalable
structure formation. For example, as briefly shown in Fig. 7, our robotic manipulator
needs to execute a relatively complex set of actions in order to take advantage of
adhesives for constructing larger structures, which can be significant constraints of
scalability in structure formation. One of the most crucial constraints is originated
from the fact that the manipulator has usually limited range of reaching of the end-
effector. In fact, the example shown in Fig. 7 utilizes a specific set of actions that
enable the system to construct a structure even if it grows beyond the reach of the
robot manipulator.

To further investigate the algorithmic constraints of scalable structure formation,
we have been investigating an optimization method that takes account of the physical
constraints of robotic manipulators. For example, the simulation experiments shown
in Fig. 9 consider a building task of a large structure that can bridge two distant loca-
tions (indicated by black and red squares in the figure).We implemented two physical
constraints in this simulation, which are the location of a new cube to be bonded and

(a)

(c)

(b)

Fig. 9 Design exploration of passive structures by considering the constraints of the real-world
robot manipulator. a Illustration of two basic operations, i.e. adding cubes and shifting the structure,
which are used for the construction of structures. b An example structure that can be developed
only by the two operations. A randomized optimization method was used to search a sequence of
operations such that the resultant structure can bridge between the start and goal locations in a 3D
space. We also applied a stability check algorithm to ensure that the structures don’t fall down. c
Other sample structures generated by variations of search algorithms. In this case study, we consider
three target locations to be reached. C1–C3: No additional constraints. C4–C6: Additional stability
constraints
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the translational motions that the robot can generate against the entire constructed
structures. Even with such simple physical constraints, we have demonstrated that a
scalable structure formation can be possible as long as the manipulator can robustly
execute these two types of actions.

4 Discussion and Conclusions

This article introduced the state-of-the-art technologies that help us understanding the
notions of the solving-by-building approach. Conceptually the solving-by-building
approach provides a new horizon for autonomous systems where we consider how an
autonomous system can enhance its adaptability to uncertain and dynamic environ-
ment by modifying its morphologies such as shapes, sizes, and the other mechanical
properties. Interestingly, there are many concrete engineering methods to automate
some of the developmental processes of autonomous systems including the commer-
cially available additive fabrication devices and their integrations to the other robotics
technologies as outlined in this article. However, it is still a significant challenge to
“close the loop”: In order to provide feedback for autonomous improvement of body
design and construction of autonomous systems, there are many issues to be tackled
from both theoretical and technological standpoints.

Conceptually, it is important to consider the minimum set of requirements in a
physically integrated system that is capable of generating a large variety of mechani-
cal structures, since there is no universal material that can cover all different mechan-
ical properties necessary for autonomous systems. In this sense, the investigation of
adhesive properties seems to be a fairly reasonable approach because it enables
‘ingestion’ of a variety of external materials that have desired mechanical charac-
teristics. The TPAs that we used in our projects seem to be a good choice from this
perspective, because their bonding strength is reasonably large against almost all
solid and dry bonding surfaces while it can be controlled with a relatively simple
temperature control.

Scalability is one of the most significant challenges in our view: While there are
much researches on the fabrication techniques on small-scale mechanical structures,
it is largely unexplored how to construct larger ones, possibly larger than their mother
devices. Unlike the biological cells that are capable of self-reproduction, our solving-
by-building platforms cannot physically grow their own body sizes, thus special
treatments are necessary for this purpose. In this article, we introduced two potential
solutions (i.e. the case studies onmobile fabrication and robotic bonding assembly in
Sect. 3), but it has not been fully clarified the degrees to which the proposed platforms
can be scalable.

Finally, it is also important to explore more practical applications based on the
concept and the new set of technologies. While adaptation of mechanical structures
are expected to provide significant impact on many robotic applications such as
transportation, manipulation, sensing, and exploration of unknown and uncertain
environments, the technologies have to be further investigated in these contexts. For
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example, in our laboratory, we have been exploring how the adhesion control tech-
niques can be applied to wall-climbing robots in unstructured environment, although
there are many challenges remained in the low-level specifics such as rapid and effi-
cient control of adhesiveness [20, 26, 28]. Also the solving-by-building approach
can be applied for adaptive sensor morphology, with which a robotic system can
autonomously adjust its range and sensitivity for force sensing [19]. As we gain
more knowledge about the properties of thermoplastic adhesives and their handling
technologies,we expect to havemore newapplication opportunities in the near future.
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Slip Detection in a Novel Tactile Force Sensor

Raul Fernandez, Ismael Payo, Andres S. Vazquez and Jonathan Becedas

Abstract Tactile sensing improves the manipulation and grasping of unknown
objects. It contributes to increase the knowledge of the environment and provides
useful information to improve grasping control. The sensors traditionally used for
tactile sensing emphasize in grasping object shape and force detection. However slip
detection is also crucial to successfully manipulate an object. Several approaches
have appeared to detect slipping, the majority being a combination of complex sen-
sors with complex algorithms. In this paper, we present a simple, low cost and durable
tactile force sensor and its use to slip detection via a simple but effective method
based on micro-vibration detection. We also analyze the results of using the same
principle to detect slip in other force sensors based on flexible parts. In particular, we
also show the slip detection with: a flexible finger (designed by the authors) acting as
a force sensor, the finger torque sensor of a commercial robotic hand (Barrett Hand),
and a commercial 6-axis force sensor mounted in the wrist of a robot.

1 Introduction

Tactile sensing has had increasing interest since the 1980s [15], mainly in the fields of
robotics and automation, with special interest on manipulation and grasping [4, 18]
although with contributions in other fields like virtual reality and medicine, among
others [3, 17].
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Tactile sensing has traditionally emphasized in detecting contact forces and shape
of a grasping object. However there are other aspects that contribute to increase the
knowledge of the contact and improve the manipulation and grasping of an a priori
unknown object. On line slip detection highly contributes to increase that knowledge
and to improve manipulation [13]. Acquiring on line knowledge during manipulation
is of special relevance if the environment in which these tasks are executed presents
uncertainty [7].

Thus, avoiding slipping is crucial to successfully manipulate an object. However,
specific tactics to detect and avoid the slip has not been extensively used, being the
studies more focused in applying a sufficiently high and previously known force to
avoid it [2]. Nevertheless, an early detection of slipping can contribute to control the
contact forces to prevent it and successfully manipulate an uncertain object.

Several sensors have been tested in laboratory to detect slipping. In [10] two main
approaches/types of sensors were defined: (i) Calculation of the friction coefficient
using non dedicated and non specifically designed sensors. In this case, the detection
of slipping is not accurate since the sensors indirectly measure the relative move-
ment between the grasping surfaces. (ii) The design and construction of specific or
dedicated sensors. There are two solutions: complex sensors designed for manipula-
tion and grasping and a combination of different sensors (e.g. force/torque sensors
combined with tactile arrays). These solutions increase the price and complexity of
the system.

In the scientific literature we found different techniques to detect slip. In [13,
19], slip was detected in robotic fingers with skin acceleration sensors specially
designed. The fingers were covered with foam rubber, and this covered with rubber
skin. Between the foam and the rubber accelerometers were strategically disposed
to measure the accelerations that the skin suffered when it was in contact with a
slipping surface. They observed that low amplitude, high frequency vibrations were
produced in the finger skin when the contact surface was slipping. In addition, in
[19] a grasping force control to avoid slipping based in the estimation of the surfaces
friction coefficients was implemented. However, accelerometers were really noisy
and affected the measurements of small amplitude signals, so there was a systematic
threshold under which the slipping could not be detected. Furthermore those sensors
could not measure the location of the contact point, which is useful to grasp unknown
objects. In [10] a designed 16 × 16 matrix of conductive rubber was used. Slip was
detected by interpreting the deformation of the contact surface based on the change
of the center of mass of the contact surface and by measuring the vibration produced
in the skin when slip occurred. The resolution to localize the object was poor. In
[14] a tactile array sensor was combined with a dynamic sensor to accurately detect
the location of the object and the slipping effect by measuring the micro-vibrations
caused by slipping. Other approaches use combinations of sensors to detect slip such
as vision combine with tactile sensors [11] or silicon rubber based touch sensor
combined with force sensors [12]. In [8] a conductive film sensor was used to detect
slipping by studying the pressure load of the contact. In [16] a combination of tactile
array sensors and force/torque sensors based on strain gauges was used for slip
detection.
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In consequence the slipping can be detected in three manners: (i) estimating the
friction coefficient between the grasping surfaces, which is a not accurate indirect
measurement. (ii) Analyzing the changes in the contact footprint over a tactile array
sensor: changes in the shape of the contact with the object and changes in the pressure-
force distribution. This strategy is not useful if the object is not rigid. (iii) Detecting
micro-vibrations. This is a direct and reliable measure of the slipping, but of dynamic
nature, so the dynamic sensors traditionally used, as accelerometers, are noisy and
usually detect the slipping too late to respond to it and prevent it with a closed loop
control law.

We have designed a simple non dedicated and low-cost tactile force sensor based
in strain gauges to be used in different applications and be incorporated in robotic
grippers. The sensor proposed is based on the strategically location of strain gauges
in a elastic concentrator covered by a semi-cylindrical metallic capsule. Thus, the
sensor plate is separated from the contact surface. This contributes to increase the life
of the sensor and protect it from accidental and dangerous contacts (high temperature
surfaces, accidental hit and cutting surfaces among others, in contrast to rubber or
foam made surfaces).

The sensor was geometrically designed to detect the contact location with high
accuracy. The strain gauges were disposed to be sensitive to the micro-vibrations
produced in the contact surfaces when slip occurs. Strain gauges also present other
advantages: high load range, high precision, high resolution, low hysteresis, high
sensitivity and linear response (see [6]).

The paper is structured into 6 sections: Sect. 2 deals with the description of the
tactile sensor; In Sect. 3 we present our slip detection algorithm; In Sect. 4 some
experimental tests are shown; In Sect. 5 we present the slip detection with other
strain-gauge based force sensors; And finally, in Sect. 6 the main conclusions of this
work are summarized.

2 Description of the Tactile Sensor

The tactile sensor is composed of two structural parts as shown in Fig. 1a: (1) passive
part (aluminium cover with semi-cylindrical shape) which comes into contact with
the environment and (2) sensed part (elastic cylindrical beam of methacrylate) where
some strain gauges are attached in strategic positions. The methacrylate beam is
clamped both ends to the robotic fingertip. Figure 1b shows the sensor mounted in
the fingertip of a Barret Hand and Fig. 1c shows a cross section of the sensor and
their dimensions.

In the sensor model is assumed that the force F is applied in the plane Q (see
Fig. 2a). The cover is clamped to the elastic beam at its midpoint as shown in Fig. 1c
and therefore the applied force is transmitted to the elastic beam through this point.
The applied force F can be decomposed into normal and tangential forces (Fn and
Ft) relatives to the surface of the metallic cover as shown in Fig. 2b. In addition, the
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(a) (b) (c)

Fig. 1 a Sensor parts. b Sensor mounted on a BarrettHand finger. c Cross section of the sensor

Fig. 2 a Applied force. b
Decomposition of force F

F

y

z

x
(a)

(b)

normal force can be decomposed into Cartesian coordinates relatives to the axis (X,
Y ) associated to the elastic beam as shown in Fig. 2b. The magnitude and the direction
of the applied normal force Fn can be calculated with the following equations.

|Fn| =
√

F2
x + F2

y ; θ = tg−1

(
Fx

Fy

)
(1)

Note that angle θ indicates the contact location. On the other hand, the tangential
force generates a moment on the Z axis of the elastic beam. The magnitude of this
force can be calculated as Ft = Mz/r where r is the radio of the semi-cylindrical
metallic cover.

Figure 3 shows the bending moments (Mx, My) and the torsional moment Mz trans-
mitted to the elastic beam, caused respectively by Fx, Fy and Ft . These transmitted
moments can be measured by using strain gauges placed strategically on the elastic
beam. Figure 4 shows the location of the strain gauges used to measure each trans-
mitted moment. Bending moments Mx and My are measured by two pairs of gauges
(1–2 and 3–4, respectively) placed in opposition at the ends of the beam and the
torsional moment Mz is measured by two gauges (5–6) placed to 45◦ with respect
to the axial axis of the beam. With these configurations and an appropriate electri-
cal connection to a Wheatstone bridge (2–gauge system), superimposed effects can
be cancelled, measuring only the desired variable [9]. Therefore, the linear relation
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(a) (b) (c)

Fig. 3 a Bending moment Mx . b Bending moment My. c Torsional moment Mz

Fig. 4 Location of the strain
gauges. Gauges 1 and 2 are
used to measure Mx , gauges
3 and 4 are used to measure
My and gauges 5 and 6 are
used to measure Mz

between the gauge voltage signals and the applied forces can be finally expressed by
the following three equations.

Vg12 = kx Fx; Vg34 = ky Fy; Vg56 = kt Ft (2)

where kx, ky and kt are constants that must be calibrated and determine the force
sensor sensitivity (see Sect. 4.2).

3 Slip Detection Algorithm

When the surfaces of two objects come into slipping contact some structural vibra-
tions of high frequencies arise in the objects. It has been tested in previous works
(e.g. [10]) and it will also be demonstrate in the present study.

In order to detect a slipping contact in real time we have used an algorithm based
in the discrete Fourier transform (DFT) of the strain gauges signals of the tactile
sensor. This method allows to detect structural micro-vibrations of high frequencies
in real time and therefore slipping contacts.
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It is well known that the DFT of a signal ϕ is defined by the following equation.

Φ(k) =
N−1∑

n=0

ϕ(n)e−i2πk n
N ; k = 0, . . . , N − 1. (3)

where N is the number of samples used. Instead of evaluating Eq. (3) directly, which
requires O(N2) operations (O denotes an upper bound), we have used the Colley-
Turkey algorithm [5]. This algorithm is a fast Fourier transform (FFT) that computes
the same results in O(N log N) operations (lower computational cost).

The power spectrum of Φ can be calculated as

Pw(k) = Φ(k)Φ∗(k)

N
(4)

where ∗ denote the conjugate.
The detection method is summarized as follows: (1) the FFT of the signal Φ is

computed each N samples eliminating the DC component; (2) the power spectrum of
Φ is calculated in every iteration, obtaining the peak value and its frequency; (3) the
peak value of the power spectrum is multiplied by its frequency; (4) finally, a slipping
contact is detected when this later value exceeds a threshold defined empirically.

In order to detect slipping contact (associated to microvibration of high frequen-
cies) in real time, the sampling frequency was chosen to be fs = 1 kHz and the FFT
was computed with the last N = 64 samples of the strain gauges signals. This means
that the time needed to detect slipping is N/fs = 64 ms.

4 Experimental Results

The purpose of this section is the sensor calibration and to testing its behavior in
order to measure forces, locate the contact points and detect slipping. First of all a
brief description of the setup used for performing all experiments is introduced.

4.1 Experimental Setup

The force sensor was mounted on the fingertips of a robotic hand (BarretHand). The
hand was attached to a 6DOF manipulator (model Stäubli RX-90). This manipulator
was used to move the sensor toward an object and to apply a certain force. The motion
control of this manipulator is not explained here because it is not the objective of this
study. The strain gauges used (model Kyowa KFG) have a resistance of 120 ± 0.2
Ω and a gauge factor of 2.24 ± 1 and their dimensions are approximately 1 mm
square grid. Commercial strain gauge amplifiers (model Vishay BA660) were used
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for conditioning the gauges signals. All gauges signals were read with a computer
by means of a commercial data acquisition card (model NI PCIe-6363) and were
processed in real time with the commercial data logging application LabView. The
sampling frequency for real time data acquisition tasks was chosen to be 1 kHz.

4.2 Calibration of the Sensor

The three gauge signals of the sensor were calibrated by using the setup shown in
Fig. 5. Forces Fx, Fy and Ft were applied on the sensor by using calibrated weights.

As said in Sect. 2, strain gauges 1 and 2 measure the applied force Fx. Figure 6a
shows the voltage given by these gauges for different values of the applied force Fx.
Several experiments were done for each value of the applied force. The range of the
voltage values obtained are represented with vertical lines. A straight line with the
independent term equal to zero has been fitted to the data by means of the square
minimum method, obtaining the calibration value: Vg12 = 0.0694Fx

The other two gauge signals which measure the forces Fy and Ft were calibrated
following the same previous procedure. Figures 6b and 6c show, respectively, the
voltage given by the gauges 3–4 and the gauges 5–6 for different values of the applied

Calibrated weight

Calibrated weight

Calibrated weight

(a)

(b) (c)

Fig. 5 Scheme of the experiments carried out to calibrate the gauge signals: a setup configuration
to calibrate the gauge signal that measures the force Fx ; b setup configuration to calibrate the gauge
signal that measures the force Fy; c setup configuration to calibrate the gauge signal that measures
the force Ft
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Fig. 6 Calibration of the gauge signal used to measure the force Ft
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forces Fy and Ft . Straight lines was fitted in each case, obtaining the calibration values:
Vg34 = 0.0326Fy; Vg56 = 1.0291Ft .

From the results it can be observed the different sensitivity of the signals. While
the sensitivity of the signals Vg12 and Vg34 are of the same order, the sensitivity of
the signal Vg56 is significantly higher than previous. This is mainly caused by small
misalignments of the strain gauges, but it is not a critical issue that prevents the
operation of the sensor as it is solved by the calibration.

The resolution is defined as the smallest change detected in the measured variable.
For this force sensor the resolution was 0.12 N for Fx, Fy and 0.01 N for Ft

4.3 Slipping Test

The objective of the test was to demonstrate the effectiveness of the tactile force
sensor to measure the contact forces (Fn, Ft), locating the contact points, and detecting
slipping. A steel table (flat surface) was chosen to be the contact object. The test was
performed according to the following sequence: (1) the fingertip was moved toward
the table until the sensor came into contact (2) the finger was rotated, allowing
the semi-cylindrical surface of the sensor to roll on the table (rolling contact; (3)
The finger was linearly moved producing the tactile sensor to slip on the surface
of the table (slipping contact); (4) the finger was stopped. Figure 7 illustrates the
aforementioned sequence.

Figure 8a shows the forces Fx, Fy and Ft , measured by the strain gauges during
the experiment, and Fig. 8b shows the magnitude and the direction of the contact
force Fn calculated according to Eq. (1). It is seen that the sensor came into contact
with the table at t = 2.43 s. From t = 2.43 s to t = 6.20 s the cylindrical surface
of the sensor rolled on the table. From t = 6.20 s to t = 9.8 s a slipping contact
occurred. Finally, the finger stopped its movement at t = 10 s. Structural micro-
vibrations of high frequencies caused by the slipping contact were detected better,

Fig. 7 Experimental setup
with sensor

1

2

3

millitsa@ece.neu.edu



Slip Detection in a Novel Tactile Force Sensor 245

0 2 4 6 8 10 12
−2

0
2
4

Time (s)

F
or

ce
 F

x (
N

)

0 2 4 6 8 10 12

0
2
4
6

Time (s)

F
or

ce
 F

y (
N

)

0 2 4 6 8 10 12
−1

0

1

2

Time (s)

F
or

ce
 F

t (
N

)

Rolling contact Slipping contactNo contact Stopped finger

0 2 4 6 8 10 12
0

2

4

6

8

Time (s)

   
 M

ag
ni

tu
de

 o
f t

he
   

   
  f

or
ce

 F
n (

N
)

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

   
  D

ire
ct

io
n 

of
 th

e
   

   
fo

rc
e 

F n (
ra

d)

No contact Rolling contact Slipping contact Stopped finger

(a) (b)

Fig. 8 a Forces Fx , Fy and Ft as a function of the time. b Magnitude and direction of the force Fn
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Fig. 9 Power spectrum: a before contact; b rolling contact; c slipping contact and d stopped sensor
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Fig. 10 Spectrum peak and
its frequency as a function of
the time
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using the algorithm described in Sect. 3, in the signal which measured the tangential
force Ft (this fact is plausible if we take into account that Ft is a friction force in
this particular case). Figure 9 shows the power spectrum at four different instants of
the signal which measured Ft : (a) before contact; (b) rolling contact; (c) slipping
contact; (d) stopped finger. These spectrums represent the frequency content of this
signal up to the Nyquist frequency. Figure 10 (top) and (middle) show, respectively,
the peak value of the power spectrum and its frequency at each iteration (N = 64
samples, i.e. each 64 ms) and Fig. 10 (bottom) shows the product of both signals.
It is observed that the slipping contact can be detected when this product exceeds
a certain threshold (after performing many experiments this threshold was chosen
to be 10). Note that high frequencies caused by noise in the signal (from t = 0 s to
t = 2 s and from t = 10 s to t = 13 s as shown in Fig. 10 (middle)) and high spectrum
peaks caused during the rolling contact as shown in Fig. 10 (top), are ignored by this
method, detecting high frequencies associated to high spectrum peaks, two conditions
which only appear with slipping contacts. Note also that the slip vibration frequency
is about 180 Hz.

5 Slipping Detection with Other Strain-Gauge Based
Force Sensors

In addition to previous analysis, in this section we analyze if the same slip detection
procedure can be applied to other strain-gauge based force sensors. In particular we
have tested 3 different sensors systems based on structural deformation.
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Fig. 11 a Gripper scheme. b Experimental setup with flexible gripper

5.1 Flexible Finger Gripper Acting as a Force Sensor

The type of grippers analyzed in this work is an underactuated mechanism constituted
by rigid parts (palm) and flexible parts (flexible fingers) as shown in Fig. 11a. The
flexible finger of the gripper shown in Fig. 11b can be used as force sensors [2].
A pair of strain gauge is placed in opposition on the base of each elastic finger as
shown in Fig. 11b, each pair is connected to a Wheatstone bridge that is wired to a
Vishay BA660 strain gauges amplifier to measure the deflection and therefore the
applied force.

5.1.1 Experimentation and Discussion

The gripper was used as an end effector of a Stäubli RX90 robot as shown Fig. 11b.
The contacted object was chosen to be a steel plate (flat surface) as shown in Fig. 11b.
The test was performed according to the following sequence: (1) the fingers were
slipped on the surface of the plate; (2) the fingers were slipped on the opposite
direction. Figure 12 shows the gauge signal of one of the fingers, measured by the
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Fig. 12 a Gauge voltage Finger 1 as a function of the time. b Spectrum peak and its frequency as
a function of the time (gripper)
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strain gauges during the experiment. It is seen that the fingers slip in the plate from
t = 3.24 s to t = 4.65 s. From t = 4.65 s to t = 5.01 s the gripper kept still. From
t = 5.01 s to t = 6.06 s the fingers slip in opposite direction. Finally, the gripper was
stopped at t = 6.06 s.

Based on the algorithm described in Sect. 3, we looked for high frequency vibra-
tions. After many experiments the threshold to detect slipping was chosen to be 0.25.
Structural microvibrations of high frequencies caused by the slipping contact were
detected as can be seen in Fig. 12b. In this system the frequency of slipping vibration
was detected at 125 Hz. We can conclude that the method proposed in Sect. 3 works
for this sensor properly.

5.2 Barrett Hand Torque Finger Sensor

Each finger of the BarrettHand was mounted with a force sensing mechanism consist-
ing of a flexible beam, a free-moving pulley, a pair of cables, and two strain gauges
as it is shown Fig. 13a [1]. Basically, when a force is applied to the last phalange of
the finger, the cables get tight which moves the pulley, bending the flexible beam
built into inner finger. This deformation is measured by the strain gauges.

5.2.1 Experimentation and Discussion

The BarrettHand was used as an end effector of a Stäubli RX90 robot for these
experiments. In the same way that in previous experiment, the contacted object was

Strain gauges

Free-moving pulley
(can move up and down)

Flexible beam built 
into inner finger

Top and bottom cables

(a) (b)

Fig. 13 a Cutaway diagram of finger reveals internal strain gages on BarrettHand. b Experimental
setup with BarrettHand
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Fig. 14 a Gauge signal Finger 1 as a function of the time. b Spectrum peak and its frequency as a
function of the time (BarrettHand)

chosen to be a steel plate as shown in Fig. 13b. The test was performed according to
the following sequence: (1) the BarrettHand grasped the steel plate with two fingers;
(2) the fingers were slipped on the surface of the plate until they lost contact with the
object. Figure 14a shows the gauge signal of one finger during the experiment. It is
seen that the fingers slipped on the plate from t = 5.50 s to t = 6.25 s.

Structural microvibrations of high frequencies caused by the slipping contact was
detected with this sensor as we can see in Fig. 14b. In the Barrett system the frequency
of slipping vibration was detected at 375 Hz. The frequency graph of Fig. 14b shows
that this system have a lot high frequency noise, however the detection method still
works properly.

5.3 JR3 6-Axis Force/Torque Sensor

Manipulator robots usually mount multi-axis force/torque sensors on the wrist that
are very useful in manipulation tasks. Usually, these sensors mount, like in previously
described sensors, strain gauges to measure deformations in order to calculate the
loads applied. We have used in this work the model 67M25A3 of JR3 (Fig. 15) which

Fig. 15 Experimental setup
with JR3

JR3

semicylindrical
object
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Fig. 16 a Forces in sensor JR3 as a function of the time. b Spectrum peak and its frequency on Fz
as a function of the time

is able to measure in Fx and Fy with a standard measurement range of 100N and
a digital resolution 0, 025N and in Fz with a standard measurement range of 200N
and a digital resolution of 0.05N .

5.3.1 Experimentation and Discussion

This sensor was mounted on the wrist of a Stäubli RX90 robot. As shown in Fig. 15,
it was necessary to add a semicylindrical object as a end-effector to perform the
following experiment: (1) the semicylindrical object was moved toward the table
until it came into contact with it; (2) the object was slipped on the surface of the
table (slipping contact); 3) the robot rolled the semi-cylindrical surface of the sensor
on the table (rolling contact). Figure 16a. shows the forces Fx, Fy and Fz, measured
during the experiment. It is seen that the object came into contact with the table at
t = 0.82 s. From t = 1.53 s to t = 3.55 s a slipping contact occurred. From t = 4.43 s
to t = 7.75 s the cylindrical surface of the object rolled on the table. Finally, the robot
stopped its movement at t = 7.75 s.

Figure 16b shows the spectrum analysis of signal Fz, which, based on its magni-
tude, was considered as the best one to detect slipping. However, structural microvi-
brations of high frequencies were not detected. Basically, this is because of the
relative amplitude and frequencies of the vibration modes when a slip occurs, which
is not different in the rolling contact case. We have concluded that this is due to the
high rigidity of this type of sensors.

6 Conclusions

We have presented a new force tactile sensor based on resistive strain gauges. The
sensor can be mounted in the fingertips of a robotic hand easily, and is simple, durable
and low cost. Its usefulness for measuring and locating forces has been confirmed
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with experimental tests in Sect. 4.2. We have also presented a simple algorithm,
based on DFT, that allow us to detect slipping with our sensor in 64 ms as presented
in Sect. 4.3

In addition, we have analyzed the usefulness of our method in other sensors based
on strain gauges. We have concluded that the algorithm works properly in two of the
three sensors analyzed. As a consequence of this study we can say that the slipping
detection algorithm does not work properly for sensor which rigidity is high, because
the amplitude and frequencies of their vibration modes cannot be distinguishable in
slipping or rolling contacts.
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Concentric Tube Robots: The State of the Art
and Future Directions

Hunter B. Gilbert, D. Caleb Rucker and Robert J. Webster III

Abstract Seven years ago, concentric tube robots were essentially unknown in
robotics, yet today one would be hard pressed to find a major medical robotics
forum that does not include several presentations on them. Indeed, we now stand
at a noteworthy moment in the history of these robots. The recent maturation of
foundational models has created new opportunities for research in control, sensing,
planning, design, and applications, which are attracting an increasing number of
robotics researchers with diverse interests. The purpose of this review is to facilitate
the continued growth of the subfield by describing the state of the art in concen-
tric tube robot research. We begin with current and proposed applications for these
robots and then trace their origins (some aspects of which date back to 1985), before
proceeding to describe the state of the art in terms of modeling, control, sensing, and
design. The paper concludes with forward-looking perspectives, noting that concen-
tric tube robots provide rich opportunities for further research, yet simultaneously
appear poised to become viable commercial devices in the near future.

1 Introduction

Concentric tube robots, also known as active cannulas, are one of the smallest mem-
bers of the broader family of continuum (i.e. continuously flexible) robots [58, 75,
79]. They are made from several tubes that are nested within one another concen-
trically (Fig. 1). These tubes are precurved and made of elastic material (usually
superelastic nitinol). When the tubes are grasped at their respective bases, and linear
insertion/retraction and axial rotation motions are applied, they interact elastically
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Fig. 1 A concentric tube robot next to a standard da Vinci laparoscopic tool

and make one another bend and twist. The net result is a needle-sized robot that can
elongate and bend in a manner that has been likened to a miniature tentacle.

While it is possible that applications will be developed outside medicine in the
future, to date the motivating applications for concentric tube robots have come
exclusively from surgery and interventional medicine, and two distinct methods of
use have been identified. The robot can act as a steerable needle or be used as a
miniature teleoperated manipulator. In both contexts, the robot can enter the body in
a variety of ways, including through the skin, through the vascular system, through
a natural orifice, or through the ports in a rigid or flexible endoscope that is itself
inserted into the body. In the trans-endoscope embodiment, concentric tube robots
have been proposed for use in neurosurgery [16], transoral throat surgery [78], tran-
soral lung biopsy and therapy delivery [45, 82], and transgastric surgery [81]. In the
transvascular embodiment, concentric tube robots have been proposed for a variety
of intracardiac procedures where they enter the heart through the vascular system [6,
30, 31, 76]. In the natural orifice embodiment, transnasal skull base [13] and transo-
ral throat [78] applications have been proposed, and it is likely that surgeries through
other natural orifices will be pursued in the future. In the percutaneous, needle-like
embodiment, applications that have been suggested include fetal umbilical cord blood
sampling [28], ultrasound guided liver targeting and vein cannulation [72], vascular
graft placement for hemodialysis [7], thermal ablation of cancer [8, 11], prostate
brachytherapy [77], retinal vein cannulation [85, 86, 89], epilepsy treatments [18],
and general soft tissue targeting procedures [33, 43, 68].

Of all these applications, the two that have been studied most extensively are the
cardiac applications of Dupont et al. and the endonasal applications of Webster et al.
This includes the first ever use of a concentric tube robot in a live animal by Gosline
et al. [26, 30]. It also includes the first insertion of a concentric tube robot into a
human cadaver by Burgner et al. [10, 13]. Many researchers have also explored the
use of concentric tube robots as steerable needles in a variety of phantom and ex vivo
tissues, as discussed in the following subsection.

Use as Steerable Needles When cast as steerable needles, there are several ways
concentric precurved tubes can be used. The term “steerable needle” typically refers
to devices that harness tip-tissue interaction forces to steer [2, 55, 80]. Consistent
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with this, Salcudean et al. demonstrated a concentric tube design in which a small
section of a circularly curved wire extends from an outer tube [52]. In this steering
paradigm, as the needle is inserted into tissue with the wire held at a fixed angle and
distance of deployment, tip-tissue interaction forces will cause the shaft of the needle
to bend. Changes in the distance of wire deployment and the axial wire angle control
the curvature and direction of bending. Loser adopted a different approach where
needle shaft curvature could be controlled independently of needle insertion via two
fully overlapping precurved tubes which could rotate with respect to one another
[43]. With such a needle, a mid-insertion curvature change would cause forces to be
applied to tissue along the entire needle shaft, deforming tissue in order to aim the
needle towards the desired target.

In many steerable needle contexts, it is desirable to apply minimal deformation
to tissue, and one wishes to maintain the needle’s shaft exactly along the curved
trajectory through which the tip has traveled. This is referred to as “follow-the-
leader” insertion [29]. Earlywork,which neglected tube elastic interaction, implicitly
assumed that concentric tube robots would automatically deploy in this manner [27].
However, the accumulation of experimental results and modeling advances soon
showed that tube elastic interaction is typically significant. It also showed, perhaps
counter intuitively, that concentric circularly precurved tubes do not achieve a circular
conformation when axially rotated (see e.g. [66]). Both these factors make follow-
the-leader deployment more challenging than it might at first seem.

However, a useful simple special case that can deploy in an exact follow-the-leader
manner was identified early in the history of concentric tube robots. It consists of a
device in which a circularly curved inner tube or wire extends from a straight outer
tube. The earliest recorded use of this concept in a needle of which the authors are
aware was in 1985 when the Mammalok product came to market [67], and the same
basic concept has been employed many times since (e.g. [7, 8, 14, 21, 33, 51, 68,
72], among others). It is now known that both circular and helical tubes can deploy
in a perfect follow the leader manner, with proper precurvature and actuation [29].
Although some special cases have been observed, the extent to which such results
can be generalized beyond two tubes remains an open question.

Overall, an advantage of using concentric tube robots as steerable needles in
comparison to most other kinds of steerable needles is that concentric tube robots
do not rely on tissue forces to steer, meaning that their mechanical properties do not
need to be perfectly matched to the properties of the tissue through which they pass.
Moreover, they are one of only two steerable needle technologies that can follow
the leader through both open and liquid filled cavities in addition to soft tissues (the
other is tendon actuation [37]).

Use as Miniature Manipulators The basic idea of using a curved nitinol tube to
deflect the tip of a manual laparoscopic tool was described in several references from
the early 1990s [20, 49, 50, 69]. These apparently led to the commercial Roticulator
(Covidien, formerly United States Surgical Corporation), which originally used a
precurved nitinol tube [50], and remains on the market today with a precurved plas-
tic tube as the bending element. The idea of a teleoperated robotic manipulator with
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multiple precurved tubes was developed independently and first proposed simultane-
ously by Sears and Dupont and by Webster, Okamura, and Cowan in 2006 [68, 81].
In this context, the device acts as a teleoperated slave robot in a manner conceptually
similar to the patient side manipulator of the da Vinci system by Intuitive Surgical,
Inc. These initial papers in 2006 began a period of rapid advancement in concentric
tube modeling. This laid the foundation for the research reviewed in the remainder
of this paper, much of which is aimed at making concentric tube robots useful in a
master-slave context.

Development History The commercial Mammalok product mentioned earlier
appears to be the earliest device incorporating concentric tubes and/or wires made
from precurved nitinol [23]. Introduced in 1985, it was the first commercial nitinol
device used in an interventional procedure, if orthodontic arch wires are excluded.
In 1992 Melzer described the use of a curved tube to deflect a manual laparoscopic
tool [49], and Cuschieri and Buess described a similar idea involving a telescoping
curved dissection blade [20]. In 1995 Melzer and Winkel at Daum GmbH (Schw-
erin, Germany) developed the SMARTGuide, which was patented in 1995 and CE
marked in 1996 [21]. In 1997 Melzer described the use of the SmartGuide in image-
guided interventions [51]. In 2005, Loser used two counterrotated fully overlapping
curved nitinol tubes to change the curvature of a needle he applied in an image-
guided surgery setting [43]. Three groups (initially unaware of one another) then
began simultaneous independent development of concentric tube robots, with first
publications in 2005 and 2006 [27, 68, 81]. These publications and subsequent rapid
modeling progress brought concentric tube robots to the general consciousness of
the surgical robotics community.

Model development began with simple models, which were continually general-
ized via the incorporation of additional physical effects. The simplest possible model
by Furusho et al. [27, 72] considered only geometry, assuming that every tube was
infinitely stiff compared to all within it. Bending mechanics was included first by
Loser for two fully overlapping tubes [43], and then by Webster et al. [81, 84] and
Dupont et al. [25, 68] for general collections of tubes. Torsion was included first in
straight sections of the device [81, 84], and then in curved sections with circular or
general tube precurvatures [24, 25, 60, 61, 66]. External loading has been incorpo-
rated by considering the robot to be a single curved rod [42, 46], and more generally
by describing the relative tube rotations induced by the external loads [42, 63, 65].
The above models have been used to enable teleoperation, and form the basis for
for control, design, and sensing as discussed in subsequent sections. The following
section describes the latest model [42, 63] in more detail.

2 Modeling

Model Formulation While there remains some activity in modeling, researchers
appear to have more or less converged on a model which leverages the theory of spe-
cial Cosserat rods to describe each component tube as a continuum which undergoes
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bending and torsion [25, 63]. Though future developments could potentially prove
otherwise, at present it appears that thesemodels have reached a “sweet spot,” striking
a balance between model complexity and accuracy.

All models to date neglect the effects of shear and axial extension of the rods,
which are good assumptions for thin beams like the tubes in a concentric tube robot.
The basic modeling approach is to write down a Cosserat rod equation for each
tube, and then enforce concentricity by requiring all tubes to conform to the same
curvature as a function of arc-length, leaving them free to rotate axially with respect
to each other. This results in a system of differential equations with mixed boundary
conditions. The boundary conditions at the base of the robot are the axial angles of
the tubes, and the boundary conditions at the tip are internal moments that vanish
because there is no material beyond the tip to support them. Note that after this
mechanics problem is solved to determine tube axial tube angles along the robot,
one must still integrate along the robot to determine the space curve of the robot
itself. This model has been derived from both Newtonian equilibrium of forces and
moments [25, 63] and energy minimization [24, 66], and the two approaches have
been shown to be equivalent [24, 63]. Experimental testing of the model has shown
that with calibration, mean error in the prediction of tip position can be as low as
1–3% of overall arc length [25, 42, 63, 66].

External loading has been included in this modeling framework in two ways. One
method is to consider the effects of loads on the model equations directly [42, 63].
A more computationally efficient, approximate way of handling external loads is to
first solve the unloaded model and then treat the robot as a single curved rod that
deforms under external loads [42, 47]. This approach does not model relative tube
axial rotations induced by external loads, and whether or not the loss in accuracy is
significant depends on the robot design and external loading conditions.

The models have also been extended to provide the differential kinematic maps
for actuation (Jacobian matrix) and external loading (compliance matrix) [64, 88].
These maps have enabled resolved-rates-style algorithms for real-time control of
concentric tube robots, as discussed further in Sect. 3. Additional factors like tube
tolerances and friction have been explored (see Sect. 6), though not yet integrated into
the modeling framework described above. A complicating factor in use of concentric
tube robots, which is captured in the above modeling framework, is the presence of
multiple solutions. Many potential cannula design choices will have bifurcations
where solutions appear and disappear [25, 66, 84]. Rapid “snapping” may occur
when tube actuation causes the robot to transition from one solution to another.
Future analysis is needed to predict when and where snapping occurs.

Model Solution In contrast to the model formulation, no consensus has yet emerged
as to the best way to evaluate concentric tube robot models. The model equations
for two tubes with circular precurvature have been solved analytically using elliptic
integrals [25, 66]. However, no analytical solutions have yet been found for robots
consisting of more than two tubes, or for precurvature that varies with arc length.
Hence, model equations are typically solved numerically.
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Numerical implementations have most often used a “shooting” method, which
iteratively adjusts unknown state values at one end of the robot until the boundary
conditions are satisfied at the other end. This procedure can be performed either
base-to-tip, guessing the unknown values at the proximal end and integrating to the
distal end [62], or tip-to-base [42]. It was originally assumed that group preserving
integration methods were required for the geometric integration [25, 66]. However,
in practice we find that integration of the rotationmatrix via standard explicit Runge–
Kutta methods introduces numerical error that is negligible compared to kinematic
error, as one would expect from the numerical examples in [22].

Simplifications to the model such as piecewise linearization enhance the speed of
solution, and sensing the unknown proximal boundary conditionswith torque sensors
alleviates the need for root-finding techniques [87]. This choice does not necessarily
find a solution that agrees with the distal boundary conditions, but the advantages
may outweigh this drawback. There are many open questions in model evaluation.
These relate to determination of which numerical methods are most efficient and
numerically stable, the accuracy of various approximations, and the characterization
of the “snapping” behavior (also known as “bifurcation”) mentioned earlier. All of
these are discussed further in Sect. 6.

3 Control

Kinematic Control The main goal of kinematic control to date has been teleopera-
tion. Three general frameworks have been proposed for kinematic control of concen-
tric tube robots. The first involves precomputation of the model solutions over the
entire workspace via one of the methods described in the previous section. To these
solutions, an approximate forward kinematicsmodel can be fit, such as amultidimen-
sional Fourier series which is computationally efficient to invert via numerical root
finding and can be evaluated at 1000Hz [25]. The main advantages to this method
are the consistent speed, suitability for real-time inverse kinematics, and the ability
to identify numerical problems with solution of the model equations offline while
the device is not performing a task. One disadvantage is that this method is unable
to account for concentric tube robots which exhibit multiple solutions in the forward
kinematics, which reduces the possible design space. Another is that the torsional
effects of external loading cannot be considered.

A second general approach involves rapid solution of the model equations and
computation of the manipulator Jacobian and compliance matrices [64], which cur-
rent implementations in C++ can consistently do at a rate of 200–400Hz [13]. This
differential mapping is then used to update the actuator configuration iteratively to
solve the inverse kinematics [10]. The advantages to this method are the ability to
control robots which exhibit multiple solution behavior, the ability to immediately
control new designs without precomputation or code changes, and the ability to con-
trol robots under known external loads. The main disadvantages are the increased
programming effort required for fast model solution and Jacobian computation, and
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the lack of guarantees that the root-finding procedures of the forward kinematics
computation will converge.

The third approach incorporates extra information provided by torque sensors at
the tube bases. This eliminates the unknownboundary conditions at the proximal tube
ends leading to rapid stable solution of the forward kinematics and the Jacobian [87,
88]. This has the advantage of retaining the fullmodel structure,while simplifying the
calculations and eliminating concerns about forward kinematics convergence. The
disadvantages are that employing force sensors complicates actuation mechanism
design and that system performance depends on sensor reliability.

Stiffness ModulationMahvash andDupont developed amodel-based stiffnessmod-
ulation approach, which varies the actuator positions in response to sensed tip dis-
placements in order to display a desired force/displacement relationship at the tip of
the robot [48]. This method was implemented with the torsionless model and was
experimentally evaluated for a two-tube, three degree-of-freedom concentric tube
robot that was well modeled by the torsionless model. Actuator current was used to
estimate forces in the stiff axial direction of the robot.

Motion Planning Optimal motion planners can enable obstacle avoidance and gen-
erate actuation sequences needed to deploy along anatomical structures or to tar-
gets. Examples of prior work include planning paths around critical brain structures
[44], through tubular anatomy such as the bronchi of the lung [45], and through
the passages of the nasal sinuses [73]. Some of the first planners used simplified
kinematic models employing circular arcs and were based on penalty methods that
convert the constrained optimization problem of avoiding obstacles while maintain-
ing a tip location into an unconstrained optimization problem [44, 45]. A different
technique, termed Rapidly-Exploring Roadmaps, was first applied with the trans-
missional torsion model to find optimal plans [3], and later expanded to include the
fully torsionally compliant kinematic model [73]. Lastly, we note that computational
design and motion planning are highly interrelated problems and many of the above
motion planners may be leveraged in tube parameter design. Conversely, many of
the design algorithms discussed under “tube design” in Sect. 5 may be adaptable to
motion planning.

4 Sensing

Image guidance is a critical part of many surgical procedures. These include teleop-
erated procedures where virtual fixtures [1] are used, as well as procedures where the
concentric tube robot is used as a needle. One can use the mechanics-based model
described in Sect. 2 to predict where the robot will be, provided that the procedure can
tolerate errors of approximately 3% of the arc length of the robot, and loads applied
to the robot (if significant) are known. However, often this will not be the case, so
real-time sensing and closed loop control will be required. An example of the use of
visual feedback in tip position control was the use of a closed form Jacobian derived
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from the transmissional torsion model in [83]. In the remainder of this section we
discuss the methods that are being investigated to sense the shape of the robot for
such purposes, as well as methods to estimate applied loads. Force sensing based on
deflection models will be discussed further in Sect. 6.

Image-Based Shape Sensing and Guidance Typically, when concentric tube robots
are used as steerable needles, a control loop must be closed using medical image
information. This can be done either using images in which one can see both the
concentric tube robot and the target, or by registering the robot to the patient and
image space. Croom et al. used self organizing maps to reconstruct the robot curve
from stereo optical images [19]. This proved computationally expensive, andBurgner
et al. developed a better approach using filtering and triangulation to measure robot
shape using stereo fluoroscopy images [9]. Lobaton et al. also used fluoroscopy, and
optimized view angles to reduce radiation dose, using statistical techniques to com-
bine model and image information [40]. Ren et al. used a vesselness algorithm [56]
and a tubular enhanced geodesic active contour algorithm [57] with 3D ultrasound
images to detect curved surgical instruments. While shape sensing algorithms have
not been employed specifically in computed tomography (CT) or magnetic reso-
nance imaging (MRI), simple concentric tube robots with a straight outer tube and
curved inner tube have been used with bothMRI [18, 51, 70] and CT [33] images for
open-loop targeting using the forward kinematic model. Similarly, surface-registered
preoperative CT images were used open loop for targeting points in an anthropomor-
phic liver phantom [39]. Burgner et al. also used open-loop targeting with tracked
2D ultrasound, and Terayama et al. accomplished a similar objective by physically
attaching the robot to the ultrasound probe [72]. As can be seen from all of the above
references, substantial progress has been made toward use of concentric tube robots
as image-guided steerable needles.

Magnetic and Fiber Optic Shape SensingStandard, off-the-shelfmagnetic tracking
systems can be used for tip pose sensing, and also in principle to provide the pose at
discrete points along the robot. These have been used by Mahvash and Dupont for
stiffness modulation [47, 48], by Burgner et al. for image guidance [13], and byXu et
al. for model validation and evaluation of tracking performance [87, 88]. In principle,
such sensing could be used in conjunction with the robot model to estimate the entire
curve of the robot. Furthermore, given the recent interest in the surgical robotics
community in fiber Bragg grating sensors in needles [35, 53, 59] and other optical
sensing techniques (see e.g. [54]), one should expect to see fiber-based sensing used
in conjunction with concentric tube robots in the near future.

Force Sensing Due to the inherent flexibility of the concentric tube robot, it will be
useful to know the interaction forces between the robot and the environment for both
accurate control and user feedback. A wide variety of force sensors have also been
investigated in the context of minimally invasive surgical tools [54], but the only one
that has been specifically designed for and applied to a concentric tube robot is a tip
force sensor which measures force magnitude and contact angle based on electrical
resistance of fluid-filled channels [5, 32]. The design of specialized force sensors
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is currently an active area of research with many opportunities for innovation, as
discussed further in Sect. 6.

5 Design

There are three distinct aspects of concentric tube robot design. Perhaps the one that
has received the most attention to date is the selection of tube properties (curvatures,
lengths, diameters, number of tubes) appropriately based on application require-
ments. However, beyond this, one must also construct a suitable actuation unit that
grasps the tubes at their respective bases and applies telescopic and axial rotation
motions to each. Lastly, one must design the surgical end effectors necessary to
accomplish the surgical objective.

Tube Design Optimal selection of tube properties has been the focus of substan-
tial research, and was discussed in the earliest papers on use of concentric tube
devices as robotic manipulators [68, 81], which provided ways to determine maxi-
mum curvatures and idealizations intended to facilitate design intuition. Since then,
a number of authors have investigated algorithms for optimal tube design, using a
variety of models and assumptions. Anor et al. planned piecewise constant curva-
ture paths through the brain ventricles for choroid plexus cauterization [4]. Bedell et
al. employed the torsionally rigid model and circular precurvatures to design tubes
whichminimize curvature and overall length while respecting anatomical constraints
in cardiac surgery [6]. Torres et al. used circular precurvatures with the torsionally
compliant model to develop a rapidly-exploring random tree algorithm to create
a design together with an actuator plan for collision-free insertion through a lung
lumen [74]. Burgner et al. also used the torsionally compliant model and introduced
volume-based coverage objective functions to design robots that are able to opti-
mally cover a desired workspace with their tips [12, 13]. Building upon the ideas in
these initial studies, there remains much room for advancement in optimal design
algorithms, as discussed further in Sect. 6.

Actuation Unit Design Actuation units have only recently become a topic of interest
in the concentric tube robot research community, with early papers simply showing
photographs of actuation units with little discussion on their design [68, 83]. A dif-
ferential drive is described in [78], although this has the drawback of requiring long
holes to be drilled through screws.Modular bimanual (two arm) [13] and quadraman-
ual (four arm) [71] robots designed for endonasal surgery have also been presented.
Single-arm MRI-compatible designs using piezoelectric motors [70] and pneumatic
cylinders [17] have been constructed and demonstrated in MRI environments. A
highly compact actuation unit for controlling one curved tube deployed through an
endoscope port was described in [16]. Another compact and inexpensive (poten-
tially disposable) actuation unit using a spline screw for CT-guided procedures was
described in [33]. Consideration has also been given to reusable actuation units. An
autoclavable hand operated actuation unit design was presented in [11]. An auto-
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clavable and biocompatible motorized actuation unit (with a bagging procedure for
the motor pack) was described in [14], and applied to evacuation of intracerebral
hemorrhages.

End Effector Design A number of innovative end effectors have been developed
for concentric tube robots. Dupont et al. developed remarkable metal microelectro-
mechanical systems (MEMS) end effectors specifically for concentric tube robots
for cardiac tissue approximation and tissue resection [15, 30, 31]. Burgner et al.
mounted a gripper from a flexible endoscopic tool to the tip of a concentric tube
robot and also developed a curette end effector for endonasal surgery [13].

6 Future Directions

The results described in the preceding subsections illustrate the state of the art in
concentric tube robots. While much is known, there remain many opportunities for
future research, as discussed in the subsections below.

Open Topics in Design Many diverse end effectors are needed for various surgical
objectives. ThemetalMEMS end effector designs pioneered byDupont et al. provide
an example of a promising fabrication technology for future end effectors, as well
as creative designs for tissue approximation and dissection [30].

Research also remains to be done on clinically applicable actuation units, and both
the disposable and reusable paradigms seem viable. An important consideration in
design is the ability to grasp tubes as near the entry point into the body as possible
to minimize torsional windup. Safety features such as quick tube retraction will also
be useful, as will the ability to change tubes rapidly [14].

Design of tube properties is also an open area for future research. Materials other
than nitinol may be useful in some contexts as demonstrated by the Roticulator.
In steerable needle contexts, non-annular tube profiles have been proposed, but not
physically demonstrated, as a means of preventing torsional deformation and hence
facilitating follow-the-leader deployment [34]. If new methods could be developed
to increase torsional stiffness relative to bending stiffness, this would reduce the
tendency of the device to “snap”, as well as transmissional torsional windup. In the
future it may even be possible to change the curvature of each tube through external
means such as tendons or novel actuators embedded in tube walls (see e.g. [38] for
an example of a non-precurved nitinol tube device with embedded tendons). There
is also a great deal of research to be done in optimal algorithms for designing tube
precurvatures, stiffnesses, and numbers of tubes for a given surgical application. To
date, there has been no mechanics-based planner in which the number of tubes is a
design parameter (Anor et al. consider geometry only [4]), and no design algorithm
has yet considered non-circular precurvatures.

Also, importantly, snapping behavior (also called bifurcation in some contexts)
has yet to be comprehensively incorporated into design algorithms. Current methods
to guarantee a snap-free design only apply to the special case of two fully over-
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lapping tubes with zero transmission length. Additionally, a snap-free design may
not always be the best choice, depending on the surgical application. Designs that
include snapping behavior can use higher curvatures, and snapping can, in principle,
be prevented by restricting the configuration space appropriately in software.

Lastly, some design heuristics have been suggested, but their limits and implica-
tions have yet to be fully explored, and onemust be careful in attempting to generalize
them. For example, Burgner et al. found that their use of available heuristics alone did
not produce good workspace volume coverage [12], despite the fact that computa-
tional optimization produced designs that ultimately agreed with the basic premise of
the heuristic. Furthermore, while the ideas of dominating stiffness and matched tube
pairs are intuitively appealing and appropriate for some design problems (as shown
by Bedell et al. in the context of cardiac surgery, for example [6]), they too will not
always generalize. This is because in practice one cannot use arbitrarily many tubes,
and each matched tube pair trades one degree of freedom (relative telescopic exten-
sion of one tube) in exchange for the intuition gained by the designer. This intuition
gain must be weighed against the number of tubes available in diameters suitable
for surgical objectives, given required tube tolerances and wall thicknesses. Most
existing prototypes to date have used just 2 or 3 total tubes. The largest published
number is 4 [26].

Open Topics in Modeling After a period of rapid advancement from 2006 to 2011,
the past two years have seen slower modeling advancement, perhaps due to the
models described in Sect. 2 having reached a sufficient level of detail to enable
many applications and research on other topics. Additional effects that have been
investigated include tube tolerances [39] and friction [41], but describing how both
of these phenomena physically arise from tubes with finite clearances is still an
open question. In terms of model evaluation, rigorous comparison and contrast of
available approaches has yet to be attempted. It would be useful to compare methods
like collocation, finite-element, finite-difference, and quasilinearization based on
computational efficiency, accuracy, and numerical stability. Though some two-tube
results exist [25, 66], general methods for model-based prediction of the presence
multiple model equation solutions and detection of an impending snap have yet to
be developed and would be particularly valuable to enable design and use of highly
precurved tubes.

Open Topics in Control The existing literature in control addresses teleoperation
(via several different methods) and stiffness control. Extensions to include advanced
redundancy resolution methods and obstacle avoidance during teleoperation would
be desirable. Similarly, user interfaces for continuum robots in general have not been
well studied. To enhance steerable needle-type applications, a controller that causes
the robot to approximately follow a planned deployment trajectory in the presence
of perturbations would also be valuable. Also, concentric tube robots have not yet
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been used in applications that require high bandwidth such as the cardiac motion
compensation studied by Kesner and Howe [36], but advancements are needed if
concentric tube robots are eventually to be applied in such settings.

Open Topics in Sensing The major challenge in equipping concentric tube robots
with diverse sensors is size. Even many MEMS force sensors remain too large once
the sensor’s housing is considered. One sensor that can be straightforwardly inte-
grated is the fiber Bragg grating. The recent interest in the robotic needle community
in these sensors appears likely to foreshadow their use in concentric tube robots in
the near future. Beyond this, a wide variety of other sensors would be useful if/when
they are sufficiently miniaturized to concentric tube robot size. The stiffness modula-
tion approach in [48] also provides tip force values based on robot deflection and the
desired stiffness behavior. Force sensing based on one dimensional beam bending of
the last tube/guide wire was implemented with an elliptic integral interpolation map
in [86], which showed that the interpolation method can speed up calculation and
offer interactive computation rates for telemanipulation assistance. Future studies are
needed to experimentally evaluate the influence of kinematic error on model-based
force estimation methods.

7 Conclusion

As can be seen from the review of the state of the art in this paper, as well as the
discussion of open questions, concentric tube robotics is a maturing field where
foundational models now exist, yet there remain many opportunities further research
and application in specific clinical interventions. Many such applications have been
suggested, but few have been explored in depth. Interestingly, simple concentric
tube devices were some of the earliest devices fabricated out of nitinol and were
brought to market in 1985, the same year the very first robotic surgery was done
with an industrial robot. With the development of robotic actuation, in the coming
years it will likely be feasible to introduce concentric tube robot products with much
greater capabilities, in both teleoperated settings and as steerable needles. Despite
the fact that they have the potential to become commercial products in the relatively
near term, concentric tube robots continue to be a rich source of design, modeling,
control, and sensing challenges for the research community. If solved, each of these
challenges has the potential to make the already good capabilities of these robots
even better, and extend their reach into continually more complex surgical scenarios.
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A Framework for Real-Time Multi-Contact
Multi-Body Dynamic Simulation

François Conti and Oussama Khatib

Abstract In this paper we propose a unified framework for the real-time dynamic
simulation and contact resolution of rigid articulated bodies. This work builds on
previous developments in the field of dynamic simulation, collision detection, contact
resolution, and operational space control. However, the key to efficiency and real-
time performance is a new parallel implementation of our collision detection and
contact resolution algorithm which decomposes the problem into tasks that can be
concurrently executed. Finally, the results and accuracy of our simulation models
are compared for the first time against recorded motions of real articulated bodies
colliding on a frictionless air floating table.

1 Introduction

Computer simulation is the use of a computer program or simulator to model the
time varying behavior of a natural system using an abstract model. Computer simu-
lations have become a useful part of mathematical modeling of many natural systems
in physics, astrophysics, chemistry and biology, human systems in economics, psy-
chology, social science, and engineering. The simulation of a system is represented as
the running of the system’s model; this can be used to explore and gain new insights
into new technology and to estimate the performance of systems too complex for
analytical solutions.

In the area of computer animation and dynamic simulation, Baraff [2] pioneered
some of the early models for rigid bodies that relied on the representation of physical
constraints. His work was later expanded to support more complex environments
such as deformable objects, and clothing simulation [3–7] (Fig. 1).

To address the problem of computational complexity when modeling articulated
objects with multiple degrees of freedom, Featherstone [15] proposed a new formu-
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Fig. 1 Simulators. These tools are used to analyze the behavior of a system in areas such as physics,
biology, chemistry, and engineering

lation that requires modeling only the true degrees of freedom of a system while
avoiding the expensive task of solving the internal constraints. An optimized version
of this approach was presented by Chang and Khatib [8]. Building on these founda-
tions, Ruspini and Khatib [22, 23] proposed a generalized contact space represen-
tation to efficiently model and solve both contacts and collisions between complex
articulated bodies in real-time. These new algorithms led to the development of an
early simulation framework (SAI) capable of simulating complex articulated systems
(e.g. humanoid robots) interacting in large virtual environments [18].

With the objective of further improving the computational speed of these simu-
lations, we present in this paper a new collision detection and distance computation
approach that greatly improves the speed and accuracy compared to previous works.
The key to efficiency relies on a new parallel implementation of our collision detec-
tion algorithm which decomposes the problem into tasks that can be concurrently
executed.

The rest of this paper is organized as follows. A review of the equations that
describe the motion of unconstrained generalized articulated systems is presented in
Sect. 2. Section3 introduces our new collision detection approach, while the problem
of contact resolution is addressed in Sect. 4. Finally, Sect. 5 evaluates the accuracy
of our framework by comparing the motion of real colliding bodies with simulated
models. These results are then compared with other simulation frameworks.

2 Dynamics

The configuration of a n degree-of-freedom articulated system can be expressed by q,
a set of n independent generalized coordinates that uniquely define the configuration
of the system relative to a reference frame. Although there may be many choices for
defining a set of generalized coordinates, these parameters are usually selected in a
way which makes the equations of motion easier to solve. If these parameters are
independent of one another, then the number of independent generalized coordinates
is defined by the number of degrees of freedom of the system (Fig. 2).
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Fig. 2 Collision resolution.
Contact interaction between
two articulated mechanisms

The equation of motion for a generalized system can be expressed as

Γ = A(q)q̈ + b(q, q̇) + g(q), (1)

where A(q) represents the mass matrix, b(q, q̇) the centrifugal and Coriolis vector,
g(q) the gravity-force vector, and Γ the generalized torque vector of the body.

Equation1 is solved for q̈ to simulate the dynamic behavior of an object using its
equation of motion.

q̈ = A−1(q)(Γ − b(q, q̇) − g(q)). (2)

In practice, the direct inversion of the mass matrix A(q) is computationally expen-
sive with a O(n3) asymptotic growth for a system composed of n degrees of freedom.
Direct methods for computing the inverse dynamic equations have been proposed
to reduce computational complexity. An example of such an approach is the algo-
rithm proposed by Featherstone [15]. In this method a recursion on the links of the

Fig. 3 Real-time simulation. Simulating in real-time the motion of articulated bodies in complex
environments. Amulti-frame operational space controller sends commands to the robots at 1000Hz
to control their posture and task
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Fig. 4 Deformablemodels. Simulating the dynamic behavior of a deformable object. Six degree-of-
freedom springs are used to model elongation, flexion, and torsion properties between the different
mass nodes that compose the skeleton of the object [11]

articulated system is used to find the corresponding acceleration vector q̈ for a given
generalized torque vector in O(n) time.

Although the simulator uses a numerical solutionwithout ever directlymatricesA,
A−1 or the link Jacobian J , it is understood that these terms can bewritten explicitly. It
must be noted, however, that the final solution does not require explicit computation
of these matrices. This computational simplification is of great significance, as the
results of this analysis are applicable to model any type of system of the form shown
in Eq.1 (Figs. 3 and 4).

3 Collision Detection

In this section we present an improved approach for detecting collision and comput-
ing distances between rigid polyhedral models. The new framework is designed for
parallel computing and has been implemented using the OpenMP and CUDATM par-
allel computing platforms. By distributing the computation on multiple processors,
this new collision detection framework has been shown to run significantly faster
compared to earlier frameworks that exploited the use of only single CPU threads.

The processing pipeline of our collision detection and distance computation
library is separated into three major phases: broad, narrow, and resolution. Each
phase has a specific task to solve and requires a different view of the participating
objects to be compared. In the following sections we review these different phases
and describe their implementation.

3.1 Broad Phase

The broad phase performs a coarse and quick verification to determine which of
the objects may potentially experience a collision at all, and produces a pair list of
possible collision partners. For fast assessments, simple bounding sphere structures
are used (See Fig. 5).
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Fig. 5 Broad phase. Every object is enclosed in a sphere. A sort and sweep algorithm (CPU) is
used to create a list of possible colliding candidates. The list is then forwarded to the narrow phase
(GPU) for further evaluation

The verification is achieved by sorting the lower bounds and upper bounds of the
bounding volume of each object along the axes x, y, and z. As the objects move,
their boundary limits may overlap. If the bounding volumes overlap in all axes, they
are marked to be tested in the narrow phase by a more precise and time consuming
algorithm.

If the collision detection process is performed continuously at regular small time
intervals, it is highly likely that the objects composing the environment do not move
significantly between two simulation steps, and therefore the sorted lists of bounding
volumes can be updated with a moderately small computational effort. Sorting algo-
rithms, such as insertion sort, are particularly effective at organizing almost-sorted
lists, and are therefore particularly effective for this task.

3.2 Narrow Phase

Upon receiving the collision pair list from the broad phase, the narrow phase searches
whether the two objects in each pair are colliding, or for their nearest distance.

Before computing the distance between two objects, we use their underlying
model to build a hierarchical bounding representation. The version of our algorithm
assumes that each object is composed uniquely of triangles. This assumption is not
fundamental and extending the approach to other representations is possible. The
bounding representation is based on a convex hull decomposition of the entire object.
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An extended GJK distance algorithm [16] is used to estimate the distance between
pairs of convex hulls.

Similar to other collision detection algorithms [14, 19], the bounding representa-
tion consists of an approximately balanced binary tree. Each node of the tree contains
the description of a single convex hull. The tree has the following two properties:
the union of all the leaf nodes completely contains the surface of the object, and the
convex hull at each node completely contains the convex hull representations of its
descendant leaf nodes.

The idea behind the bounding representation is as follows.The leaf nodes represent
the surface of the object. Interior nodes of the tree represent approximations of
descendant leaf nodes. One can use the convex hull at an interior node to determine
a lower bound for the distance to any of the descendant leaf nodes, and hence to
the object’s surface. Nodes that are close to the root of the tree represent many leaf
nodes, but at a coarser resolution. Conversely, nodes near the bottom of the tree
closely approximate the shape of the few leaf nodes below them. The tree represents
a hierarchical description of the entire object.

The first step to building the tree is to perform a convex hull decomposition of
the object. This problem has been extensively investigated [1, 9, 10, 20, 21] and is
known to have an output of size O(n2), where n is the number of triangles composing
the object.

These convex hulls compose the leaf nodes of the tree. To enable the search routine
to determine which convex components to compare, we label each convex hull with
child convex hulls for which it was created. A divide and conquer strategy is then
used to build the interior nodes of the tree. The set of leaf nodes is divided into
two approximately equal subsets. We build a tree for each of the subsets; these trees
are combined into a single tree by creating a new node with each of the subtrees as
children. The subtrees are built by recursively calling the same algorithm until the set
consists of a single leaf node. Each node has a convex hull representation that contains
all the convex hulls of the descendant leaf nodes and represents an approximation of
these leaves. The two children of the node are intended to represent a slightly more
accurate approximation of the same leaves.

To maximize the improvement of the approximation, we attempt to split a set of
leaf nodes into two subsets so that the bounding volume for each subset becomes as
small as possible. Unfortunately there are many ways to split a set of primitives into
two groups, and selecting the optimal division remains an open research problem.
In our implementation we compute the covariance matrix of the convex hull and
search for the maximum spread direction, which becomes the splitting axis. From
this point we divide the leaf nodes using the average value along this axis as the
discriminant. Each of the resulting two subsets should be rather compact and contain
approximately equal numbers of elements. After dividing the set into two subsets, we
build trees for each subset by recursively invoking the algorithm, and then creating
a new node with the two subtrees as children.
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3.3 Determining Contact Points

To compute the exact distance between two objects, we need to identify a pair of
points, one on each object, such that the distance between the points is less than or
equal to the distance between any other pair.

We estimate the distance between the two objects by finding a pair of triangles
such that the distance between the triangles is less than or equal to the distance
between any other pair. The distance between triangles is computed using a convex
distance algorithm.Anoverviewof our algorithm to compute the distance, d, between
objects operates as follows. We initially set d to infinity. The search routine attempts
to show that the objects are within at least a distance d apart. Suppose the search
finds two polygons from the underlying model that are less than d of each other; for
the initial value of d this is not difficult. If the triangles intersect, then we know that
the distance between the two objects is zero and we are done. Otherwise, we set d to
the distance between the two triangles and continue the search with the new value of
d. Eventually, the search shows either that the objects are a distance d apart or that
the objects intersect.

The key to the algorithm is to be able to show the twoobjects arewithin a distance d
from each other without examining all possible pairs of triangles. Since each triangle
is part of a convex hull and enclosed by a set of leaf nodes in the bounding tree, we
need only examine pairs of convex hulls for which a corresponding pair of leaf
convex hulls are within less than a distance d from each other. Of course, if we had
to examine all possible pairs of leaf nodes, then we would gain nothing, however,
the hierarchical structure of the bounding tree enables us to avoid this situation.

The search routine finds pairs of leaf nodes that are less than a distance d apart.
The search examines pairs of nodes in a depth-first manner starting with the root
nodes of the two trees. If the distance between the nodes convex hulls is greater or
equal to the current value of d, then, from the structure of the bounding trees, we
know the distance between the two sets of descendant leaf hulls is greater than or
equal to d and can thus be ignored. If the two nodes are less than d apart, we must
further examine the children of the nodes. The distance between two convex hulls
can be computed using one of the many available distance algorithms for convex
objects. If the distance between the two lead nodes is less than d, then we have found
a new minimum. If the distance is zero, i.e. the triangles intersect, then we know the
distance between the objects is zero and the search need not continue. Otherwise,
we set d to the new distance and continue the search (Fig. 6).

3.4 Implementation and Execution Time

The first stage of our collision detection algorithm occurs entirely at the CPU level
and leads to a list of potential candidates that require further investigation. Each
pair is then assigned to an individual GPU thread, which evaluates the distance. The
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Fig. 6 Peg-in-hole assembly. The assembly task is manually performed using a six degree-of-
freedom haptic device. The nearest points between the two objects are highlighted in red and are
used to model the constraints between the parts

Table 1 Collision detection performance

Part description Number of
polygons

Average query time (ms)
(CPU + GPU)

Average query time (ms)
(CPU only)

Balance staff bearing 1,230 0.622 9.121

Click 4,420 1.823 22.112

Train bridge 5,221 2.928 33.276

Center wheel 11,220 1.853 31.163

Pallet bridge 13,441 4.121 65.201

Balance wheel 27,822 3.646 58.994

Ratchet wheel 55,420 3.435 55.103

This table compares the query times for single parts between the CPU and GPU versions of the
collision detector. All times were recorded in milliseconds

distances between nodes is computed by traversing the collision tree as described
in the previous section. The algorithm used to evaluate the distance between two
convex hulls is derived from the algorithm developed by Gilbert et al. [16] and was
implemented using the CUDATM framework. The open source library QHULL was
used to perform convex hull computations. Once the collision data is computed for
each pair of objects, the information is merged on a single CPU thread and handed
over to the contact solver.

For performance comparison, we created a scene containing 71 mechanical parts
(see Table1) each of which was composed of between 2,800 and 56,000 triangles.
The experiment consisted of having an operator assemble a selection of parts using a
six degree-of-freedom haptic device. During the experiment, all 71 parts were active
in the simulation at all times. The collision detection process was shared between
the GPU and CPU, while the trajectories of every part were recorded to disc during
the simulation. After the experiment was completed, a CPU version of our collision
detector was tested over the recorded trajectories for comparison. The evaluation was
performed using a six core 3.9GHz Intel Core i7-3960X using an Nvidia GeForce
GTX680 graphic card. Timings were measured in milliseconds.
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Fig. 7 Virtual assembly. Our framework was evaluated by haptically assembling a virtual model
of a mechanical wrist watch. The model was composed of 71 mechanical parts with a total polygon
count of 1.4 million. The user could manipulate in real-time any component of the mechanism using
an active seven degree-of-freedom sigma.7 haptic device. Through the haptic device, the user felt
the interaction forces and constraints between the different parts

Results obtained for this particular 3D model demonstrate that the GPU version
of the collision detector can operate 10–15x faster compared to the CPU version. It
must be noted that the same experiments performed with smaller number of parts
(<5) would perform faster on a CPU version alone due to the reduced overhead
(Fig. 7).

4 Contact Resolution

When a collision occurs between two bodies, a set of contact points is reported by
the collision detector. The contact space parameters associated with these points will
generally not be independent, e.g. four legged table resting on a flat surface. For
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Fig. 8 System overview. The broad phase of the collision detection runs on the CPU and leads to a
list of potential candidates that require further investigation. Upon receiving the collision pair list,
the narrow phase operates on the GPU searching whether the two objects in each pair are colliding,
or for their nearest distance. The collision results are returned to the CPU where contact resolution
and dynamics are computed

this reason two sets of contact space parameters x and x⊕ are defined. Vector x⊕
consists of the full set of contact space parameters (one per contact point). A subset
of the contact parameters x ⊆ x⊕ is defined and contains only the minimum active
contact points of the entire contact space. A contact point is considered active if the
force or impulse applied at the contact point is non-zero. It is important to note that
this classification is unknown when the collision detector reports the list of contact
points, but is identified later (Fig. 8).

From the algorithm proposed by Ruspini and Khatib [23], a selection matrix S
such that x = Sx⊕ selects the members of x⊕ that belong to x. Given these spaces
we can define other parameters for velocity v⊕ = ẋ⊕, acceleration a⊕ = ẍ⊕, forces
f⊕ = Sf , and impulses p⊕ = Sp. At the time of contact/collision t, s⊕ = 0, and a
Jacobian v⊕ = J⊕q̇ can be found. Furthermore, the augmented operational contact
inertia matrix can be defined as follows:

Λ⊕−1 = J⊕A−1J⊕T . (3)
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This matrix is very similar to the operational space inertia matrix used in robotic
control [17], and represents the effective mass perceived at all the contact points and
characterizes the dynamic relationships between the contact points. Being composed
from a set of independent contact parameters, the inverse active contact space inertia
matrix

Λ−1 = SΛ⊕−1ST (4)

is positive definite and therefore invertible.
If two or more bodies in the system are colliding, then some elements of v⊕

are negative. In a system of rigid bodies an impulse must be applied to prevent the
objects from interpenetrating. Since the nature of the deformations that occurs during
a real collision are quite complex, several analytical methods have been proposed to
compute the needed impulse forces. Here we will examine one of the most common
models for rigid body collision. This framework is sufficiently general to allow other
contact models to be used.

A common empirical model is to require that for each active contact point, the
velocity after the collision must be−ε times the relative velocity of the contact point
prior to the collision, where ε is a known coefficient of restitution. This constraint
can be written as:

v+ = −εv−, (5)

where v− and v+ are the relative velocity vectors of the contacts before and after
the collision. The above constraint describes only the behavior of the active contact
points. At these points the impulse force must be greater than zero:

p > 0. (6)

Lastly, an additional constraint is required to constrain themotion at all the contact
points:

v+ � −εv−. (7)

The active contact points satisfy this constraint by default. The constraint requires
that if a contact force is inactive (contact impulse force is zero), then the relative
velocity at the contact point must be at least as large as it would be if the point were
active. The zero impulse force requirement on the non-active contact points can be
achieved by defining

p⊕ = ST p (8)

Deriving the impulse constraint equations is covered in detail in [23] and is sum-
marized here:

p⊕TΛ−1
⊕ p⊕ + (1 + ε)pT

⊕J⊕q− = 0, p⊕ � 0,Λ−1
⊕ p⊕ � −(1 + ε)j⊕q− (9)

The resulting system of equations can be solved using a quadratic programming
package. Once a solution of the augmented contact space impulse vector P⊕ has been
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found, it is easy to compute the vector of active contact parameters and the selection
matrix S. The non-zero terms of p⊕ form the active set of contact points p. The post
collision in configuration space velocities q̇+ created by a contact space impulse p
is given by

q̇+ = q̇− + �q̇ = q̇− + A−1JT p, (10)

and the integration of the equations of motion continue from this updated state.

5 Experimental Results

To evaluate the performance and correctness of this framework, we developed an
air table to record the motion of articulated bodies moving and colliding freely on a
frictionless plane. The table integrates a smooth surface perforated by miniature air
holes placed along a grid pattern at 25mm intervals with dimensions of 180cm ×
100cm. A high air flow and high static pressure fan (San Ace 172 from Sanyo) was
used to create a cushion of air sufficient to lift the objects.

To measure the location and speed of the objects floating on the table, we used
a high resolution tracking camera (Optitrack Flex 13 from Naturalpoint) to track
their position and orientation. This camera offers a resolution of 1280× 1024 pixels
with a frame rate of 120Hz. The location of each object on the table was estimated
by tracking the position of a set of reflective markers attached to each object. The
software library provided with the tracking device offered the means to identify each
marker location, its size, and roundness using proprietary imaging techniques running
in real-time. The linear and angular velocities of each object were then derived by
measuring the displacements of the different markers at regular time intervals.

The circular discs used for this experiment were constructed from acrylic. This
material was selected for its higher coefficient of restitution (εmeasured = 0.87) and
lower coefficient of friction. Each disc weighed 35g with a diameter of 100mm.
The discs were either used alone (unjointed configuration) or connected in groups
of three using a pair of articulated links (jointed configuration) (Fig. 9).

Fig. 9 Experimental air table. (Left) A selection of jointed and unjointed discs placed on our
experimental air table. (Right) A virtual representation of a linked object used in our simulation
framework
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In the jointed configuration, the discs were connected using a rigid shaft made of
carbon fiber. A second shaft would connect the third disk to the first link through a
free revolute joint. A high precision ball bearing was used to reduce joint friction to
negligible levels.

A series of experiments were conducted by having the objects collide against each
other or against the edges of the air table. During each experiment the camera would
track their motion and compute their linear and angular velocities.

The objective of the experiment was to measure the linear and angular veloci-
ties before and after impact, and to compare these results with simulated velocities
computed after impact given some initial conditions measured before impact. To
also compare the performances of our simulation framework with other simulation
libraries, we performed the same experiments using threewell-known and commonly
used simulation frameworks namely, ODE [24], Bullet [12], and Moby [13].

For the purpose of our simulations, each disc was modeled using a polygonal
representation composed of 720 triangles. To model the properties of the table, the
virtual discs were constrained to a two-dimensional frictionless plane, while the
(optional) articulated links weremodeled as constraints between the discs. Collisions
were computed between the different bodies and the edges of the air table, and the
integration time step for all simulations was set to 0.1ms.

The results of our physical experiments are presented in the following sections
for unjointed and jointed configurations. At the beginning of each experiment, the
objects were placed on the air-flow enabled table. The operator provided a short
impulse by hand to drive the objects toward a target direction where the collisions
would occur. During this time live images were acquired by the tracker in real time
while the position of eachmarkerwas extracted from the imaging data and recorded to
memory. From the recorded data, the velocitieswere estimated at every time step. The
time of each impact was identified by evaluating the shape of the recorded trajectories
and by searching for sudden velocity changes. Once these conditions were identified,
themeasured data was programmed into the simulator to configure the virtual models
with the same conditions as in the real experiment shortly before impact. From that
point on, the simulator integrated the scene over a short time interval until the first
collision occurred; at that point the new velocities were estimated for each body.
These new output velocities were then compared against the recorded values and the
relative error estimated for each simulator. The physical properties of each object
(mass, inertia, and center of mass) were estimated directly from the CAD models
developed for the experiment.

5.1 Experiment: Collisions with Free Bodies

In our first experiment three discs were simultaneously propelled on the surface of
our air table at velocities ranging from 0.2–0.5m/s. The trajectories were recorded
for the three discs and their first collision with an edge of the table or another disc
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identified.Their respective linear and angular velocitiesweremeasured shortly before
and after impact. In the tables presented in Table2 we compare the velocity values
after impact and display the results for the measured and simulated systems. For
unjointed bodies, we observed that the simulated linear velocities remained within a
relative error range of 12% compared to the measured values. These disparities are
consistent given the limited accuracy of the tracking device, the error of the estimated
coefficient of restitution, and the unaccounted for friction effects between the surfaces
of the objects. Furthermore, additional experiments showed a high sensitivity in
the estimated angular velocity when lower resolution polygonal models were used
to estimate collisions. These disparities come from the discretization of a curved
continuous surface into a finite set of polygons. The differences between the different
simulators were also caused by the uneven accuracy of the collision algorithms
reporting slightly different values for the time and location of the collision impact.

Table 2 Experiment using unjointed discs

System Linear velocity
(m/s)

Relative error (%) Angular velocity
(rad/s)

Relative error (%)

Measured 0.221 – 0.184 –

Stanford 0.231 4.5 0.176 4.3

ODE 0.243 9.9 0.168 8.7

Bullet 0.239 8.1 0.171 7.0

Moby 0.216 2.2 0.177 3.8

System Linear velocity
(m/s)

Relative error (%) Angular velocity
(rad/s)

Relative error (%)

Measured 0.388 – 4.41 –

Stanford 0.346 10.8 4.07 7.7

ODE 0.448 15.4 4.94 12.0

Bullet 0.432 11.3 4.85 9.9

Moby 0.362 6.7 4.02 8.8

(continued)
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Table 2 (continued)

System Linear velocity
(m/s)

Relative error (%) Angular velocity
(rad/s)

Relative error (%)

Measured 0.442 – 0.72 –

Stanford 0.410 7.2 0.78 8.3

ODE 0.512 15.8 0.64 11.1

Bullet 0.488 10.4 0.68 5.5

Moby 0.421 4.7 0.77 6.9

Measured and simulated velocities for three different collisions immediately after impact

5.2 Experiment: Collisions with Articulated Bodies

In this second experiment we evaluated our contact model using the articulated
system composed of three discs presented above. Similar to the first experiment,
the articulated system is manually propelled on the surface of our air table with a
linear velocity ranging from 0.2–0.5m/s. The trajectories were recorded for each
disc, and the first collision between one of the discs and an edge of the table was
identified. In this experiment we observed how the collision impact affected the
motion of the opposite link. For comparison purposes, we estimated the joint angle
q (see Table3) and derived the angular velocity q̇ immediately before and after
impact. For the jointed configurationweobserved amuch larger disparity between the
different simulators. This greater disparity was likely caused by the uneven accuracy
of the different collision algorithms as reported in the first experiment. However,
the more accurate results observed with our proposed simulation framework lead
us to conclude that the combination of Featherstone’s approach [15] with Ruspini’s
contact resolution algorithm offers a more accurate way to model collisions between
complex articulated body systems.
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Table 3 Experiment using jointed discs

System Joint velocity (q̇) (rad/s) Relative error (%)

Measured 0.721 –

Stanford 0.654 9.2

ODE 0.489 32.2

Bullet 0.520 27.8

Moby 0.636 11.8

System Joint velocity (q̇) (rad/s) Relative error (%)

Measured 2.441 –

Stanford 2.136 12.5

ODE 1.743 28.6

Bullet 1.986 18.6

Moby 2.108 13.6

The object is composed of two links connected through a free revolute joint. The table presents the
measured and simulated joint velocity after impact

6 Conclusion

In this work we introduced a unified framework that permits the dynamic compu-
tation and contact resolution of complex articulated multi-body systems with real-
time performances. A parallel numerical method was proposed for efficient collision
detection. The results obtained with the proposed method demonstrate that the new
GPU version of the collision detector operates about 10–15 times faster than the
earlier CPU version. Furthermore, to validate our dynamic models, we evaluated the
proposed simulation framework by comparing simulated models against recorded
motions of real articulated bodies colliding on a frictionless air-table. Initial exper-
imental results showed that for either jointed or unjointed mechanical systems, the
error rate between the simulated and actual measured velocities was contained within
a 15% error margin. Future work will include further understanding the degree of
accuracy of our models when many collisions occur simultaneously. New collision
models will also be developed to simulate objects of different kinematics, material
stiffness, and friction properties. We also plan to further refine our experimental air
table by using camera devices that offer higher resolution images with faster acquisi-
tion times. Finally, our research has mostly focused on rigid articulated bodies. The
ability to model and interact with deformable models is also of great interest, in par-
ticular in the areas of surgery planning and simulation. To achieve these goals, new
dynamic models and collision detection algorithms for deformable models will need
to be developed tomeet the real-time requirements of interactive dynamic simulation,
but without introducing significant approximations or simplifications.
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Constructive Developmental Science:
A Trans-Disciplinary Approach Toward
the Fundamentals of Human Cognitive
Development and Its Disorders, Centered
Around Fetus Simulation

Yasuo Kuniyoshi

Abstract How does human mind develop? What causes developmental disorders?
Recent studies suggest the importance of the fetal period in human development.
However, study of human fetuses is strongly constrained by technical and ethical
difficulties. This project aims at understanding the principles of human development
by analyzing and modeling it from the fetal period. Integrating robotics, medicine,
psychology, neuroscience, and Tohjisha-kenkyu (first-person view research of devel-
opmental disorders), we establish a new trans-disciplinary research field called Con-
structive Developmental Science. Its contributions include a new understanding of
human development and its disorders, comprehensive diagnostic methodologies, and
truly appropriate assistive technology.

1 Introduction

Aquest for the constructive principles of intelligent systems for truly adaptive behav-
ior in the real world has gone through piece-wise cognitive modeling and learning
mechanism studies and has recently started to address the continuous developmental
process of human cognition from the very beginning via the complex interactions
between body, environment and nervous system [19].

In medical studies of developmental disorders, the main focus has been on iden-
tification of genetic correlates. But recently the importance of the environmental
factors from the perinatal period has been recognized [8], and a growing number
of reports [11, 15, 17] point out the risk factors of preterm infants who experience
abbreviated gestational periods and correlation of abnormal neonatal motor patterns
to later developmental disorders. Therefore understanding the fetal/neonatal devel-
opment has become an urgent and important issue.

In 2012, a five-year project “Constructive Developmental Science”, led by Yasuo
Kuniyoshi, supported by MEXT Grant-in-Aid for Scientific Research on Innovative
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Areas with total funding of 1.1 billion yen, was launched in Japan. It addresses the
above described convergent focus of study, i.e. human development from the fetal
period and its relationship to developmental disorders, by truly trans-disciplinary
collaboration between roboticists, cognitive/neuro-scientists, medical scientists and
Tojisha-Kenkyu (first person view study of developmental disorders).

2 Organization of Constructive Developmental Science

Figure1 shows an overview of the organization and aims of Constructive Develop-
mental Science.

Tojisha-Kenkyu (C) undertakes a phenomenological or internal observer investi-
gation of developmental disorders and propose hypotheses to be shared by all project
members. Already, they have proposed that the essential characteristic of autism
spectrum disorders (ASD) may not be the impairment of social cognition, as com-
monly assumed so far, but the difficulty of information integration starting at the
level of bodily sensations. They are also working on the advanced methodologies of
Tojisha-Kenkyu as well as development of novel assistive technologies for people
with developmental disorders.

Fig. 1 Organization and aims of “Constructive Developmental Science”
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One of the two groups in Human Science (B) is the medical group (B01) cover-
ing obstetrics/gynecology, pediatrics and psychiatrics. They undertake a systematic
continuous observation andmeasurements of early human development starting from
fetal period to 3-year-old until the diagnosis of developmental disorders can bemade.
The other group consists of cognitive scientists (B02). They will focus on how bodily
sensation and social cognition are related in early human development.

Constructive approach (A), consisting of roboticists and neuroscientists etc. plays
an integrative role, based on the shared hypothesis from Tojisha-Kenkyu and data
from Human Sciences, construct simulation/robotic models of continuous human
development and conduct experiments. Group A01 constructs a simulation model of
fetal/neonatal development which plays a core role in establishing a working inte-
gration of data and theories from other groups. Group A02 models infant-caregiver
interactions and develop novel assistive technologies based on the findings.

In the following sections, after reviewing the trends and the state of the art of devel-
opmental science, recent progress of simulation study of human fetal development
is presented, with discussions about future steps and open problems.

3 Developmental Sciences Converging on Fetal
Development

Humanmind and behavior emerge from the complex interactions between the genes,
body, nervous system and various environments from uterus to the real world with
physical/social/cultural structures (Fig. 2), and continuously change over the life-
time [27].

Fig. 2 Complex interaction between genes, body, nervous system and various environments
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Thus a reductionist approach is insufficient for one to fully comprehend the nature
of human development and its disorders. Rather, it is necessary to investigate the
entire structure of total interactions and the principles of their change.

The changes of the interactions are caused by the interactions themselves. Thus
it is a continuous boot-strap process. Understanding such a process requires starting
from the genesis of the interactions and revealing the logic of their changes.

Individual developments follow different trajectories while converging from time
to time on certain capabilities like crawling, walking, speaking at certain ages. Some
trajectories deviate from the typical group, often regarded as “disorders"at certain
timings exhibiting different capabilities, and some of such trajectories can later con-
verge with the typical ones (Fig. 3). Understanding this global dynamical structure,
being able to account for individual trajectories as well as the global convergence
structures, is the ultimate goal of developmental science.

Constructive developmental approach [2, 18, 21] attempts to reveal the principles
of development by re-constructing the total continuous development of the interac-
tions from their genesis.

A constructive approach, first used in the field of complex systems science, con-
sists of the following steps; (1) Abduction: set a hypothetical generating principle,
(2) Simulate: embed the principle in its environment and start the dynamics,
(3) Observe & Feedback: observe the resulting behavior, compare with the target
of investigation, and modify the generating principle based on the error. Continue
the cycle until the error minimizes (Fig. 4).

In the field of developmental cognitive robotics [3, 18, 20], although learning
models for isolated cognitive functions have been proposed, a model which unifies
them into a working principle of continuous development is yet to be proposed.

Fig. 3 Global structure of
developmental trajectories.
Each curved line represent
individual developmental
pathway. Rectangles
represent typical functional
convergences and atypical
symptoms

millitsa@ece.neu.edu



Constructive Developmental Science: A Trans-Disciplinary… 295

Fig. 4 Methodology of
Constructive Developmental
Science
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Kuniyoshi et al. [19, 21] proposed the world’s first computer simulation of a
human fetus consisting of the body, nervous system and environment (Fig. 5 right),
and demonstrated that a connection between the subcortical nervous system and
the dynamics of the body and environment causes the emergence of a variety of
natural motor behaviors. And the sensory-motor information generated by these
motor behaviors drives self-organization of cortical maps. Thus, Kuniyoshi et al.
substantiated the role of the physical body in the development of the human brain,
the “Body Shapes Brain” principle, by the constructive approach.

In developmental psychology, neuroscience and medicine (i.e. obstetrics/
gynecology and pediatrics), recent advances in measurement and experimental
methodologies evoked rapid growth in our knowledge of fetal and infant motor and

Fig. 5 “4D” image (left, courtesy of Prof. Konishi, Doshisha Univ.) and a simulation model (right)
of a of a human fetus
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brain development, sensory-motor responses and learning abilities. For example, the
now highly popular real-time 3D ultra-sound imaging (also called 4D ultrasound)
enables the detailed visualization of fetal movements and even changes in facial
expressions (Fig. 5 left). And fetal brain imaging (MRI) is carried out at a scale of
thousands.

Recent medical research has focused on the identification of genetic correlates
of developmental disorders, especially Autism Spectrum Disorder (ASD), Attention
Deficit Hyperactivity Disorder (ADHD) and Learning Disability (LD). However,
recently it has been pointed out that identification of genes falls short of providing
full explanations about human developmental disorders; rather, detailed investigation
of environmental factors is necessary [8].

Recent cohort studies report that abnormalities in the perinatal environment aswell
as the abbreviation of gestational periods as experienced by preterm infants correlate
with higher risks of developmental disorders [11, 15, 17]. Multiple research fields
seek to understand the relationship between perinatal environmental interaction and
human development.

In Japan, a unique systematic research methodology called Tojisha-kenkyu (first
person view, peer-supported research) is evolving from mere autobiographic notes
also seen in other countries. It provides novel scientific hypotheses based on internal
observer view of developmental disorders as experienced by the researchers them-
selves [4].

One study states that ASD as experienced first-person is not simply “an impair-
ment of social cognition” as conventionally defined, but is rather “peculiarities of
somatic sensations” and “difficulties of integrating information”.

To summarize, there is a consensus between basic human sciences and the con-
structive approach that environmental interactions during the perinatal period are
crucial in human development, and to our advantage, advanced technology for mea-
surements and experiments in this key period is at our disposal. And Tojisha-kenkyu
is also focusing on the foundation of cognition preceding sociality. Thus the time is
ripe to redefine the field of developmental science via trans-disciplinary collabora-
tions.

4 Computer Simulation of Early Human Development

Advances in imaging technology such as ultrasound has allowed us to confirm that
prenatal human fetuses are in fact moving quite actively while developing inside the
uterus, and even exhibit learning abilities.

By computer simulating this active developmental processes, we attempt to reveal
the core principles of development and also how environmental factors affect the
processes.
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OSC

Fig. 6 Central/peripheral nervous system model. Broken arrows denote learning connections.
S1:primary somatosensory area, M1: primary motor area, OSC: neural oscillator, S0: spinal sen-
sory neuron, α: spinal α motor neuron, γ : spinal γ motor neuron, spindle: muscle spindle, tendon:
Golgi tendon organ. In experiments using tactile sensation, tactile receptors are accommodated and
connected to OSC and α with learning connections

As a platform for conducting the simulation, we developed a unified model of
the human fetus/infant consisting of musculoskeletal body structure, sensory organs
and (partial) nervous system (Fig. 6) placed inside a simulated uterine environment
[19, 23].

4.1 Fetus and Infant Model

We conducted a thorough survey of anatomical literature and also collected phys-
iological data from medical and biological research institutions to determine the
structure and parameters of 198 main skeletal muscles as well as muscle spindles
and Golgi tendon organs comprising the proprioception, along with the dimensions
of each body part such as its length, mass and inertia in order to reproduce a realistic
human fetus/infant body model (Fig. 5). The body parameters can be set according
to a desired gestational age (in weeks), in order to simulate the continuous physical
growth of a human fetus.

About 1500 tactile receptors are distributed over the surface of the body, enabling
the simulation of self-contact, contact with the uterine wall and resistance due to
amniotic fluid if inside the uterus and self-contact and contact with the wall and
ground if outside the uterus.

In order to assess whether differences in perinatal sensory experience affect devel-
opment, we distribute the tactile receptors in three different ways: (1) human-like
(with regard to two-point discrimination thresholds), (2) uniformly over the entire
body and (3) inverse human-like (Fig. 7).
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Fig. 7 Tactile receptor distribution. Left: human-like. Right: uniform

Vision is also incorporated to assess the role of multimodal sensory integration in
development.

4.2 Simulating the Development of Human Fetus and Infant

Human fetalmotor development is divided into 16 sequential temporal phases accord-
ing to de Vries et al. [6]. Connection between the fetus’ neocortex and the spinal cord
has been confirmed at the earliest in the 16th gestational week in humans. Prior to
that, spontaneous primitive motor behaviors known as General Movements (GMs)
are observed.

GMs are driven by neural oscillators in spinal and brainstem circuitries and gener-
atewhole-bodymotor behavior.Our hypothesis is that they promote self-organization
in neuronal connectivity resulting in developmental changes of motor behaviors.
Therefore, sensory-motor experiences in the fetal period may have wide conse-
quences in development.

Assuming intrauterine sensory experience is dominated by somatosensation,
motor developmentwas compared for the three different distributions of tactile recep-
tors described above (Fig. 7).

In these experiments, tactile sensory inputs are connected to the neural oscillators
and alpha motor neurons in the spinal circuitry, in addition to the proprioceptive
reflex circuits. The cortical models (S1, M1) are dissociated because the target of
simulation is the period before the cortico-spinal connections start to function.

For each condition, the fetus simulation underwent a separate learning phase in
the simulated intra-uterine environment, followed by an observation phase during
which motor behavior was measured for analysis.

Our analysis shows that if and only if tactile receptors are distributed in human-
like pattern (Fig. 8 left) do isolated limb movements (sudden arm or leg movements)
and hand-to-face contacts persistently increase in qualitatively similar patterns as
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Fig. 8 Occurrence trend of independent (jerky) arm motion. Left: with human-like tactile distrib-
ution, comparable to, Center: human fetus data, but different from Right: uniform distribution. The
center graph is adopted from Fig.11 of de Vries et al. 1985 [7]

Fig. 9 Topographic body
map of right M1⇒ α at t =
12,000s

Leg

Trunk Neck

Arm

observed in human fetal development [7]. Such patterns collapse if tactile receptors
are not distributed according to human physiology (Fig. 8 right) [23].

In addition, we simulated fetal and infant development during the perinatal period
using the full version of the nervous system incorporating the self organizing neural
network models of the primary somatosensory area and primary motor area of the
human cerebral cortex (Fig. 6).

Analysis of the post-learning cortical network confirmed that a topographic map
representing the body parts was self-organized (Fig. 9). Such cortical representations
may be precursors to body schema and motor representations.

The above results suggest the following developmental principle: The information
structure inherent in embodiment is manifested via body movements driven by the
subcortical nervous system, into the behavior patterns and sensory-motor information
structures, which are reflected in the self-organization of the central nervous system.

Another important account is that, through experimentation, factors which may
or may not cause macroscopic effects on development can be differentiated. We have
also shown ([23]) the possibility that some innate reflexive motor behaviors may be
acquired via prenatal motor learning.
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4.3 Towards Body Schema and Social Cognition

Recently, we have made the following research progress:

1. Demonstration of the importance of amniotic fluid presence in cortical
somatosensory map formation [26].

2. In a series of simulation experiments where parameters controlling the fetal envi-
ronment, fetal motility, and nervous system are each altered, we found that abnor-
malities in the body representation in the cortical somatosensory area occurs.
The abnormal conditions correspond to the following known characteristics of
preterm infants; Early exposure to the extra-uterine environment, reduced com-
plexity/variety of motor behavior, and abnormal excitation/inhibition balance of
the cortical neural network [29].

3. With respect to multisensory integration, fetal experiences give rise to bi-modal
neurons which integrate proprioception and vision of the hand [10].

4. Imitation of facial expressions by infants, which leads to social awareness, can
be explained by development of superior colliculus during the fetal period [25].

5. G. Taga’s team in our group A01 established correlations between GM features
of preterm infants at term age and developmental delays at age 3 [16].

6. T. Inui in our group A01 proposed a unified framework of development and
disorders of a cortical network related to social cognition [12]. Based on the
cortical network abnormalities, an etiology of Williams syndrome and ASD is
proposed, with accounts for their various symptoms.

All the above findings account for the relevance of very early development to
later cognitive capabilities. Result 5 establishes that early motor behavior is relevant
to developmental delays measured three years later. This suggests that early motor
behavior and later cognitive capabilities share a common basis.

The findings 1–4 above suggest relevance of insufficient intra-uterine sensory-
motor experiences to increased risks of developmental disorderswith preterm infants.
They also implicate that complications in the uterine environment such as due to
fibroids may also affect early development. Such hypotheses can be substantiated by
constructive approach altering environmental and temporal parameters in the fetal
development simulation.

4.4 Open Problems

Although the current fetus and infant simulation model is drastically simplified com-
pared to real human babies, the experiments using themodel can capture some essen-
tial characteristics of early development, providing invaluable means for understand-
ing the fundamental principles.

Our approach provides plausible causal explanations on how some fetal/perinatal
environmental/bodily/neural factors may lead to developmental disorders. It has the
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potential to deepen our understanding of the principles of human development as
well as to improve the diagnosis and selection of proper clinical care for patients
with developmental disorders.

Several important open issues must be addressed if our approach is to truly con-
tribute to the understanding of developmental disorders.

First, the temporal period which can be simulated must be largely extended to
cover up to the three-year old threshold when medical diagnoses for developmental
disorders are usually confirmed.

Although it is no simple task, our current goal is to construct a continuous devel-
opmental model which covers from prenatal to infant (one-year old) periods in order
to understand which factors contribute to the formation of the first foundation of
human cognition.

In order to connect the infant model to the three-year-old, existing (and evolving)
developmental models of higher cognitive functions from fields such as develop-
mental cognitive robotics and developmental cognitive neurosciences [14] can be
integrated to account for how the infant cognition develops to acquire social cogni-
tion or fails to do so.

5 Conclusions

Our project is the world’s first endeavor to construct a simulation of continuous
human development from fetus to infant in terms of continuous complex interac-
tions between body, environment and nervous system, and make comprehensive
comparisons with clinical data, guided and evaluated by first-person observations
and hypotheses by Tojisha-Kenkyu, attempting to establish a deep unified under-
standing of developmental principles and disorders.

There are many existing research on large-scale simulations of the nervous sys-
tem such as the Blue Brain project [22], now evolved into Human Brain Project
(HBP) [28], among others [1, 9, 13]. Modeling and simulation of human muscu-
loskeletal system is also an established field ([24] and others). However, there are no
other simulations in the world which allow continuous development while interac-
tions taking place between the nervous system, whole body and environment.

There is also significant recent progress in modeling human cognitive develop-
ment, but the majority of research has focused on postnatal acquisition of isolated
cognitive functions. Our group is unique in that we model cognitive development
beginning in the prenatal fetal period.

In medical sciences, while tremendous progress has been made in imaging tech-
nologies, there are severe limitations to physiological experimentation on human
fetuses in terms of experimental techniques as well as ethical considerations.

A constructive approach to developmental science which combines clinical obser-
vation and computer simulation provides an entirely new approach to the investiga-
tion of fetal development and can be expected to benefit in the comprehensive clinical
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diagnosis and care of individuals with developmental disorders; the approach may
be called “Simulation-Based Medicine”.

Also, by having the models and findings evaluated under the scrutiny of medicine
and by focusing our efforts in ensuring that data precision and reliability meet the
standards of modern clinical research, we aim to solidify the rising potential of the
emerging field of Constructive Developmental Science [5].
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Personalizing Intelligent Systems and Robots
with Human Motion Data

Gentiane Venture, Ritta Baddoura, Yuta Kawashima, Noritaka Kawashima
and Takumi Yabuki

Abstract According to Merhabian, more than 90% of human-human communica-
tion is non-verbal when expressing affects and attitudes. Further studies have shown
that a large proportion of non-verbal communication can be attributed to posture and
to gesture. They communicate information about action: intent, meaning, as well as
information about internal states such as affects. Emotional understanding is a key
for satisfying and successful interaction between two or more humans, it must also
be true for human-robot interaction. In this paper we explore the importance of non
verbal information and communication, typically motion data, and how it can be
used to develop and to personalize intelligent systems and robots. First, we present
and discuss our findings on the strong correlation between what humans feel during
an unannounced interaction with a humanoid robot and their movements and atti-
tudes. Then, we propose a framework that uses not only the kinematics information
of movements but also the dynamics. We use the direct measure of the dynamics
when available. If not we propose to compute the dynamics from the kinematics,
and use it to understand human motions. Finally, we discuss some developments and
concrete applications in the field of health care and HRI.
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1 Background and Motivations

Robots and intelligent agents gradually appear in our society and examples of their
presence in homes [20], schools [24], care centers [10], hospitals [5, 43], factories
[23] and museums [7, 11] though increasing, are still new for most of us. The variety
in robots: Roomba, SAYA, Paro, NAO, Baxter, Tinker, RHINO... (from the above
cited articles to name a few), in humans and in possible encounters: with or without
direct physical interaction, with or without verbal directives... make the study of
human robot interaction (HRI) complex and always particular. At the same time HRI
studies and HRI processes understanding are more expressly needed to understand
what is orwhatwill be the relationship betweenhumans and robots [45]. It is of crucial
importance to understand what can guaranty successful interactions between us and
an intelligent agent. What can guaranty continuous engagement and satisfaction
of users? How much information can we collect with non-verbal communication?
We usually don’t ask directly our friends or family if they are happy, we just can
read it from their behavior. The same if they are sad, tired or scared. If we want to
use intelligent systems and robots to support us in our daily activities, addressing
these questions and understanding these processes is of major importance since a
smooth communication between us and the system is a mandatory requirement for
a successful interaction and long term satisfaction.

Social acceptance and social well-being are difficult to comprehend in a human-
human interaction, knowing that what might be acceptable or satisfying for someone
may be differently perceived by someone else, because of differences in culture, edu-
cation, history and perception. This is the reason why personalizing and personalized
systems are somuch important. It is clear that few social first encounters happenwith-
out experiencing some ambiguity, some ambivalence or some strangeness. In HRI,
the questions of social acceptance and “successful” interactions are more crucial
since the difference between humans and robots is fundamental and ontological. The
evaluation of such interactions is highly dependent on the robot: its appearance, its
abilities, its features and its degree of autonomy. The evaluation of the interaction
depends also on the perception of the robot: the appreciation, the readiness to adapt
to it, the expectations [44]. Humans will have more and higher expectations from a
robot that is highly anthropomorphic such as Asimo rather than from a robot like
the vacuum cleaner Roomba. Moreover, the degree to which a human-like nature for
a robot is needed is not yet sufficiently understood and studies that focus on such
a human-like nature are still very rare [42, 44]. The concept of the uncanny valley
introduced by Mori [38], and further studies by Mac Dorman [36], and by Bethel [6]
showed that when humanoids are too similar to humans but also when robots have a
high mechanical appearance [33, 35], they tend to be negatively perceived; whereas
other recent studies brought solid and daring proofs that invalidate the hypothesis of
the uncanny valley and the common reference to it as a general truth [4]. Most stud-
ies [4, 12, 50] agree on the fact that further research is needed to better understand
and determine which aspects and degrees of similarity and likeability are required
in order to enable more empathic and intuitive Human Robot Interaction (HRI).
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Apart the design issues mentioned above, and the expectations of the robot abil-
ities, the problem of the communication is also important. In our societies implicit
social rules and communication play an important role and define social behavior,
how we are expected and how we expect others to behave. Shall the robot comply
with these social rules and good behaviors?Or should it just be task oriented, any type
of social behavior being avoided and considered as irrelevant noise? Of course, if we
want to create intelligent systems, such as companion robots, that are multi-task and
that interact with us in different activities, that enable to maintain a high quality of
life through years, the former is much desired rather than the latter. Thus our robots
should understand us, at least sufficiently. The degree of understanding depends on
the primary role of the robot and the frequency of interaction. A robot which assists
us daily needs a more refined understanding (more personalization) than a robot we
interact with only once in a while. Yet, the robot we interact seldom with still needs
to be able to understand some of our basic behaviors and affects such as fear or anger
to maintain a sufficient engagement and confidence level to fulfil the joint task.

A large corpus of research on verbal communication exists and is fundamental
for explicit and targeted HRI; however, as Mehrabian pointed out in [37], the verbal
communication (the meaning of words and sentences) accounts for only 7% of the
overall human-human communication when one is talking about their feelings or
attitudes; and with 38% attributed to voice, it leaves 55% of communication as
being purely non-verbal. Among the non-verbal communication attributes, though
poorly studied as noted in [29], the whole body posture and gesture account for an
important proportion [17, 37, 48]. By studying how we move and use our body
during human-human and human-robot communication it is possible to learn about
our internal state, because what we communicate with our bodies contains mainly
internal information about our health [31], about our affects [16], and about the
social rules that apply in the observed specific situation, more than any other way of
communication. Thus, making it possible in the future to use this motion information
to assess directly and “live” the human partner’s psychological state and mental and
emotional experience, close to what Breazeal calls “mind reading” in [9], during
the on-going interaction and if needed, to adjust the robot’s behavior to our inner
experience and expectations. Making the robot emotionally intelligent. Our latest
research results in that area, conducted in collaboration with a psychologist, are
given in Sect. 2.

If the kinematics of the movements provides significant information as described
above, the dynamics of the movement is also as much richer in information. A same
movement or a same posture can be achieved using different level of energy and
thus transfers different forces and moments, and requires different torques. It reveals
different strategies of motor control and it can be an indicator of fatigue, injury or
mental or motor disorders, or more simply of changes in our psychological state.
There are extensive literature on motion recognition [30], motion understanding [8]
using the kinematics information, yet very few addresses the problem of dynamics,
forces and physical interaction with our environment, with others, and with a robot
[32]. In order to make possible the physical interaction, a number of data regarding
the human partner motion dynamics is necessary. We endeavor in providing reliable

millitsa@ece.neu.edu



308 G. Venture et al.

Fig. 1 The global concept of what we aim at for a satisfactory and constructive HRI (not necessarily
using a verbal feedback, here used for the clarity of the figure)

mathematical computations to provide these information. Our latest results in that
area are given in Sect. 3

Finally, the understanding of human behavior from the kinematics and dynamics
point of view is crucial when developing systems that will interact with us on the long
term, or support us in repetitive and sometimes boring tasks such as rehabilitation,
health care or education. In order to guaranty maximal efficiency, the engagement
of the user is a key factor. An intelligent system that can overcome these issues
of repetitiveness and lack of engagement, or even that can motivate and encourage
is an important asset [13]. Personalizing the system with the user preferences and
through time, and taking into account fatigue and affects in the loop will definitely be
more attractive and efficient. This was already pointed out in [15] by Dautenhahn a
decade ago, yet only a few studies have already started to tackle this issue concretely
[22, 34]. In light of the works presented in Sects. 2 and 3, we propose and discuss
in Sect. 4 possible extensions and applications to personalize intelligent systems and
robots that will interact with us in the near future as an example is given in (Fig. 1).

2 The Importance of Movements in HRI and Feeling
Familiar

2.1 Sociability, Feeling of Secure and the Concept
of the familiar and their application in HRI

Most of the research conducted in HRI, particularly the ones interested in social and
affective robotics, refer to a few generally-admitted expressions such as “socially
adapted” interaction, “social acceptance”, “human-like presence” and “natural”
human-robot communication. Although frequently used by the scientific commu-
nity, these expressions refer in reality to complex psychological and social concepts
difficult to precisely define [33, 35, 46]. In addition, in [18] it was shown that the
understanding of these concepts is inter-cultural, and in [19, 49] it was shown that
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the understanding of these concepts is also inter-personal. In [2], we proposed to use
the “familiar” as a measure of the success of an interaction. As Hebb pointed out in
[25], there is in the human attitude towards the new, a bias towards instant familiarity
and unquestioning acceptance. Freud also in [21] theorized about the “Unheim-
lichkeit Gefühl”—which translations vary: “The uncanny”, “feeling of strangeness”,
“incredible familiarity”-,whichwas later discussed abundantly in philosophy notably
in relation to the theme of the double. The “Unheimlichkeit Gefühl” together with
Jentsch’s elaboration of it [26], has inspired Mori’s concept of the “Uncanny val-
ley” [38] cited previously. Beyond that, it is the subtle ambivalence it brings to
what is known or unknown, new or acquainted that interests us: indeed this con-
cept describes a “bizarre feeling of strangeness”, a feeling of “being uncomfortably
familiar”, experienced when encountering a person or an object that seems familiar
yet foreign and new at the same time. This ambivalent association of the strange and
the familiar within a feeling that is triggered by a new situation but still draws from
past experience is useful when working on the interaction between a human and a
humanoid robot.

With our experiments we want to verify if there is a correlation between how the
participants behave with the robot, what the participants feel when interacting with
the robot, very likely for the first time, and how this correlate with their evaluation
of the familiar, of the sociability and how it is transposed in their movements. More
particularly, if we can use the familiar to qualify the interaction, and if their move-
ments is affected by their inner state in a quantifiable manner. We also want to verify
if the social character of the robot is important to conduct the interaction successfully
and if the participants engage more with the robot for a hedonic behavior or a useful
(task-oriented) joint behavior.

Fig. 2 Snapshot of one of
the experiments. In a
Japanese style room,
candidates are seated on the
floor which gives the
appropriate height to interact
with NAO. X is seated on the
left hand of NAO, Y is seated
on the right hand of NAO

NAO
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2.2 A Simple Experiment Rich in Findings

Our experiment, as shown in Fig. 2, is designed with the robot NAO (Aldebaran),
but can be achieved with any other robot. We deliberately chose a feed-forward con-
trol to insure perfect repeatability. 40 participants are recruited by pair of X and Y
participants, thus 20 pairs (14 women, 26 men) volunteered to participate. NAO’s
behavior slightly differs from X to Y when handing the envelope: ‘Smooth Handing’
versus ‘Keeping 4 sec the envelope’. The participants are only invited to wear 2 IMU
to capture their movements, and answer a questionnaire about HRI and are informed
that the set is filmed and IMU are used for hand and headmotion capture. They do not
know that they will actually interact with a robot. NAO punctuates the interaction’s
beginning and end with non-verbal greetings [40]. It has a real task to accomplish:
bringing both envelopes with the questionnaire to be filled by the participants. The
interaction: greetings and envelope exchange, is left up to the participants: it can
happen or not, since the participants receive no particular instructions and are left
to their own judgement. The questionnaire, in Japanese, consists of 3 different sec-
tions: 7-point Likert scale, Multiple Choice Questions, and open-ended questions,
addressing different topics about their experience with robots, and in particular the
present experience. The experiment is extensively described in [3].

The motion data are analyzed from the IMU and from the video. From the IMU
data, the 3 components of the rotational velocity and the 3 components of the accel-
eration are post-processed separately to obtain three types of information. (1) Fre-
quency analysis (F.): First a simple frequency analysis on the hand motion data
(angular velocity) is performed during the grasping motions to take the envelope
(F.TE) and when answering the robot goodbye (F.GB) by waving the hand, the fre-
quency (Hz) of the first pick is used. (2) Motion smoothness (S.): There are several
methods to assess the motion smoothness [41], we chose the jerk metrics (1/s2).
For that the acceleration are used to compute the jerk magnitude averaged over the
overall motion and normalized with respect to the peak speed. The smaller the jerk
metric is the smoother the movement is. The smoothness is computed during for
the overall head and torso movements (S.OA), when taking the envelope (S.TE) and
when waving goodbye (S.GB). (3) Time spent looking at NAO (T.): from the video
recordings we estimated the percentage of time each participants spent during the
overall interaction looking at the robot VS the time spent looking elsewhere. (3)
Motion intensity (I.): it corresponds to an integration over the time of the interaction
of the data. It is computed during the envelope exchange (I.TE) and when greeting
back goodbye (I.GB). (4) From PCA of feature vectors we find cluster formation
in the motion data [52]. We calculate the distance (D.) from the cluster center for
each participant. In order to use the data in the statistical analysis, each of the above
parameter is normalized by the obtained maximal value and evaluated in a 0–7 scale.
We calculate the descriptive statistics for the participants’ responses to the robot’s
engaging actions and to their answers to the questionnaire and the movement infor-
mation described above. The results obtained for the sociability and the familiarity
are summarized in Tables1, 2, 3, 4.
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The earlier exposure was low for participants X (M= 2.5, SD = 2.0, SEM = 0.4)
and medium to low for participants Y ( M = 3.8, SD = 2.4, SEM = 0.5). 40% of X
reported almost having never been exposed to robots, 45% said to be familiar with
robots from movies and literature. 40% of Y reported to have been exposed at least
once to a real robot, 55% said to be familiar with robots from movies and literature.

Most participants (80% X, 75% Y) understood NAO’s intention of giving them
the envelope and found easy for them to react to its action, only 35% of X and 25%
of Y found it easy to decide on how/whether to react to its greetings.

The sociable character of the robot is strongly related to its politeness, promoted
through its greetings, with the comfort and the security felt during the interaction, and
with the evaluation of the familiar. It is also clearly correlated with the participants’
reaction and their movements during the interaction as the results in Table2 suggest.
The higher the evaluation of the robot sociable character is the more participants
engaged in interacting with it, with higher movement frequencies, both when taking
the envelope and greeting good bye, with more intense greeting movements and with
smoother overall movements. On the other hand, when the interaction was evaluated
has frightening, there is a strong correlation wit ha low frequency movement when
greeting good bye (Corr = −0.61, p < 0.1). This clearly shows that the participants’
movements are affected by their perception of the robot and the interaction, and thus
their movement can be used as an indicator of their inner state, and for the good
completion of the task.

The familiar felt during the interaction is also an excellent parameter to assess the
interaction. As shown in Table3, the familiar is strongly associated with the evalua-
tion of comfort, security, with making sense of the interaction and understanding it,
the easiness to complete the task and the sociable character of the robot. Basically
the familiar is associated with a positive experience with the robot; it can even be
experienced during a new situation; and that it can be experienced in relation to a
machine. It is also associated with a feeling of absurdity and strangeness, which
verifies that the hypothesis of Freud [21] and Jentsch [26] are also valid in the case
of an interaction with a robot. The evaluation of the familiar also correlates with the
participants’ reactions. The higher the familiar is felt the more participants engage
wit the robot in both taking the envelope and responding to the robot’s greetings.
Moreover, the higher the evaluation of the familiar is, the higher the frequency of
waving good bye is, and the smoother are the motions. Finally, the higher the familiar
is the more participants tend to react similarly when taking the envelope and their
motions are alike. We also found that the more the robot was assessed as being hos-
tile, the more participants’s response when taking the envelope differ from the cluster

Table 1 Correlation between sociability of the robot and the different items in the questionnaire

NAO polite Interaction
comfortable

Interaction secure Interaction
familiar

NAO sociable 0.75∗ ∗ ∗ 0.53∗∗ 0.63∗∗ 0.90∗∗∗
∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.001
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Table 2 Correlation between Sociability of the robot and the movements observed

F.TE F.GB S.OA I.GB

NAO sociable 0.31∗ 0.88∗∗∗ 0.44∗∗ 0.37∗∗
∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.001

Table 3 Correlation between the familiar and the different items in the questionnaire

Interaction
absurd

Interaction
comfortable

Interaction
secure

Interaction
meaningful

Interaction
easy

NAO
sociable

Familiar 0.47∗∗ 0.61∗∗ 0.76∗∗∗ 0.47∗∗ 0.57∗∗ 0.90∗∗∗
∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.001

Table 4 Correlation between the familiar during the interaction and the movements observed

NAO handing
envelope X

NAO handing
envelope Y

Greeting GB X Greeting GB Y

Familiar 0.71∗∗ 0.56∗∗ 0.49∗∗ 0.53∗∗

F.GB S.OA S.GB D.

Familiar 0.57∗ 0.36∗∗ 0.65∗ -0.48∗∗
∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.001

average. Again here, the participants’ movements clearly reflect their inner feelings
with respect to the robot and the interaction.

The sociability of the humanoid robot and the familiar of the interaction appear
to be two essential parameters to successfully and adequately engage humans in an
interaction with a robot (e.g. a joint-task such as exchanging an envelope). These
results also show what we hypothesized: that the participants’ motions, emotions
and their perception of the robot and of the interaction with it are strongly associated
during the interaction. The sole kinematics measurement of the motion can provide
information that can be used to adjust the robot’s behavior to its human partner.

3 Going Further: Tools for Dynamics Analysis

In the previous sectionwe only used themotion kinematics. However the dynamics of
themovements can also provide some information to quantify the interactionwith the
robot or the understand the human behavior and its interaction with the environment.
With an increasing interest in compliant robots, which can interact safely and wisely
with their environment, the force-moment information has appeared to be crucial
[14, 39]. In this section we propose two approaches that can help in estimating
the contact force with the environment, and use the contact force as information to
classify movements. The first one requires the measurement of the motion itself, i.e.
its kinematics, that can be measured using any kind of motion capture technology.
The second supposes that we only measure the contact forces, which can be the case
with in-sole force measurement devices, force plates, or floor equipped with force
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sensors. The first aspect is useful to understand how we use our environment and our
body, it finds applications in HRI, inmotor function rehabilitation. The second aspect
can be more appropriate for applications in rehabilitation or daily life monitoring
and support.

3.1 Contact Forces Computation

When the motion information is available (whatever the system used to obtained
it: IMU, optical motion capture, encoders...), it is rather simple to compute the
generalized external forces acting, i.e. the sum of the external forces, on the human
or the robot. One need only to know the kinematic information and the inertial para-
meters of the considered system. Our work on dynamics identification of humanoids
and humans solves both problems [1, 47]. From the generalized contact forces it is
possible to estimate the contact forces at each contact point. It is trivial when there is
only one contact point since all the force is uniquely defined. When there are more
than one contact point, using the position of the Zero Moment Point (ZMP) or the
Center of Pressure (CoP), and its distance from the contact points helps solving this
problem. In particular the vertical force comes in a simple inverse proportional of
this distance. The method is fully described in [28]. Our results with human data
shown in Fig. 3, for a random motion alternating single and double support, and for
gait are extremely encouraging and show that we can estimate the vertical force with
an excellent accuracy, which of course depends on the accuracy of the measured
kinematics information. For the lateral forces, the results are not as good, yet they
can clearly show the profile expected. Their value is more affected by the contact
detection, which here is done using external markers position here, where a foot
switch would have given better results. These results are used in gait analysis of
stroke patients, to evaluate rehabilitation strategies. They provide a totally person-
alized model and analysis, thus helping in personalized diagnosis and rehabilitation
procedure design.

3.2 Motion Analysis from Contact Forces

Furthermore, the contact force-moment with the ground provide interesting infor-
mation regarding the motion that is executed. Walking, exercising... have typical
force-moment profiles. If it is mathematically possible that two different motions
have the same contact force-moment signature, it is likely that in our daily life activ-
ities distinct motions have distinct signatures. This is more true when considering
gymnastic exercises, or rehabilitation exercises. Using that assumption, we propose
to classify and recognize whole body motions using solely the contact force-moment
information. Using a simple classifier based on the computation of features vectors
and PCA decomposition [27] we can highlight these contact force-moment signa-
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Fig. 3 Top: vertical force for a random movement; Middle and bottom floor force during gait. The
blue dotted line is the ground truth measured by the force plates, the black line is the estimated one

tures. Using the algorithm proposed in [53], we can use the contact force-moment
profiles for motion recognition [51].

Our tested data-set made of 2 participants repeating 3 times a series of 7 distinct
exercises, thus a total of 42 exercises, taken form a exercises’ television program.One
exercise can contain the same motion repeated a few times. The data are manually
segmented to extract each single motion. The visualization in 3D of the PCA results
is given in Fig. 4.

Our algorithm performs with more than 85% successful recognition regardless
of the candidate. The confusion between movements mainly occurs with movements
that are too similar and poorly executed: for example bending the torso forward and
bending the torso sideward. Our results show that the contact force-moment can be
used to classify and recognize movements. Applications for health monitoring and
rehabilitation are already ongoing. Further applications during HRI are expected too.

4 Applications and Discussion

Our study, presented in Sect. 2 shows that an unexpectedfirst encounterwith a specific
humanoid robot (NAO) is a rich, yet subjective and different, experience for each
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Fig. 4 Classification results
for the seven different tested
motions. Each maker
correspond to a single
iteration of one motion. The
highlighted data in the box
show a close up of the PCA
results for motion M1 to M6

of the 40 participants. The analysis of their spontaneous arm and head movements,
as well as the analysis of their evaluation of the robot and of interacting with it,
clearly say that none of the participants was indifferent to the encounter, even though
the whole interaction was non-verbal. It is worth considering these aspects before
robots spread in our daily environment since robots, and in particular humanoids,
are creatures that will affect our daily life, our behaviors and our emotions more than
any other technology. They may affect our relation with others, and our perception
of the self, creating deep psychological and social changes either for our benefit or
for our detriment. To address these issues and to try to understand better why we
are so found of and yet so scared of robots further research closely in relation with
psychologists is tremendously needed.

To elaboratemore complex experimental protocols to investigateHRI and to gain a
deeper understanding of the interaction with robots novel tools are necessary to mea-
sure these interactions.Our results have shown that usingmotions as studyparameters
is not unjustified. The affective signature in our motions provide a very powerful tool
to analyze HRI in natural settings and get rid of the usual questionnaires that oblige
the participants for a-posteriori introspection, or when filled step-by-step remove
the naturalness of the social interactions, which in a sense is failing in providing
adequate information. Measuring the non-verbal components of the communication
and understanding it as crucial as developing robots that can talk and hear since
non-verbal communication is the main medium for affective communication. These
robots and systems can effectively learn to understand our personalized movements
and react adequately to maintain the necessary level of engagement.

With the democratization ofwhole-bodymotion capture technology for games and
human machine interface, there is now a wide range of sensing technology available

millitsa@ece.neu.edu



316 G. Venture et al.

at low cost and with increasing specifications. Such developments have considerable
ripple effects on robot technology developments since they provide plug-and-play
hardware and even SDK. These equipment can now be used for analysis in real
situation or close to real situations, rather than in lab environment mimicking poorly
real social interactions. More generally, personalized systems will be even more
demanded and for that studying also human-human interaction can provide a base-
line of human behavior for HRI and help in personalizing these systems.

Moreover, our computational methods for the contact forces, and our method
for motion classification and recognition from the contact forces, provide dynamics
information that is also rich in information in regard with the interaction. Our results
strongly underline the dependencies existing between human movement and inner
experience, especially in relation to the robot’s social character, the interaction’s
perception of safety, its meaning and the interest it represents for the participants,
more globally their engagement in and their evaluation of the overall interaction.
Adding the forces here will surely bring in some refined analysis of the interaction
and some new insight to personalized intelligent systems and robots not only for
health-care applications, but more generally for social interactions too.
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Beyond Geometric Path Planning: Learning
Context-Driven Trajectory Preferences via
Sub-optimal Feedback

Ashesh Jain, Shikhar Sharma and Ashutosh Saxena

Abstract We consider the problem of learning preferences over trajectories for
mobile manipulators such as personal robots and assembly line robots. The prefer-
ences we learn are more intricate than those arising from simple geometric constraints
on robot’s trajectory, such as distance of the robot from human etc. Our preferences
are rather governed by the surrounding context of various objects and human interac-
tions in the environment. Such preferences makes the problem challenging because
the criterion of defining a good trajectory now varies with the task, with the envi-
ronment and across the users. Furthermore, demonstrating optimal trajectories (e.g.,
learning from expert’s demonstrations) is often challenging and non-intuitive on high
degrees of freedom manipulators. In this work, we propose an approach that requires
a non-expert user to only incrementally improve the trajectory currently proposed by
the robot. We implement our algorithm on two high degree-of-freedom robots, PR2
and Baxter, and present three intuitive mechanisms for providing such incremental
feedback. In our experimental evaluation we consider two context rich settings—
household chores and grocery store checkout—and show that users are able to train
the robot with just a few feedbacks (taking only a few minutes). Despite receiv-
ing sub-optimal feedback from non-expert users, our algorithm enjoys theoretical
bounds on regret that match the asymptotic rates of optimal trajectory algorithms.
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1 Introduction

Recent advances in robotics have resulted in mobile manipulators with high degree
of freedom (DoF) arms. However, the use of high DoF arms has so far been largely
successful only in structured environments such as manufacturing scenarios where
they perform same repetitive motions (e.g., recent deployment of Baxter on assem-
bly lines). A major challenge in the deployment of these robots in unstructured
environments (such as a grocery checkout counter or in our homes) is their lack of
understanding of user preferences and thereby not producing desirable motions. In
this work we address the problem of learning preferences over trajectories for high
DoF robots such as Baxter or PR2. We consider a variety of household chores for
PR2 and grocery store checkout tasks for Baxter.

A key problem for high DoF manipulators lies in identifying an appropriate trajec-
tory for a task. An appropriate trajectory not only needs to be valid from a geometric
point (i.e., feasible and obstacle-free, the criterion that most path planners focus
on), but it also needs to satisfy the user’s preferences. Such users’ preferences over
trajectories vary between users, between tasks, and between the environments the
trajectory is performed in. For example, a household robot should move a glass of
water in an upright position without jerks while maintaining a safe distance from
nearby electronic devices. In another example, a robot checking out a santoku knife1

at a grocery store should strictly move it at a safe distance from nearby humans.
Furthermore, straight-line trajectories in Euclidean space may no longer be the pre-
ferred ones. For example, trajectories of heavy items should not pass over fragile
items but rather move around them. These preferences are often hard to describe
and anticipate without knowing where and how the robot is deployed. This makes it
infeasible to manually encode (e.g., [26]) them in existing path planners (e.g., [10,
39, 44]) a priori.

We learn user preferences over trajectories via eliciting sub-optimal suggestions
from the user for improving a trajectory. Unlike in other learning settings, where an
expert first demonstrates optimal trajectories [4] for a task to the robot, our learning
model does not rely on the user’s ability to demonstrate optimal trajectories a priori.
Instead, our learning algorithm explicitly guides the learning process and merely
requires the user to incrementally improve the robots trajectories thereby learning
user preferences and not that of expert’s. This procedure of learning from sub-optimal
suggestions is known as coactive learning and has been previously studied in infor-
mation retrieval [41]. We contribute by introducing this new method of learning to the
robotics community and highlight its advantages over learning from demonstration
for high DoF robots. We build a system to realize this learning algorithm on PR2 and
Baxter robots, and also leverage the robot specific design to allow users easily give
preference feedback required by our algorithm.

Our experiments show that a robot trained using this approach can autonomously
perform new tasks and if need be, only a small number of interactions are sufficient

1A kitchen knife originating in Japan.
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to tune the robot to the new task. Since the user does not have to demonstrate a (near)
optimal trajectory to the robot, the feedback is easier to provide and more widely
applicable. Nevertheless, it leads to an online learning algorithm with provable regret
bounds that decay at the same rate as for optimal demonstrations.

In our empirical evaluation, we learn preferences for a two high DoF robots, PR2
and Baxter, on a variety of household and grocery checkout tasks respectively. Using
the expressive trajectory features from our previous work [19], we show how our
algorithm learns preferences from online user feedback on a broad range of tasks
for which object properties are of particular importance (e.g., manipulating sharp
objects with humans in the vicinity). We extensively evaluate our approach on a set
of 35 household tasks and 16 grocery checkout tasks, both in batch experiments as
well as through robotic experiments wherein users provide their preferences on the
robot. Our results show that our system not only quickly learns good trajectories on
individual tasks, but also generalizes well to tasks that the algorithm has not seen
before. We now describe the learning setting along with mechanisms for eliciting
preference feedback and highlight attributes of Baxter robot that makes it well suited
for our algorithm.

2 Coactive Learning with Incremental Feedback

We propose an online algorithm for learning preferences in trajectories from sub-
optimal user feedback. At each step robot receives a task as input and outputs a
trajectory that maximizes its current estimate of some score function. It then observes
a user feedback—an improved trajectory—and updates the score function to better
match the user preferences. This procedure of learning via iterative improvement is
known as coactive learning.

Our goal is to even learn from the feedback given by non-expert users. We there-
fore require the feedback to only be incrementally better (as compared to being
close to optimal) in expectation, and will show that such feedback is sufficient for
the algorithm’s convergence. It is in contrast to learning from demonstration (LfD)
methods [1, 25, 36, 37] which require (near) optimal kinesthetic demonstrations
of the complete trajectory. Such demonstrations can be extremely challenging and
non-intuitive to provide for many high DoF manipulators [2]. Instead, we found
that it is more intuitive for users to give an incremental feedback on certain high
DoF arms such as Barrett WAM and Baxter. With a zero-force gravity-compensation
(zero-G) mode, the robot arms becomes light and the users can effortlessly steer
them to desired configuration. On Baxter, this zero-G mode is automatically acti-
vated when a user holds the robot’s wrist (see Fig. 1, middle). We use this zero-G
mode as a feedback method for incrementally improving the trajectory by correcting
a waypoint. We now summarize three feedback mechanisms that enable the user to
iteratively provide improved trajectories.
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Fig. 1 Zero-G feedback mechanism: Robot checking out items in a grocery store moves knife
close to human. (Left) User stops the trajectory and (Middle) activates the zero-G mode by holding
Baxter’s wrist. (Right) User then improves the trajectory by moving the knife away and rotating it

Fig. 2 Re-rank feedback mechanism: (Left) Robot ranks trajectories using the score function and
(Middle) displays top three trajectories on a touch screen device (iPad here). (Right) As feedback,
the user improves the ranking by selecting the third trajectory

(a) Re-ranking: We display the ranking of trajectories using OpenRAVE [12] on a
touch screen device and ask the user to identify whether any of the lower-ranked
trajectories is better than the top-ranked one. User sequentially observes the trajecto-
ries in order of their current predicted scores and clicks on the first trajectory which
is better than the top ranked trajectory. Figure 2 shows three trajectories for moving
knife. As feedback user moves the trajectory at rank 3 to the top position. Likewise,
Fig. 3 shows three trajectories for moving an egg carton. Using the current estimate
of score function robot ranks them as red (1st), green (2nd) and blue (3rd). Since
eggs are fragile user moves green trajectory to the top position.

(b) Zero-G: This feedback allows the user to correct trajectory waypoints by
physically changing robot’s arm configuration as shown in Fig. 1. This feedback is
useful (i) for bootstrapping the robot, (ii) for avoiding local maxima where the top
trajectories in the ranked list are all bad but ordered correctly, and (iii) when the user
is satisfied with the top ranked trajectory except for minor errors. A counterpart of
this feedback is keyframe based LfD [2] where an expert demonstrates a sequence
of optimal waypoints instead of the complete trajectory.

(c) Interactive: For the robots whose hardware does not permit zero-G feedback,
such as PR2, we built an alternative interactive Rviz-ROS [16] interface for allowing
the users to improve the trajectories by waypoint correction. Figure 4 shows a robot
moving a bowl with one bad waypoint (in red), and the user provides a feedback by
correcting it. This feedback serves the same purpose as zero-G but it’s elicited via
simulator.
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Fig. 3 Re-ranking feedback: Shows three trajectories for moving egg carton from left to right.
Using the current estimate of score function robot ranks them as red, green and blue. As feedback
user clicks the green trajectory. Preference: Eggs are fragile. They should be kept upright and near
the supporting surface

Fig. 4 Interactive feedback. Task here is to move a bowl filled with water. The robot presents a bad
trajectory with waypoints 1–2–4 to the user. As feedback user moves waypoint 2 (red) to waypoint
3 (green) using Rviz interactive markers. The interactive markers guides the user to correct the
waypoint

Note that in all three kinds of feedback, the user never reveals the optimal trajectory
to the algorithm but just provides a slightly improved trajectory (in expectation).

3 Learning and Feedback Model

We model the learning problem in the following way. For a given task, the robot is
given a context x that describes the environment, the objects, and any other input
relevant to the problem. The robot has to figure out what is a good trajectory y for
this context. Formally, we assume that the user has a scoring function s∗(x, y) that
reflects how much he values each trajectory y for context x. The higher the score, the
better the trajectory. Note that this scoring function cannot be observed directly, nor
do we assume that the user can actually provide cardinal valuations according to this
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function. Instead, we merely assume that the user can provide us with preferences
that reflect this scoring function. The robot’s goal is to learn a function s(x, y; w)

(where w are the parameters to be learned) that approximates the user’s true scoring
function s∗(x, y) as closely as possible.

Interaction Model. The learning process proceeds through the following repeated
cycle of interactions.

Step 1: The robot receives a context x and uses a planner to sample a set of trajectories,
and ranks them according to its current approximate scoring function s(x, y; w).

Step 2: The user either lets the robot execute the top-ranked trajectory, or corrects
the robot by providing an improved trajectory ȳ. This provides feedback indicating
that s∗(x, ȳ) > s∗(x, y).

Step 3: The robot now updates the parameter w of s(x, y; w) based on this preference
feedback and returns to step 1.

Regret. The robot’s performance will be measured in terms of regret, REGT =
1
T

∑T
t=1[s∗(xt, y∗

t )− s∗(xt, yt)], which compares the robot’s trajectory yt at each time
step t against the optimal trajectory y∗

t maximizing the user’s unknown scoring func-
tion s∗(x, y), y∗

t = argmaxys∗(xt, y). Note that the regret is expressed in terms of the
user’s true scoring function s∗, even though this function is never observed. Regret
characterizes the performance of the robot over its whole lifetime, therefore reflect-
ing how well it performs throughout the learning process. We will employ learning
algorithms with theoretical bounds on the regret for scoring functions that are linear
in their parameters, making only minimal assumptions about the difference in score
between s∗(x, ȳ) and s∗(x, y) in Step 2 of the learning process.

4 Learning Algorithm

For each task, we model the user’s scoring function s∗(x, y) with the following
parametrized family of functions.

s(x, y; w) = w · φ(x, y) (1)

w is a weight vector that needs to be learned, and φ(·) are features describing trajec-
tory y for context x. We further decompose the score function in two parts, one only
concerned with the objects the trajectory is interacting with, and the other with the
object being manipulated and the environment

s(x, y; wO, wE) = sO(x, y; wO) + sE(x, y; wE) = wO · φO(x, y) + wE · φE(x, y) (2)

For more details on the features φO(·) and φE(·), we refer the readers to our
previous work Jain et al. [19].

millitsa@ece.neu.edu



Beyond Geometric Path Planning … 325

4.1 Computing Trajectory Rankings

For obtaining the top trajectory (or a top few) for a given task with context x, we
would like to maximize the current scoring function s(x, y; wO, wE).

y∗ = arg max
y

s(x, y; wO, wE). (3)

Second, for a given set {y(1), . . . , y(n)} of discrete trajectories, we need to compute
(3). Fortunately, the latter problem is easy to solve and simply amounts to sorting the
trajectories by their trajectory scores s(x, y(i); wO, wE). Two effective ways of solving
the former problem is either discretizing the state space or directly sampling trajec-
tories from the continuous space. Previously both approaches [3, 6, 7, 11, 46] have
been studied. However, for high DoF manipulators sampling based approaches [6,
11] maintain tractability of the problem, hence we take this approach. More pre-
cisely, similar to [6], we sample trajectories using rapidly-exploring random tree
(RRT) [27].2 Since our primary goal is to learn a score function on trajectories we
now describe our learning algorithm and for more details on sampling trajectories
we refer interested readers to [15, 17].

4.2 Learning the Scoring Function

The goal is to learn the parameters wO and wE of the scoring function s(x, y; wO, wE)

so that it can be used to rank trajectories according to the user’s preferences. To do so,
we adapt the Preference Perceptron algorithm [41] as detailed in Algorithm 1, and
we call it the Trajectory Preference Perceptron (TPP). Given a context xt , the top-
ranked trajectory yt under the current parameters wO and wE , and the user’s feedback
trajectory ȳt , the TPP updates the weights in the direction φO(xt, ȳt)−φO(xt, yt) and
φE(xt, ȳt)−φE(xt, yt) respectively. Figure 5 shows an overview of our system design.

Despite its simplicity and even though the algorithm typically does not receive the
optimal trajectory y∗

t = arg maxy s∗(xt, y) as feedback, the TPP enjoys guarantees on
the regret [41]. We merely need to characterize by how much the feedback improves
on the presented ranking using the following definition of expected α-informative
feedback: Et[s∗(xt, ȳt)] ≥ s∗(xt, yt) + α(s∗(xt, y∗

t ) − s∗(xt, yt)) − ξt . This definition
states that the user feedback should have a score of ȳt that is—in expectation over
the users choices—higher than that of yt by a fraction α ∈ (0, 1] of the maximum
possible range s∗(xt, ȳt) − s∗(xt, yt). If this condition is not fulfilled due to bias in
the feedback, the slack variable ξt captures the amount of violation. In this way any
feedback can be described by an appropriate combination of α and ξt . Using these

2When RRT becomes too slow, we switch to a more efficient bidirectional-RRT.The cost function
(or its approximation) we learn can be fed to trajectory optimizers like CHOMP [39] or optimal
planners like RRT* [23] to produce reasonably good trajectories.
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Fig. 5 Shows our system design, for grocery store settings, which provides users with three choices
for iteratively improving trajectories. In one type of feedback (zero-G or interative feedback in
case of PR2) user corrects a trajectory waypoint directly on the robot while in the second (re-rank)
user chooses the top trajectory out of 5 shown on the simulator

two parameters, the proof by Shivaswamy and Joachims [41] can be adapted to show
that average regret of TPP is upper bounded by E[REGT ] ≤ O( 1

α
√

T
+ 1

αT

∑T
t=1 ξt).

5 Related Work

Teaching a robot to produce desired motions has been a long standing goal and several
approaches have been studied. Most of the past research has focussed on mimicking
expert’s demonstrations, for example, autonomous helicopter flights [1], ball-in-a-
cup experiment [25], planning 2-D paths [36, 37], etc. Such settings (learning from
demonstration, LfD) assume that kinesthetic demonstrations are intuitive to an end-
user and it is clear to an expert what constitutes a good trajectory. In many scenarios,
especially involving high DoF manipulators, this is extremely challenging to do [2].3

This is because the users have to give not only the end-effector’s location at each
time-step, but also the full configuration of the arm in a spatially and temporally
consistent manner. In our setting, the user never discloses the optimal trajectory (or
provide optimal feedback), but instead, the robot learns preferences from sub-optimal
suggestions for how the trajectory can be improved.

Some later works in LfD provided ways for handling noisy demonstrations, under
the assumption that demonstrations are either near optimal [48] or locally optimal
[29]. Providing noisy demonstrations is different from providing relative preferences,
which are biased and can be far from optimal. We compare with an algorithm for
noisy LfD learning in our experiments. A recent work [47] leverages user feedback
to learn rewards of a Markov decision process. Our approach advances over [47] and

3Consider the following analogy. In search engine results, it is much harder for the user to provide
the best web-pages for each query, but it is easier to provide relative ranking on the search results
by clicking.
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Calinon et al. [9] in that it models sub-optimality in user feedback and theoretically
converges to user’s hidden score function. We also capture the necessary contextual
information for household and grocery store robots, while such context is absent
in [9, 47]. Our application scenario of learning trajectories for high DoF manipula-
tions performing tasks in presence of different objects and environmental constraints
goes beyond the application scenarios that previous works have considered. We use
appropriate features that consider robot configurations, object-object relations, and
temporal behavior, and use them to learn a score function representing the preferences
in trajectories.

In other related works, Berenson et al. [5] and Phillips et al. [34] consider the prob-
lem of trajectories for high-dimensional manipulators. They store prior trajectories
for computational reasons for different tasks. These methods are complementary to
ours, in that we could leverage their database of trajectories and train our system on
samples drawn from it. Other recent works such as [13, 14, 45] consider generating
human-like trajectories. These works are complementary to ours in that humans-
robot interaction is an important aspect and such ideas could be incorporated in our
approach.

In past, learning from demonstration [18, 31] and various interactive methods (e.g.
human gestures) [8, 43] have been employed to teach assembly line robots. How-
ever, these methods either required the user to demonstrate an optimal trajectory or
interactively show the complete sequence of actions which the robot remembered
for future use. Recent works [32, 33] in human robot collaboration learn human
preferences over a sequence of sub-tasks in assembly line manufacturing. However,
these works are agnostic to the user preferences over robot’s trajectories. Our algo-
rithm can complement their’s by learning preferences over the trajectories thereby
achieving better human robot collaboration.

6 Experiments and Results

We first describe our experimental setup, then present quantitative results (Sect. 6.2),
and then present robotic experiments on PR2 and Baxter (Sect. 6.3).

6.1 Experimental Setup

Task and Activity Set for Evaluation. We evaluate our approach on 35 robotic tasks
in household setting and 16 pick-and-place tasks in a grocery store checkout setting.
For household activities we use PR2, and use Baxter for the grocery store setting. To
assess the generalizability of our approach, for each task we train and test on scenarios
with different objects being manipulated, and/or with a different environment. We
evaluate the quality of trajectories after the robot has grasped the items and while it
moves them for checkout. Our work complements previous works on grasping items
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[28, 40], pick and place tasks [20], and detecting bar code for grocery checkout [24].
We consider following three most commonly occurring activities in household and
grocery stores:
(1) Manipulation centric: These activities primarily care for the object being manip-
ulated. Hence the object’s properties and the way robot moves it in the environment
is more relevant. Examples of such household activities are pouring water into a
cup or inserting pen inside a pen holder, Fig. 6 (Left). While in grocery store such
activities could include moving flower vase, or moving fruits and vegetables, which
can be damaged when dropped/pushed into other items. We consider pick-and-place,
pouring and inserting activities with following objects: cup, bowl, bottle, pen, cereal
box, flower vase, tomatoes. Further, in every environment we place many objects,
alongwith the object to be manipulated, to restrict simple straight line trajectories.
(2) Environment centric: These activities also care for the interactions of the object
being manipulated with the surrounding objects. Our object-object interaction fea-
tures [19] allow the algorithm to learn preferences on trajectories for moving fragile
objects like egg cartons or moving liquid near electronic devices, Fig. 6 (Middle).
We consider moving fragile items like egg carton, heavy metal boxes near a glass
table, water near laptop and other electronic devices.
(3) Human centric: Sudden movements by the robot put the human in a danger of

Manipulation centric Environment centric Human centric

(a) (b) (c)

Baxter in a grocery store setting.

(a) (b) (c)

PR2 in a household setting.

Fig. 6 Robot demonstrating different grocery store and household activities with various objects
(Left) Manipulation centric: while pouring water the tilt angle of bottle must change in a particular
manner, similarly a flower vase should be kept upright. (Middle) Environment centric: laptop is an
electronic device so robot must carefully move water near it, similarly eggs are fragile and should
not be lifted too high. (Right) Human centric: knife is sharp and interacts with nearby soft items
and humans. It should strictly be kept at a safe distance from humans. (Best viewed in color)
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getting hurt. We consider activities where a robot manipulates sharp objects such
as knife, Fig. 6 (Right), moves a hot coffee cup or a bowl of water with a human in
vicinity.

Baseline algorithms. We evaluate the algorithms that learn preferences from online
feedback, under two settings: (a) untrained, where the algorithms learn preferences
for the new task from scratch without observing any previous feedback; (b) pre-
trained, where the algorithms are pre-trained on other similar tasks, and then adapt
to the new task. We compare the following algorithms:

• Geometric: It plans a path, independent of the task, using a BiRRT [27] planner.
• Manual: It plans a path following certain manually coded preferences.
• TPP: Our algorithm, evaluated under both untrained and pre-trained settings.
• Oracle-svm: This algorithm leverages the expert’s labels on trajectories (hence

the name Oracle) and is trained using SVM-rank [21] in a batch manner. This
algorithm is not realizable in practice, as it requires labeling on the large space
of trajectories. We use this only in pre-trained setting and during prediction it just
predicts once and does not learn further.

• MMP-online: This is an online implementation of Maximum margin planning
(MMP) [37, 38] algorithm. MMP attempts to make an expert’s trajectory better
than any other trajectory by a margin, and can be interpreted as a special case of
our algorithm with 1-informative feedback. However, adapting MMP to our exper-
iments poses two challenges: (i) we do not have knowledge of optimal trajectory;
and (ii) the state space of the manipulator we consider is too large, and discretizing
makes learning via MMP intractable. We therefore train MMP from online user
feedback observed on a set of trajectories. We further treat the observed feed-
back as optimal. At every iteration we train a structural support vector machine
(SSVM) [22] using all previous feedback as training examples, and use the learned
weights to predict trajectory scores for the next iteration. Since we learn on a set of
trajectories, the argmax operation in SSVM remains tractable. We quantify close-
ness of trajectories by the l2−norm of difference in their feature representations,
and choose the regularization parameter C for training SSVM in hindsight, to give
an unfair advantage to MMP-online.

Evaluation metrics. In addition to performing a user study (Sect. 6.3), we also
designed two datasets to quantitatively evaluate the performance of our online algo-
rithm. We obtained experts labels on 1300 trajectories in grocery setting and 2100
trajectories in household setting. Labels were on the basis of subjective human pref-
erences on a Likert scale of 1–5 (where 5 is the best). Note that these absolute ratings
are never provided to our algorithms and are only used for the quantitative evaluation
of different algorithms. We quantify the quality of a ranked list of trajectories by its
normalized discounted cumulative gain (nDCG) [30] at positions 1 and 3. While
nDCG@1 is a suitable metric for autonomous robots that execute the top ranked tra-
jectory (e.g., grocery checkout), nDCG@3 is suitable for scenarios where the robot
is supervised by humans, (e.g., assembly lines). We also report average nDCG value
over a given number of feedback iterations.
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Same environment, different object. New Environment, same object. New Environment, different object.
nD
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3

Results on Baxter in grocery store setting.

nD
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@

3

Results on PR2 in household setting.

Fig. 7 Study of generalization with change in object, environment and both. Manual, Oracle-SVM,
Pre-trained MMP-online (—), Untrained MMP-online (– –), Pre-trained TPP (—), Untrained TPP
(– –)

6.2 Results and Discussion

We now present the quantitative results where we compare TPP against the baseline
algorithms on the data set of labeled trajectories.

How well does TPP generalize to new tasks? To study generalization of preference
feedbacks we evaluate performance of TPP-pre-trained (i.e., TPP algorithm under
pre-trained setting) on a set of tasks the algorithm has not seen before. We study gen-
eralization when: (a) only the object being manipulated changes, e.g., a bowl replaced
by a cup or an egg carton replaced by tomatoes, (b) only the surrounding environment
changes, e.g., rearranging objects in the environment or changing the start location of
tasks, and (c) when both change. Figure 7 shows nDCG@3 plots averaged over tasks
for all types of activities for both household and grocery store settings.4 TPP-pre-
trained starts-off with higher nDCG@3 values than TPP-untrained in all three cases.
Further, as more feedback are provided, performance of both algorithms improves
and they eventually give identical performance. We further observe, generalizing to
tasks with both new environment and object is harder than when only one of them
changes.

How does TPP compare to MMP-online? MMP-online proceeds by assuming
every user feedback as optimal, and hence over the time it accumulates many
contradictory/sub-optimal training examples. We empirically observe MMP-online
generalizes better in grocery store setting than the household setting (Fig. 7), however

4Similar results were obtained with nDCG@1 metric, not included here due to space constraints.
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under both settings its performance remains much below TPP. This also highlights
the sensitivity of MMP to sub-optimal demonstrations.

How does TPP compare to Oracle-svm? Oracle-svm starts off with nDCG@3
values higher than any other algorithm (Fig. 7). The reason being, it is pre-trained
using expert’s labels on trajectories, and for the same reason it not realizable in
practice. Furthermore, in less than 5 feedback on new task TPP improves over Oracle-
svm, which is not updated since it requires expert’s labels on test set.

How does TPP compare to Manual? We encode some preferences into the planners
e.g., keep a glass of water upright. However, some preferences are difficult to specify,
e.g., not to move heavy objects over fragile items. We empirically found (Fig. 7) the
resultant manual algorithm produces poor trajectories—in comparison with TPP—
with an average nDCG@3 of 0.44 over all types of household activities.
Table 1 reports nDCG values averaged over 20 feedback in untrained setting. For both
household and grocery checkout activities TPP performs better than other baseline
algorithms.

How does TPP perform with weaker feedback? To study the robustness of TPP
to less informative feedback we consider the following variants of re-rank feedback:

1. Click-one-to-replace-top: User observes the trajectories sequentially in order of
their current predicted scores and clicks on the first trajectory which is better than
the top ranked trajectory.

2. Click-one-from-5: Top 5 trajectories are shown and user clicks on the one he thinks
is the best after watching all 5 of them.

3. Approximate-argmax: This is a weaker feedback, here instead of presenting top
ranked trajectories, five random trajectories are selected as candidate. The user selects
the best trajectory among these 5 candidates. This simulates a situation when com-
puting an argmax over trajectories is prohibitive and therefore approximated.

Figure 8 shows the performance of TPP-untrained receiving different kinds of
feedback and averaged over three types of activities in grocery store setting. When
feedback is more α-informative the algorithm requires fewer of those to learn pref-
erences. In particular, click-one-to-replace-top and click-one-from-5 are more infor-
mative than approximate-argmax and therefore require fewer feedback to reach a
given nDCG@1 value. Approximate-argmax being the least informative continues
to show slow improvement. Since all the feedback are α-informative, for some α > 0,
eventually TPP-untrained is able to learn the preferences.

6.3 Robotic Experiment: User Study in Learning Trajectories

We perform a user study of our system on Baxter and PR2 on a variety of tasks of
varying difficulties in grocery store and household settings respectively. Thereby we

millitsa@ece.neu.edu



332 A. Jain et al.

Ta
bl

e
1

C
om

pa
ri

so
n

of
di

ff
er

en
ta

lg
or

ith
m

s
in

un
tr

ai
ne

d
se

tti
ng

G
ro

ce
ry

st
or

e
se

tti
ng

on
B

ax
te

r
H

ou
se

ho
ld

se
tti

ng
on

PR
2

A
lg

or
ith

m
s

M
an

ip
ul

at
io

n
ce

nt
ri

c
E

nv
ir

on
m

en
t

ce
nt

ri
c

H
um

an
ce

nt
ri

c
M

ea
n

M
an

ip
ul

at
io

n
ce

nt
ri

c
E

nv
ir

on
m

en
t

ce
nt

ri
c

H
um

an
ce

nt
ri

c
M

ea
n

G
eo

m
et

ri
c

0.
46

(0
.4

8)
0.

45
(0

.3
9)

0.
31

(0
.3

0)
0.

40
(0

.3
9)

0.
36

(0
.5

4)
0.

43
(0

.3
8)

0.
36

(0
.2

7)
0.

38
(0

.4
0)

M
an

ua
l

0.
61

(0
.6

2)
0.

77
(0

.7
7)

0.
33

(0
.3

1)
0.

57
(0

.5
7)

0.
53

(0
.5

5)
0.

39
(0

.5
3)

0.
40

(0
.3

7)
0.

44
(0

.4
8)

M
M

P-
on

lin
e

0.
47

(0
.5

0)
0.

54
(0

.5
6)

0.
33

(0
.3

0)
0.

45
(0

.4
6)

0.
83

(0
.8

2)
0.

42
(0

.5
1)

0.
36

(0
.3

3)
0.

54
(0

.5
5)

T
PP

0.
88

(0
.8

4)
0.

90
(0

.8
5)

0.
90

(0
.8

0)
0.

89
(0

.8
3)

0.
93

(0
.9

2)
0.

85
(0

.7
5)

0.
78

(0
.6

6)
0.

85
(0

.7
8)

Ta
bl

e
co

nt
ai

ns
nD

C
G

@
1(

nD
C

G
@

3)
va

lu
es

av
er

ag
ed

ov
er

20
fe

ed
ba

ck
se

millitsa@ece.neu.edu



Beyond Geometric Path Planning … 333

Fig. 8 Study of re-rank
feedback

show our approach is practically realizable, and the combination of re-rank, zero-
G/interactive feedback allows users to train the robot in few feedback.

Experiment setup: In this study, five users (not associated with this work) used
our system to train Baxter on grocery checkout tasks, using zero-G and re-rank
feedback. For training Baxter, the users provided zero-G feedback kinesthetically
on the robot, while re-rank was elicited in a simulator. For PR2, in place of zero-
G, two users provided interactive feedback on Rviz simulator. The two users were
familiar with Rviz-ROS trained PR2 on household tasks.5 A set of 10 tasks of varying
difficulty level was presented to users one at a time, and they were instructed to
provide feedback until they were satisfied with the top ranked trajectory. To quantify
the quality of learning each user evaluated their own trajectories (self score), the
trajectories learned by the other users (cross score), and those predicted by Oracle-
svm, on a Likert scale of 1–5 (where 5 is the best). We also recorded the time a
user took for each task—from start of training till the user was satisfied with the top
ranked trajectory.

Is re-rank feedback easier to elicit from users than zero-G or interactive? In
our user study, on average a user took 3 re-rank and 2 zero-G feedback per task to
train a robot (Table 2). From this we conjecture, for high DoF manipulators re-rank
feedback is easier to provide than zero-G—which requires modifying the manipulator
joint angles. However, an increase in the number of zero-G (interactive) feedback
with task difficulty suggests, Fig. 9 (Right), users rely more on zero-G feedback for
difficult tasks since it allows precisely rectifying erroneous waypoints. Figures 10
and 11 show two example trajectories learned by a user.

How many feedback a user takes to improve over Oracle-svm? On average, a user
took 5 feedback to improve over Oracle-svm, Fig. 9 (Left), which is also consistent
with our quantitative analysis. In grocery setting, user 4 and 5 were critical towards

5The smaller user size on PR2 is because it requires users with experience in Rviz-ROS. Further,
we also observed users found it harder to correct trajectory waypoints in a simulator than providing
zero-G feedback on the robot. For the same reason we report training time only on Baxter for
grocery store setting.
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Table 2 Shows learning statistics for each user

User # Re-ranking
feedback

# Zero-G
feedback

Average time
(m)

Trajectory-quality

self cross

1 5.4 (4.1) 3.3 (3.4) 7.8 (4.9) 3.8 (0.6) 4.0 (1.4)

2 1.8 (1.0) 1.7 (1.3) 4.6 (1.7) 4.3 (1.2) 3.6 (1.2)

3 2.9 (0.8) 2.0 (2.0) 5.0 (2.9) 4.4 (0.7) 3.2 (1.2)

4 3.2 (2.0) 1.5 (0.9) 5.3 (1.9) 3.0 (1.2) 3.7 (1.0)

5 3.6 (1.0) 1.9 (2.1) 5.0 (2.3) 3.5 (1.3) 3.3 (0.6)

User # Re-ranking
feedbacks

# Interactive
feedbacks

Trajectory-quality

self cross

1 3.1 (1.3) 2.4 (2.4) 3.5 (1.1) 3.6 (0.8)

2 2.3 (1.1) 1.8 (2.7) 4.1 (0.7) 4.1 (0.5)

Self and cross scores of the final learned trajectories. The number inside bracket is standard deviation.
(Top) Results for grocery store on Baxter. (Bottom) Household setting on PR2

Grocery store setting on Baxter.

Household setting on PR2.

Fig. 9 (Left) Average quality of the learned trajectory after every one-third of total feedback. (Right)
Bar chart showing the average number of feedback (re-ranking and zero-G) and time required (only
for grocery store setting) for each task. Task difficulty increases from 1 to 10

millitsa@ece.neu.edu



Beyond Geometric Path Planning … 335

Fig. 10 Shows trajectories for moving a bowl of water in presence of human. Without learning
robot plans an undesirable trajectory and moves bowl over the human (waypoints 1–3–4). After six
user feedback robot learns the desirable trajectory (waypoints 1–2–4)

Fig. 11 Shows the learned trajectory for moving an egg carton. Since eggs are fragile robot moves
the carton near the table surface. (Left) Start of trajectory. (Middle) Intermediate waypoint with egg
close to the table surface. (Right) End of trajectory

trajectories learned by oracle-svm and gave them low scores. This indicate a possible
mismatch in preferences between our expert (on whose labels oracle-svm trained)
and user 4, 5.

How do users’ unobserved score functions vary? An average difference of 0.6
between users’ self and cross score (Table 2) in grocery checkout setting suggests
preferences varied across users, but only marginally. In situations where this dif-
ference is significant and a system is desired for a user population, a future work
might explore coactive learning for satisfying user population which has recently
been applied to search engines [35]. For household setting the sample size is small
to draw a such conclusion.

How long does it take for users to train a robot? We report training time only for
grocery store setting, because the interactive feedback in household setting requires
users with experience in Rviz-ROS. Further, we observed that users found it difficult
to modify robot’s joint angles in a simulator to their desired configuration. In grocery
checkout setting, among all the users, user 1 had the strictest preferences and also
experienced some early difficulties in using the system and therefore took longer than
others. On an average, a user took 5.5 minutes per task which we believe is acceptable
for most applications. Future research in human computer interaction, visualization

millitsa@ece.neu.edu



336 A. Jain et al.

and better user interface [42] could further reduce this time. For example, simulta-
neous visualization of top ranked trajectories instead of sequentially showing them
to users (which we currently do) could bring down the time for re-rank feedback.
Despite its limited size, through user study we show our algorithm is realizable in
practice on high DoF manipulators. We hope this motivates researchers to build
robotic systems capable of learning from non-expert users.

For more details, videos & code, visit: http://pr.cs.cornell.edu/coactive/

7 Conclusion

With manipulators in human environments, it is important for robots to plan motions
that follow user’s preferences. In this work, we considered preferences that go beyond
simple geometric constraints and that considered surrounding context of various
objects and humans in the environment. We presented a coactive learning approach
for training robots these preferences through iterative improvements from non-expert
users. Unlike in standard learning from demonstration approaches, our approach does
not require the user to provide optimal trajectories as training data. We evaluated our
approach on various household (with PR2) and grocery store checkout settings (with
Baxter). Our experiments suggest that it is indeed possible to train robots within a
few minutes with just a few incremental feedbacks from non-expert users.
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Learning from Demonstrations Through
the Use of Non-rigid Registration

John Schulman, Jonathan Ho, Cameron Lee and Pieter Abbeel

Abstract We consider the problem of teaching robots by demonstration how to
perform manipulation tasks, in which the geometry (including size, shape, and pose)
of the relevant objects varies from trial to trial. We present a method, which we
call trajectory transfer, for adapting a demonstrated trajectory from the geometry at
training time to the geometry at test time. Trajectory transfer is based on non-rigid
registration, which computes a smooth transformation from the training scene onto
the testing scene. We then show how to perform a multi-step task by repeatedly look-
ing up the nearest demonstration and then applying trajectory transfer. As our main
experimental validation, we enable a PR2 robot to autonomously tie five different
types of knots in rope.

1 Introduction

This paper is concerned with teaching robots to perform manipulation tasks by
demonstration. In other words, a human performs the task one or more times (by
teleoperation or directly guiding the robot’s end-effector), and a learning algo-
rithm extracts the essence of these demonstrations so the robot can perform the
task autonomously under different starting conditions.

Our main running example is tying knots in rope. Knot tying is required in several
tasks of practical importance, including tying fasteners aroundwire bundles (common
in aerospace applications) and surgical suturing. While it is our running example,
our method is not specific to knot tying and we also experimentally illustrate its
capabilities in folding clothing and tasks involving household objects.

The procedure for tying a given type of knot can be broken into several segments
based on grab and release events. For example, one segment might be to grab the end
of the rope, move it to form a loop, and then release it. For each of these segments,
the end-effector trajectory ought to depend on the geometry of the rope in some way
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that must be inferred by the algorithm. This paper presents a non-parametric way to
learn from examples how the trajectory depends on the geometry of the initial state.

Our main contribution is to show how non-rigid registration can be used to adapt
a demonstrated trajectory to a new situation. The problem of generalizing a single
demonstration can be described as follows. Suppose that at training time, Statetrain
is the initial state of the rope (represented as an unorganized point cloud) andTrajtrain
is the trajectory applied to that state by the demonstrator. At test time, the robot is
presented with a new state Statetest and must generate a new trajectory Trajtest
based on the triple (Statetrain,Trajtrain,Statetest).

Our procedure, which we call trajectory transfer, is summarized as follows. We
register Statetrain to Statetest , obtaining a nonrigid transformation f : R3 → R

3,
and then we apply f to Trajtrain to obtain the new trajectory Trajtest . See Fig. 1
for illustration. Trajectory transfer enables the robot to generalize from a single
demonstration to a much larger part of the state space. If multiple demonstrations are
available, one can look up the demonstration with the closest initial state and then
use trajectory transfer.

Our second contribution is amethod for completingmulti-step tasks robustly using
a large number of demonstrations of the task. The method is simple: we repeatedly
look up the nearest neighbor, using the registration cost as the measure of distance,
and then apply trajectory transfer. This simple procedure can be used as a complete
policy that enables the robot to complete a multi-step task, eliminating the need to
program a custom state machine. This policy recovers from failures, assuming that

trajectory
transfer

3D registration

Fig. 1 Trajectory transfer as applied to the first stage (segment) of the overhand knot procedure.
Top left: robot’s first view of rope at training time. Top right: robot’s first view of rope at testing time.
Bottom left: point cloud of rope with demonstrated trajectory overlaid, along with x-y coordinate
grid. Bottom right: point cloud of rope with warped trajectory generated by our algorithm, along
with warped coordinate grid. Note that this trajectory is the first step of a multi-step procedure, and
the warping will be performed at least two more times for this knot

millitsa@ece.neu.edu



Learning from Demonstrations Through the Use of Non-rigid Registration 341

the demonstrator has provided examples of the failure states alongwith the corrective
motions that get out of them.

The main contributions of this work can be summarized as follows:

• This is the first work to use non-rigid registration to adapt end-effector trajectories
to a new scene; we use a non-rigid registration formulation that is well-suited to
this task.

• We describe how to use optimization-based motion planning to optimally execute
the transferred gripper trajectories.

• We present experiments on knot tying and other multi-step tasks, where we repeat-
edly use the registration cost to choose the nearest demonstration.

2 Related Work

Nonrigid registration has been used in other fields to transfer information from one
geometric entity to another. In medical image analysis, a patient’s image is com-
monly registered to an atlas to locate anatomical structures [1]. In 3D modeling,
it has been used to fill in missing parts of scans [2]. In computer vision, nonrigid
registration has been used for object recognition and handwriting recognition [3].
Also in vision, using nearest-neighbor based techniques (not involving registration)
to transfer various sorts of metadata from one image onto another has had some
recent success [4–6].

Learning from demonstrations, also known as programming by demonstration,
has always been a topic of interest in robotics; see [7] for a review. Calinon et al.
[8, 9] have advanced one line of work that is similar in motivation to ours, in that
they develop a learning method to perform manipulation tasks under varying initial
conditions. Their approach is based on learning a mixture of Gaussians to encode the
joint distribution of the robot trajectory and the environment state variables, so that
by conditioning on the environment state, they can infer the appropriate trajectory.
Ye and Alterovitz have augmented this approach with a repair stage that does motion
planning around the learned trajectory to avoid obstacles [10].

The approach of Calinon and Billard assumes access to a featurization of the
environment, since regression requires an input vector of fixed dimensionality. Their
approach is most applicable in situations when the learned trajectory depends on a
few landmarks in the environment that can be reliably detected. Their approach is
not applicable to knot tying, where there is no fixed-length vector of landmarks that
can be extracted from every rope configuration. In contrast, our approach operates
directly on point clouds—the outputs of our sensor hardware—so it is suitable for
this task, and it can be applied to a new task without developing a new vision system.

Rope manipulation and knot tying have been a subject of robotics research for
almost three decades [11]. Researchers have addressed the problemwithmotion plan-
ning [12, 13], learning from observation (using knot theoretic representations) [14],
robotic hands with tactile feedback [15], and fixtures that enable robust open-loop
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execution [16]. Note that our work is targeted at general manipulation tasks and is
not specialized for the knot tying problem.

3 Generalizing from One Example: Trajectory Transfer

This section describes our method for generalizing from a single demonstrated tra-
jectory. The problem is follows: at training time, the initial state is Statetrain, and the
demonstrator provides a trajectory Trajtrain. At testing time, the robot is presented
with a new state Statetest and must generate an appropriate trajectory Trajtest .

First we’ll review non-rigid registration, which lies at the core of our approach.
Non-rigid registration finds a mapping from a “source” geometry to a “target” geom-
etry. In our application, the source geometry is Statetrain, and the target geometry is
Statetest .

3.1 Non-rigid Registration

3.1.1 Registration with Known Correspondences

First let us suppose that the source geometry consists of K landmark points
p1, p2, . . . , pK and the target geometry consists of K corresponding landmark points
p′
1, p′

2, . . . , p′
K . Then the registration problem is to compute a function f : R3 → R

3

that maps each source point to its corresponding target point, which can be quantified
as the optimization problem

minimize
f

{
Regularizer(f) +

∑

k

∥∥f(pk) − p′
k

∥∥2

}
. (1)

The regularizer encourages the function to be smooth, at the expense of increasing
the norm of the residuals

∥∥p′
k − f(pk)

∥∥.
We’ll use a particular regularizer: the thin plate spline functional,

Regularizer(f) =
∫

dx
∑

i∈{x,y,z}

∥∥D2 fi (x)
∥∥2

Frob (2)

where ‖·‖Frob refers to the Frobenius norm, and i indexes over the spatial dimensions
of the range of f . The thin plate spline regularizer (2) encourages f to be globally
smooth and assigns zero cost to affine functions. It has been observed in other fields
(e.g., [17]) that thin plate splines extrapolate well on spatial data; extrapolation is
important for our application. As shown in [18], Eq. (1) can be analytically solved
efficiently; details are provided in Appendix “Thin plate splines”.
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3.1.2 Registration Without Known Correspondences

In many problems of interest we are not given corresponding landmarks, rather we
have two unorganized point clouds P = {p1, . . . , pM } and P′ = {

p′
1, . . . p′

N

}
and

we want to find a transformation f so that f (P) = {f(p1), . . . , f(pM)} is similar to
P′ in some sense. We use a modification of the TPS-RPM algorithm of Chui and
Ragnarajan [19], which alternates between the following steps (1) estimate corre-
spondences between source and target point clouds, and (2) fit a thin plate spline
transformation based on these correspondences. Details are provided in Appendix
“Iterative Registration Algorithm”.

3.2 Trajectory Transfer Procedure

Our trajectory transfer procedure consists of three steps:
Step 1: Find a transformation f from the training scene to the test scene. Sup-

pose Ptrain and Ptest are the point clouds of the manipulated object in the training and
test scene, respectively. We perform non-rigid registration as described in Sect. 3.1.2
to obtain the transformation f that maps Ptrain onto Ptest .

Step 2: Apply transformation f to the demonstrated end-effector trajec-
tory. Suppose the demonstrated end-effector trajectory is given by a series of poses
T1, T2, . . . , TT , where each pose Tt consists of a position pt and an orientation Rt .

We transform the positions and orientations as follows, to adapt the trajectory to
the test situation:

pt → f(pt ) (3)

Rt → orth
(
Jf(pt )Rt

)
. (4)

Here, Jf(p) is the 3 × 3 Jacobian matrix of f evaluated at p,

Jf =
⎛

⎝
∂ fx/∂x ∂ fx/∂y ∂ fx/∂z
∂ fy/∂x ∂ fy/∂y ∂ fy/∂z
∂ fz/∂x ∂ fz/∂y ∂ fz/∂z

⎞

⎠ , (5)

and orth(·) is a function that orthonormalizes a 3 × 3 matrix (e.g. using the SVD).
Equation (3) says that we apply the warping function f to all of the positions. As

for rotations, the natural way to transform a vector v at a point p through a function
f is to multiply it by Jf(p), the Jacobian.1 Equation (4) applies this transformation to

1In differential geometry, given a mapping f between two manifolds M and N , the so-called
pushforward maps the tangent space Tp at p ∈ M to the tangent space Tf(p) at f(p) ∈ N . In terms
of coordinates, it multiplies a vector v ∈ Tp by the Jacobian of the transformation [20].
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the x , y, and z axes of the gripper, and then orthogonalizes the resulting basis so it
corresponds to a gripper pose.

Note that if f happens to be a rigid transformation Tf , then our method simply
left-multiplies each end-effector pose Tt by it

Tt → Tf Tt . (6)

Step 3: Convert the end-effector trajectory into a joint trajectory. The simplest
approach would be to use inverse kinematics. We found that this approach was
not sufficient because there is often no continuous and collision-free trajectory that
achieves the desired end-effector trajectory, so we need to compromise. To enable
the robot to follow the trajectory as closely as possible while satisfying constraints,
we formulate the following optimization problem on the joint trajectory θ1:T :

minimize
θ1,...,θT

[
T −1∑

t=1

‖θ t+1 − θ t‖2 + μ

T∑

t=1

∥∥∥err
(

T̃−1
t · fk(θ t )

)∥∥∥
�1

]

subject to

No collisions, with safety margin dsafe
θmin ≤ θ1:T ≤ θmax (Joint limits)

Here, T̃t is the desired end-effector pose at time t , fk(·) indicates the robot’s forward
kinematics function applied to θ t , and μ is a scalar parameter. err(·) is an error
function that maps a pose in SE(3) to an error vector in R

6. In particular, after
decomposing a pose T into translation p and quaternion rotation q, the error vector
is simply given by (px , py, pz, qx , qy, qz).

We solve this problem using the trajectory optimization method from [21]. We
initialize with the joint trajectory from the demonstration, which is in roughly the
right part of configuration space. In our experiments, this initialization strategy led
to finding good locally-optimal trajectories.

We will illustrate the trajectory transfer procedure with a two-dimensional toy
example, where the task is to draw a two-dimensional curve through four guide-
points. Note that this example merely illustrates the trajectory of positions, not ori-
entations. The left image of Fig. 2 shows the training situation: environment shown in
solid lines, gripper tip trajectory shown as a dotted line, coordinate grid lines shown
as thin solid lines. The right image shows the test situation for which we want to
predict a good gripper trajectory. The registered points are the four corners. First, we
use the method of thin plate splines to find a function that maps the four corners of
the square in the training situation to the four vertices of the new quadrilateral. Then
we apply the nonlinear transformation f to the demonstrated path to obtain a new
path (dotted line), which has the same topological characteristics. The warped grid
lines are shown.
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Fig. 2 Illustration of trajectory transfer procedure on a cartoon 2-Dexample.Left: training situation.
Right: testing situation

3.3 Some Intuition on Conditions Under Which Trajectory
Transfer Is Likely to Succeed

3.3.1 Cost Function Invariance

Our trajectory transfer procedure can be justified by an invariance assumption,
which relates it to cost function learning. In inverse optimal control, one learns
a cost function L(State,Traj) assuming that Traj is generated according to
Traj = argminTraj L(State,Traj). Probability density function estimation is
closely related—here, L is the negative log-likelihood. Our trajectory transfer pro-
cedure can be justified by assuming that there is a class of smooth transformations f
with the following property:

L(State,Traj) = L(f(State), f(Traj)) (7)

Here, f(Traj) means transforming the trajectory as described in Sect. 3.2.
Given that the demonstration trajectory has low cost, and f transforms Statetrain

into Statetest , it follows that trajectory transfer produces a low-cost trajectory:

L(Statetest, f(Trajtrain)) ≈ L(f(Statetrain), f(Trajtrain))

= L(Statetrain,Trajtrain). (8)

Equation (7) is a strong assumption and defines L on a large part of the state
space using a single (State,Traj) pair. That said, one can imagine situations where
Eq. (7) does not hold, even for a rigid transformation f—for example, when absolute
orientation of the robot’s end-effector matters.

3.3.2 Dynamics Invariance

An alternative perspective is that trajectory transfer works in scenarios where the
dynamics of the system are approximately invariant—more properly, covariant—
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under sufficiently smooth coordinate transformations. Suppose that the effect of
applying the trajectory Traj is given by the propagator ΠTraj, so that

ΠTraj(State
t
) = Statet+1 (9)

The dynamics are defined to be covariant under the transformation f if and only if

f(ΠTraj(State
t
)) = Πf(Traj)( f (Statet

)) (10)

which is illustrated by the following commutative diagram

{
Statet

train

} ΠTraj−−−−→
{
Statet+1

train

}

f

⏐⏐�
⏐⏐�f

{
Statet

test

} Πf(Traj)−−−−→
{
Statet+1

test

}
(11)

Let G denote a goal set, i.e., a set of desirable final states. Suppose that the
assumptions hold:

1. f(Statet
train) = Statet

test, i.e., f transforms Statetrain into Statetest .
2. Statet+1

train ∈ G, i.e., the demonstration ends up in the goal state.
3. f(G) = G, i.e., the goal set is preserved by f
4. Equation (10) holds, i.e., the dynamics are covariant under f .

Then by applying the trajectory f(Traj) to Statet
test , we obtain f(Statet+1

train) ∈ G,
i.e., the final state is in the goal set.

In the knot tying domain, the goal set is defined topologically, and a transfor-
mation f will preserve it, provided that it is a homeomorphism (i.e., a continuous
function whose inverse is continuous), justifying assumption 3. Assumption 4 holds
approximately in this domain; we have checked this qualitatively by comparing the
final states of the rope at training and test time.

4 Generalizing from Many Examples: Nearest
Neighbor Method

Intuitively, if Statetrain is very close to Statetest , then trajectory transfer is likely to
work. Given a collection of demonstrations, with initial states State1,State2, . . . ,
StateK , we can select the one that is closest to Statetest , and use that one for
trajectory transfer:

Statei∗ = arg min
i∈1,2,...,K Distance(Statei ,Statetest). (12)
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One crucial question is how to measure distance. One natural distance measure of
geometric similarity is the bidirectional fitting cost used in our registration procedure.

Regularizer(f) +
∑

k

∥∥f(pk) − p′
k

∥∥2

+Regularizer(g) +
∑

k

∥∥g(p′
k) − pk

∥∥2

We found that this distance function agreed very well with our intuition about which
states are closer and appropriate for trajectory transfer.

We can use this distance function to define a simple policy for completing multi-
step tasks. The policy loops through the following steps until task completion:

1. Acquire a new observation Statetest .
2. Choose the nearest demonstration using the registration cost, as in Eq. (12).
3. Apply trajectory transfer to obtain a new trajectory Trajtest .
4. Execute Trajtest on the robot.

This policy enables the robot to recover from errors, provided that the demonstrator
has provided a demonstration starting from the failure state.

5 Experiments with Rope

Weenabled the PR2 to autonomously tie five different types of knot: overhand, figure-
eight, double-overhand, square knot, and clove hitch (around a pole). The latter four
knots are shown at several stages of execution in Fig. 3. Videos are available at http://
rll.berkeley.edu/isrr2013lfd.

Teaching was performed kinesthetically, by guiding the robot’s arms through the
motion with its controllers off. The demonstrator noted look, start, and stop times,
which indicated when to acquire a point cloud for the initial configuration and when
the motion begins and ends. Point clouds were acquired from an RGBD camera
mounted on the PR2 head. We extracted the rope points using color filtering (the
rope was red or white, and the tablecloth was green).

We first performed an exploratory experiment with one demonstration per knot
tie, where wemeasured how robust the procedure was under perturbations of the rope
state of the demonstrations. We randomly perturbed the rope as follows. First the
rope was laid out in the initial configuration from the demonstration, Then each of
five points, uniformly spaced along the length of the rope, was manually dragged by
a distance dpert in a random direction. Then, we executed the knot-tying procedure
and judged its success in tying the knot.

We performed five trials for each type of knot. The rates of success of these knot
ties are shown in Table1. As expected, the failure rate increases at higher dpert, where
the test situation is further away from the training situation. Two of the common
failure modes were (1) the rope would end up in a previously unseen crossing state,
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Fig. 3 Robot executing knot ties. Top row to bottom row: figure-eight knot, double-overhand knot,
square knot, and clove hitch. Figure1 already illustrated the overhand knot.

Table 1 Results for generalizing from a single demonstration: knot-tie success versus size of
random perturbations

Knot type Segments Success (dpert = 3cm) (dpert = 10cm)

Overhand 3 5/5 4/5

Figure-eight 4 5/5 1/5

Dbl-overhand 5 3/5 3/5

Square 6 5/5 3/5

Clove hitch 4 1/5 0/5

often due to a small difference in its position; (2) the robot would grab the wrong
piece of rope, or two pieces instead of one.

The above results suggest that when starting from a state that is very close to a
demonstration, the success rate is high, at least for the easier knots. We hypothesized
that if we collected enough demonstrations, every rope state of interested would
be near some demonstration’s initial state, so we would achieve that high level of
performance over the entire state space by doing nearest neighbor lookups.

To test this hypothesis and explore how our algorithm performs in the many-
demonstrations regime, we collected a large number of demonstrations of the over-
hand knot. The dataset contains a total of 148 trajectory segments, which include
36 demonstrations of the standard 3-step sequence and 40 additional segments start-
ing from failure states—states that prevent the standard knot tying procedure from
proceeding and require corrective actions.

Our initial (qualitative) results are promising: we find that the nearest-neighbor
policy from Sect. 4 is able to successfully tie knots from a much larger set of initial
configurations than was possible with a single demonstration, and it is also able to
choose corrective movements to recover from the failure states. Two executions are
shown in Fig. 4.
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Stage 3Stage 2Stage 1

Stage 1 Stage 2 Stage 3

Need to grab here,

but not enough room

Corrective move

Fig. 4 Two successful executions of an overhand knot, based on our dataset of 148 demonstration
segments. The top row shows the usual three-stage procedure. The bottom row shows a situation
where an extra step was needed. After stage two, the rope ended up in a difficult state—the end that
it needs to grab was too short. However, the nearest neighbor lookup found a demonstration with
a very similar starting state and a corrective movement, which (after trajectory transfer) made the
end graspable.

6 Experiments on Other Manipulation Tasks

We performed some other experiments to validate that the proposed method can be
applied to manipulation tasks other than knot tying. The three tasks considered were
folding a T-shirt, picking up a plate using a non-trivial two-arm motion, and opening
up a bottle. The former task was executed using three segments, whereas the latter
two consisted of one open-loop trajectory segment. We performed these tasks with
the same algorithm and code that was used for the knot tying. See Fig. 5.

7 Conclusion

We have presented a method for adapting trajectories to new situations, based on
non-rigid registration between the geometry of the training scene and the testing
scene. This enables us to successfully perform a task under various initial conditions
based on a single demonstration. Our method is justified by invariance assumptions
as discussed in Sect. 3.3.

The non-rigid registration metric can also be used to find the nearest demonstra-
tion, when multiple demonstrations have been provided. This simple scheme enables
our algorithm to successfully perform challenging multi-step manipulation tasks.
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Fig. 5 Top row, left image: recording demonstration on a large T-shirt. Top row, right images:
executing shirt folding procedure autonomously on small T-shirt, based on single demonstration on
large T-shirt. Bottom row, left: demonstration and autonomous execution of plate pickup. Round
plate from training was registered to rectangular plate at test time. Bottom row, right: demonstration
and autonomous execution of bottle opening. The bottle used at test time had a different size and
shape from the one used for training

8 Source Code

Complete source code and tutorials for our software are available at http://rll.berkeley.
edu/rapprentice. Other supplementary material for this paper is available at http://
rll.berkeley.edu/isrr2013lfd.
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Appendix

This appendix describes our registration procedure, which is based of the TPS-RPM
algorithm of Chui and Ragnarajan [19].

Thin plate splines

The classic method of smoothed thin plate splines [18] minimizes the following cost
functional on f : Rd → R:

J ( f ) =
∑

i

(yi − f (xi ))
2 + λ ‖ f ‖2tps (13)
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Here, ‖ f ‖tps is a measure of curvature or distortion, and is defined as

‖ f ‖2tps =
∫

dx
∥∥D2 f (x)

∥∥2

Frob (14)

where D2 f is the matrix of second partial derivatives of f , and ‖·‖2Frob indicates its
Frobenius norm, i.e., the sum of squares of its entries. λ is a parameter that controls
the tradeoff between smoothness and goodness-of-fit.

Remarkably, the minimizer to the functional in Eq. (13) is a finite-dimensional
expansion in terms of basis functions, centered around the data points xi , plus an
affine part:

f (x) =
∑

i

ai K (xi , x) + bT x + c (15)

where K is the kernel function, and in 3D, K (r) = −r (after dropping the irrelevant
constant factor.)

In non-rigid registration, one needs to solve for a function f : R3 → R
3, rather

than a scalar-valued function. We can build a vector-valued function f by combining
three scalar-valued components of the form (15), i.e., f(x) = ( f0(x), f1(x), f2(x))T .
Thus f has the form

f(x) =
∑

i

ai K (xi , x) + Bx + c (16)

for ai ∈ R
3, B ∈ R

3×3, c ∈ R
3. Adding an additional regularization term r(B) on

the linear part of the transformation, we obtain the following optimization problem

min
A,B,c

∥∥Y − KA − XB − 1cT
∥∥2

Frob + trace(AT KA) + r(B)

subject to XT A = 03×3 and 1T A = 01×3 (17)

where X = (
x1 x2 · · ·)T

, Y = (
y1 y2 · · ·)T

, and A = (
a1 a2 · · · )T

. For certain
choices of r(B) This problem completely decouples the three components of f , i.e.,
we are separately fitting three functions for the separate output dimensions.

We found that the regularization r(B)was necessary because sometimes the trans-
formation is underdetermined in certain dimensions. For our experiments, we used
r(B) = trace

(
(B − I)T D(B − I)

)
, where D is a diagonal matrix. With this quadratic

regularization term, the optimization problem still can be solved analytically as a
least squares problem.
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Iterative Registration Algorithm

This section considers the problem raised in Sect. 3.1.2 of registering twopoint clouds
where we are not given correspondences between their points. We use a modification
of theTPS-RPMalgorithmofChui andRagnarajan [19],where themainmodification
is to jointly fit a forward transformation f and inverse transformation g. The algorithm
iterates between two steps: soft assignment between the points, and fitting the pair
of thin plate spline transformations f, g. First, let us assume that we have N source
points x1, . . . , xN and M target points y1, . . . , yM .

The full optimization problem that we solve is the following

minimize
f,g

N∑

n=1

M∑

m=1

Cnm
(‖f(xn) − ym‖2 + ‖g(ym) − xn‖2

)+

Regularizer(f) + Regularizer(g) (18)

such that C ∈ R
N×M is is the unique solution to the following constraints:

Cnm = sntm exp
(−(‖ym − f(xn)‖2 + ‖xn − g(ym)‖2))/2σ 2

)
,

n = 1, . . . , N , m = 1, . . . , M
M∑

m=1

Cnm = 1, n = 1, . . . , N (19)

N∑

n=1

Cnm = N/M m = 1, . . . , M (20)

where s ∈R
N+ and t ∈R

M+ are scaling factors (uniquely determined by constraints (19)
and (20)), and σ is a parameter that controls the correspondence difference, which
will by systematically varied in the optimization procedure below.

Alternating optimization procedure. Following the Chui and Ragnarajan [19],
we alternate between fitting (solving for f, g) and soft assignment (solving for C).
Meanwhile, we are exponentially decreasing two parameters: a scale parameter σ

that controls the correspondence distance, and the regularization parameter λ for
the thin plate spline fitting. These parameters will be decreased exponentially in
the series σ1, σ2, . . . , σNumIterations and λ1, λ2, . . . , λNumIterations. The algorithm is
given below:

Initialize f, g to the identity
For i = 1 to NumIterations
Compute correspondence matrix C
(using X, Y, f, g, σi )

Fit forward and inverse transformations f, g
(using X, Y, C, λi )
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Robust Contact Generation for Robot
Simulation with Unstructured Meshes

Kris Hauser

Abstract This paper presents a numerically stable method for rigid body simulation
of unstructured meshes undergoing forceful contact, such as in robot locomotion and
manipulation. The key contribution is a new contact generation method that treats
the geometry as having a thin virtual boundary layer around the underlying meshes.
Unlike existing methods, it produces contact estimates that are stable with respect to
small displacements, which helps avoid jitter or divergence in the simulator caused by
oscillatory discontinuities. Its advantages are particularly apparent on non-watertight
meshes and can easily simulate interaction with partially-sensed and noisy objects,
such as those that emerge from low-cost 3D scanners. The simulator is tested on a
variety of robot locomotion and manipulation examples, and results closely match
theoretical predictions and experimental data.

1 Introduction

Physics simulators are useful tools for designing robust and safe robot behaviors
because robot hardware is expensive and laborious to maintain. Control algorithms
can be rapidly prototyped in simulation without the risk of damage to the robot or
objects in the robots environment, and simulations provide developers with easy
access to objective common benchmarks. For example, the recent DARPA Virtual
Robotics Challenge asks teams to control a disaster relief robot capable of human
skills in a physics simulator, with the assumption that high-quality virtual behaviors
will be duplicable on a physical robot. But so far it has proven challenging to achieve
high-fidelity simulationswith lowsetup times.Existing simulators rarely yield “out of
the box” performance for complex contact phenomena, and often take prohibitively
long to tune. For stability, most existing simulators require that the environment
and/or robot be equipped with collision hulls that approximate the true geometry
with simple spheres, cylinders, boxes, or convex polyhedra. This is due to poor
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Fig. 1 Astack of triangulated cubes spaced 1cm apart is dropped.Left usingGIMPACT, the built-in
mesh-mesh collision detection in the Open Dynamics Engine and Bullet libraries “blows up” nearly
instantly after the second block touches the first (20ms). Contact points and forces are displayed.
Right the new method exhibits no perceptible jitter over several minutes of simulation time

contact handling between unstructured meshes, which induces simulation artifacts
like jitter, phantom impulses, or worse, divergence (“blowing up”) (Fig. 1).

This paper presents a simulator that achieves physically plausible simulationswith
contact between unstructured triangle meshes (so-called “polygon soup”). The heart
of the method is a new contact generation scheme that yields stable contact handling
(Fig. 1), and is invariant to changes of mesh topology and mesh resolution. It easily
accommodates uncleaned CAD models, or noisy, partial meshes captured from 3D
sensors, e.g., laser scanners or the Microsoft Kinect. This capability opens up new
possibilities for rapid prototyping of robots interacting with complex environments
and objects.

Particularly for objects in resting or sliding contact, discontinuities in contact
generation reduce simulation accuracy and noticeably detract from realism. The
technique presented in this paper is designed expressly to avoid such discontinuities.
It introduces a new collision geometry representation that ensures a smooth change
of contacts under small displacements for arbitrarymeshes. Inspired by prior work on
cloth simulation [1], the boundary layer expanded mesh (BLEM) represents object
geometry as a triangular mesh fattened by a thin boundary layer. The expanded
geometry is not computed explicitly, but rather only the width of the boundary layer
is stored. The advantage of this approach is that as long as penetration is not too deep,
penetration depth computation on a BLEM is equivalent to a distance computation on
the underlying mesh. Distance computation is much more tractable than mesh-mesh
penetration depths, and is exact as long as the boundary layer is not penetrated.
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BLEMs are incorporated in an off-the-shelf rigid body simulator along with
functionality to simulate robot sensors and motors. Experiments demonstrate that
boundary layers only a few millimeters thick significantly improve stability above
existing state-of-the-art robot simulators. Results match closely with theoretical pre-
dictions and experimental testing on a humanoid robot. The method successfully
simulates many-DOF robots picking up sensed household objects and climbing on
hands and legs on sensed terrains containing many holes and occlusions (Fig. 2).

The simulator is publicly available at http://klampt.org/ as part of the Klamp’t
(Kris’ Locomotion and Manipulation Planning Toolkit) software package.

Fig. 2 Simulating the Hubo-II+ robot stepping up a stepladder sensed by a Microsoft Kinect
camera. The environment model consists of 1 million triangles has many holes due to occlusions
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2 Related Work

Many free and commercial robot simulation packages are available, the most popular
ones being Gazebo [6, 7], Webots [5], USARSim [3, 23], and V-REP [4]. Like this
work, all of them are built upon rigid body simulation engines meant for gaming and
computer graphics (Open Dynamics Engine [17], Bullet [2], Nvidia’s PhysX [16]).
Each software package strongly recommends the use of geometric primitives or
convex polyhedra for collision hulls. Non-convex, watertight meshes can be auto-
matically decomposed into convex polyhedra [13], but complex geometries with
small features and/or noise may require a huge number of convex pieces. The pri-
mary contribution of this work is a new contact generation scheme for unstructured
meshes that need not be convex nor watertight.

Contact generation must be differentiated from other related problems in the
simulation pipeline:

• Collision detection determines whether two geometries touch, but does not make
an attempt to determine the objects motion after touching. Continuous collision
detection is the problem of finding the first time of contact between moving bod-
ies, and is often useful for preventing interpenetration of dynamically colliding
bodies [19, 25]. However, it does not help with persistent contacts.

• Contact generation determines a representation for the local region of contact
that will be resolved by the contact response stage [15]. In most systems this
representation takes the form of a finite set of contact points and normal, possibly
annotated with penetration depth.

• Contact response determines the futuremotion of objects in contact in order to pre-
vent future interpenetration by generating physically-plausible contact forces and
impulses. Solution techniques include complementarity problems [20], impulse-
based methods [14], and penalty methods [21].

The problems of contact generation and contact response are highly interlinked, and
the numerical stability of a simulation rests critically on the feedback loop between
the two stages.

Interpenetration is impractical to prevent entirely, so simulators must anticipate
small penetrations and resolve them after the fact. Hence, it is important for con-
tact generation to compute accurate penetration depth estimates. Although doing so
is exact and fast for geometric primitives and convex polyhedra, penetration depth
is computationally hard to compute between nonconvex bodies. Minkowski sum
methods lead to a complexity of O(n6) when only considering translational pene-
tration depth, while considering translation and rotation leads to a complexity of
O(n12) [24]. Penetration depth approximation is an active field of study in com-
putational geometry, but existing algorithms are still not fast enough for handling
very large models with hundreds of thousands or millions of triangles [12]. Another
approach [9] approximates penetration depth by precomputing a signed distance
transform of the object on a volumetric grid, which leads to O(1) time lookup of
a point’s penetration depth. Object-object contacts are detected by checking mesh
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vertices of one object with the signed distance table of another object, and vice
versa. Other work, primarily designed for deformable objects, estimates penetration
depths of finite-element meshes by propagating a wavefront from the colliding sur-
face [10]. Unlike thesemethods, the current work does not require watertightmeshes.
However, it is less accurate for larger penetrations, so it is best suited for use with
complementarity-based or impulse-based solvers that attempt to keep penetration
close to zero throughout simulation.

Boundary layers around primitives have been explored in several contexts. The
Blender Game Engine [22] modifies the Bullet simulator to support boundary layers
around geometric primitives and convex polyhedra and is used to improve stability
and model rounded objects. Most similarly to the current work, cloth simulators
often fatten triangles of the mesh and apply penalty forces, which resolve most colli-
sions [1]. The current method applies a similar approach to rigid-body meshes, with
the primary effects of producing stabler contact estimates for mesh-mesh collisions
and better tolerating numerical errors an off-the-shelf complementarity-based solver.

3 Contact Generation Method

3.1 Boundary-Layer Expanded Meshes

The boundary-layer expanded mesh (BLEM) is used as collision geometry through-
out the method. A BLEM consists of a triangular mesh M along with a boundary
layer width parameter r ≥ 0 (Fig. 3), and treats collisions with the Minkowski sum
of M and the sphere centered at the origin with radius r, B(0, r):

G = M ⊕ B(0, r) (1)

Fig. 3 Virtual boundary layers 2.5mm thick allows a simulated robot to reliably pick up an object
represented by a thin-shell triangulated mesh
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Collision between objects A and B, represented as (MA, rA) and (MB, rB), is consid-
ered to occur when

(MA ⊕ B(0, rA)) ∩ (MB ⊕ B(0, rB)) �= ∅ (2)

or equivalently,
(MA ⊕ B(0, rA + rB)) ∩ MB �= ∅. (3)

3.2 Contact Generation

In addition to detecting collision, contact generation must produce a list of contact
points, normals, and penetration depths so that an instantaneous motion of each point
on object A in the direction of the normal reduces penetration depth. The method
presented here uses a proximity checking approach on the underlying meshes, which
is accelerated by a boundary volume hierarchy (Fig. 4).

Consider the set of n triangles in a mesh: M = ⋃n
i=1 ti. The Minkowski sum of

the mesh and a sphere is simply the union of the fattened triangles:

M ⊕ B(0, r) =
n⋃

i=1

ti ⊕ B(0, r). (4)

For objects (MA, rA) and (MB, rB), a pair of triangles tA
i in MA and tB

j in MB are
considered to be in contact iff

(
tA
i ⊕ B(0, rA + rB)

) ∩ tB
j �= ∅. (5)

Fig. 4 Left Even for simple 2D cases, computing contacts with local mesh features produces poor
results. The minimum penetration depths from the two pairs of colliding features give rise to one
vertical and one horizontal contact. If simulated, this contact formation would lead to a rightward
rotation of object A, which would cause increased penetration on the next timestep. Right the
boundary-layer approach computes physically plausible contact points from the closest points on
nearby features on the underlying meshes MA and MB
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This is equivalently expressed using the distance operator d(t, t′) that computes the
exact minimum distance between triangles.

d(tA
i , tB

j ) ≤ rA + rB. (6)

Each evaluation of d is an O(1) operation and uses basic mathematical operators.
In other words, the contact generator outputs a single contact point for all pairwise
triangles within distance rA + rB (Fig. 5).

In the boundary-layer regime the pair of closest points (xA, xB) is unique and can
also be computed inO(1) time (Fig. 6). The penetration depth p is rA+rB−‖xA−xB‖,
with contact normal n = xA−xB

‖xA−xB‖ . The outputted contact point is (xA + xB)/2 + n ·
(rB − rA)/2, which is placed in the middle of the overlap region. If the triangles
intersect, themethod finds the shortest retraction amongst all candidates as illustrated
in Fig. 6. However, it is important to note that once triangles penetrate, all guarantees
of globally consistency are lost and the simulator loses robustness.

To efficiently detect pairs of nearby triangles in sub-quadratic time, the simulator
uses using a boundary volume hierarchy (BVH)method heavily based on the Proxim-
ity Query Package (PQP) [8]. In precomputation, a BVH consisting of progressively
finer bounding volumes is computed for each mesh. Oriented bounding boxes are
used in the current implementation. To detect contacts between two BVHs, a depth-
first-search is performed on pairs of bounding volumes and branches are pruned if
the bounding boxes are more than distance rA + rB apart. Each box-box distance
computation is an O(1) operation. Finally, at the leaves of the search, primitive trian-
gles are tested for proximity using the distance operator d(·, ·). The computational
complexity of this procedure is highest when many pairs of triangles are in close
proximity, and is negligible when objects are distant.

Fig. 5 The contact
generator produces a contact
point for all pairs of
simplices whose distances
are less than the sum of the
boundary layer widths
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Fig. 6 Top In the boundary layer regime, the closest points on the underlying triangles correspond
unambiguously to the deepest penetrating points of the expanded triangles. It is unnecessary to
consider the topology of neighbors in the mesh. Bottom when triangles intersect, the direction of
shortest retraction is not necessarily consistent with that of the neighbors, and the simulator loses
robustness

3.3 Choosing Boundary Thickness

Contact generation is robust in the boundary layer regime, i.e., when BLEMs overlap
but the underlying meshes do not interpenetrate. If meshes penetrate, the simulator
falls back to less reliable contact generation methods. Hence, thicker boundary lay-
ers lead to more stable simulation. But, they lead to poorer approximations of object
geometry. It may be possible to shrink meshes by the boundary thickness before
simulation in order to better preserve the volume and dimensions of the object. How-
ever, this approach eliminates small features like corners, blades, and filaments. So,
boundary thickness must be chosen carefully to balance the objectives of robustness
and geometric fidelity.

To prevent mesh overlap, two colliding objects should not penetrate the sum of
their boundary layer widths rA +rB in a single time step. So, the boundary layer must
be at least vrel ·Δt where vrel is the relative velocity between the objects andΔt is the
simulation time step. Boundary layers must also be thicker if the collision response
is “soft”, such as with penalty-based methods, or if very high forces are generated
on light objects. Because simulation robustness depends on the sum of boundary
widths, it is still possible to simulate sharp or very thin objects with zero boundary
as long as they only make contact with objects with relatively thick boundaries.
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3.4 Contact Clustering

In its basic form, the method can produce an excessive number of contact points
because a point is generated for all pairs of nearby triangles. For example, edge-
edge contacts will have four replicated contact points, one for each combination of
adjoining faces. Too many contact points slows down the contact response stage,
and also has the potential to reduce numerical stability of complementarity problem
solvers. To address this problem, the contact generator uses a clustering method that
limits the number of computed contacts to a user-defined maximum k.

Each contact on a single body (x, n, p) is considered a vector in a 7-D space and
k clusters are selected from this set using an axis-weighted distance metric. Experi-
ments have tested k-means and various hierarchical clustering methods. Simulation
stability does not appear to be sensitive to the choice of clustering method, although
if k-means is initialized with random clusters, a small amount of noise is injected into
the simulation. Hierarchical clustering tends to produce marginally stabler results,
but can be more expensive when N is large. We use an O(N2 logN) implementation.
So, when N is large, the simulator switches to k-means for a lower cost of O(kNs),
where N is the number of contacts and s is the iteration count (our implementation
uses s = k).

4 Implementation and Experimental Results

Although BLEMs can hypothetically be used with any existing physics engine that
accepts point contacts, the current implementation in Klamp’t uses Open Dynamics
Engine (ODE) v0.12 for low-level physics simulation and collision response. Experi-
mental results are obtained on a single core of a 2.67GHz Intel Core i7 laptop. Except
for timing results, all times refer to simulation time rather than wall clock time. All
simulations use a 1ms time step, a 2.5mm boundary on the robot and objects, and a
0mm boundary on static environment geometry. The maximum number of contacts
on the robot is 50 and the maximum number on each rigid object is 20. Supplemental
videos for all examples in this paper can be viewed at http://www.iu.edu/~motion/
simulation/.

4.1 Implementation

A robot is modeled as a linkage of rigid bodies connected by pin joints. The simulator
can emulate both torque controlled and PID controlled motors. All examples in this
paper use standard PID control with trajectory tracking, so that the torque applied at
each motor at time t is:
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kP(θD(t) − θ(t)) + kD(θ̇D(t) − θ̇ (t)) + kI

∫ t

s=0
(θD(s) − θ(s))ds (7)

where θ and θD are the actual and desired joint positions and θ̇ and θ̇D are the actual
and desired joint velocities. Torques are then capped to actuator limits before being
applied to the rigid bodies. The gains kP, kI , and kD are specified at each joint.

Stick-slip friction is also modeled at the joints, with a simple friction model that
includes dry and viscous coefficients μD and μV , respectively. In sticking mode,
the friction torque is equal and opposite to the torque applied to the motor, with a
breaking force ofμD. In slippingmode, the friction torque is−sign(θ̇)(μD + μV |θ̇ |).

For each motor in a robot, kP, kI , kD, μD and μV must be set to reasonable values.
Due to explicit time stepping in ODE, large values, especially of kD, may cause
motor instability. These parameters must be either hand-tuned or calibrated from
experimental data before simulating.

The simulator also provides functionality to emulate force/torque sensors, actuator
current sensors, contact sensors, accelerometers, and tilt sensors. Sensing feedback
can be incorporated into the control strategy using a straightforward plugin mecha-
nism.

4.2 Timing

Figure7 shows timing statistics collected on the example of Fig. 2. On a few frames,
contact generation is the limiting factor, with occasional spikes of up to 83ms where
a large number of triangles of the robot come near the environment. But on average,
contact response is the dominant cost, taking 25ms compared to 10ms for contact
generation. Clustering comprises approximately 2ms of the average time. These
plots also demonstrate that contact response becomes a dominant cost at a relatively
small number of contacts (approximately 50) while the original contact detection
stage routinely produces thousands of contacts for a similar computational cost. This
highlights the fact that contact clustering is a critical step for achieving interactive
simulation times.

Fig. 7 Timing results for contact detection and contact response as a function of the number of
contacts
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4.3 Humanoid Robot Force Sensor Simulation

The Hubo-II+ is a 42kg, 130cm tall humanoid robot built by HuboLab at the Korean
Advanced Institute of Science and Technology (KAIST). It consists of 57 rigid links
including individual finger links, and 38 actuators (one actuator per finger). Numeri-
cal stability is a potential issue for simulating this robot, particularly when significant
supporting forces are placed on the hands, because the mass ratio of the robot’s torso
to a finger link is over 150:1. The simulator has been used to simulate the robot’s
flat ground walking controller, and to verify the torque requirements and dynamic
feasibility of a trajectory produced by a ladder climbing motion planner (Fig. 8).

Moreover, the simulator works sufficiently stably to generate physically plausible
force/torque sensor readings that could be used for force control tasks. Figure9 com-
pares the results with experimental data from the force/torque sensors in the physical
Hubo’s ankles. Surprisingly, simulation came closer to ideal theoretical predictions!
It appears that the discrepancies between the simulation and experimental data are
caused by calibration issues in the physical robot: the physical robot appears to put
75% of its weight on its right foot while standing on two feet, and moreover the sum
of the support forces is not constant at rest.

Fig. 8 A simulation of the Hubo-II+ dynamically climbing up a ladder to verify the feasibility of
a quasi-statically stable motion calculated by a motion planner

Fig. 9 Experimental comparison with force sensors at the feet of the Hubo-II+ humanoid robot as
it shifts from two feet to balancing on its left foot, and then back to two feet

millitsa@ece.neu.edu



368 K. Hauser

4.4 Comparison to GIMPACT

Because the simulator is built on top of Open Dynamics Engine, the BLEM contact
generation method can be directly compared against the built-in contact detectors
OPCODE and GIMPACT. This represents a fair comparison to the state-of-the-art
in robot simulation: Gazebo and V-REP allow a choice between ODE and Bul-
let engines, both of which use GIMPACT; USARSim uses OPCODE; and Webots
uses ODE. Our experiments immediately determined OPCODE to be unsuitable for
realistic simulation because it would quickly “blow up” even on simple examples.
GIMPACT is significantly better, and obtains realistic results for many scenarios:
coarse meshes that are not-too-concave, and no edgewise contact between triangles.

Figure1 illustrates that GIMPACT “blows up” almost instantaneously on a simple
cube stacking example where each of the cubes is given by a triangulated mesh. At
the instant that cube-to-cube contact is made, GIMPACT produces a problematic set
of contacts that causes catastrophic failure soon after. By contrast, the new method

Fig. 10 A model of the Boston Dynamics Atlas humanoid balancing on hands and feet on rough,
fractal-generated terrain. Contact forces are depicted as arrows. Using GIMPACT, the robot jitters
until it begins an unrecoverable fall at 15 s
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Fig. 11 A Staubli TX90L robot affixed with the gripper from the Willow Garage PR2 picks up
a block, shakes it, and places it down using the new simulator. Contact forces are visualized as
arrows. The last frame shows that using GIMPACT, the gripper fingers immediately slip through
the block and fails to lift the block entirely

stays stable for tens of minutes, and appears to be stable in perpetuity. It has also
been tested on a 10 cube stack for 10min with less than a tenth of a millimeter of
deviation from the theoretical prediction.1

The example of Fig. 10 shows that even when GIMPACT appears to work for
a short while, subtle jitter can accumulate to yield implausible results. The Boston
Dynamics Atlas robot model from DRCSim v2.2.0 is placed in a stable stance on
its hands and feet on a rough terrain. The robot attempts to maintain its posture.

1ODE provides an option to disable simulation of rigid bodies that are not moving, which improves
the stability of stacks. Such functionality was not used in these tests.

millitsa@ece.neu.edu



370 K. Hauser

Using the new method, the robot flexes somewhat due to PID control but ultimately
stays stably in place. After 3min of simulation the robot maintained the same pose.
Using GIMPACT, the robot stabilizes, but contact handling artifacts periodically
apply impulses that cause the robot to jitter. After approximately 15s these impulses
grow sufficiently strong to push the robot off-balance.

The example of Fig. 11 demonstrates that the BLEM approach can handle contact
between meshes of fine and coarse resolutions, while GIMPACT has problems with
fine-resolution meshes. Here each fingertip of the Willow Garage PR2 gripper is
modeled with approximately 1,000 triangles 1mm2 in size, while the cubes are
coarse, 12-triangle meshes. With BLEMs, the robot lifts the cube, shakes it left and
right, and places it back on the table as would be expected. With GIMPACT, the
triangles of the finger mesh simply pass through the cube and the grasp fails.

4.5 Simulating Interaction with Sensed Objects

The next set of examples evaluate the ability to simulate robots interacting with
objects or environments that are partially-modeled by 3D sensors.

Figure12 shows an industrial robot interacting with several mugs sensed by stereo
vision moving around the mug. The resulting point cloud was segmented from the
table and meshed into a thin shell. The model has no volume and no bottom. The
robot reaches into a tray of several objects and stirs them around. No interpenetration
between the mugs, robot, or tray occurred during this simulation. The robot can also
lift mugs from the handle or from the sides using friction (Fig. 3).

Fig. 12 A Staubli TX90L robot reaches into a tray of 18 mugs and stirs it around. Each mug
was sensed using stereo vision. The mug model consists of 22,300 triangles, located only on the
outward-facing sides of the cylinder and the outward-facing side of the handle (i.e., a thin shell).
Throughout simulation no interpenetrations occur
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Fig. 13 The Hubo-II+ sits on a chair sensed by a Kinect. The environment model consists of
150,000 triangles and has missing data on the underside of the seats and armrests and on the back
of the seat. The robot is somewhat too short to sit directly onto the chair, and instead it grasps and
regrasps the armrests multiple times to readjust its posture and shift onto the chair

The final examples demonstrate locomotion on static environment meshes cap-
tured using the Microsoft Kinect sensor. Figures2 and 13 demonstrate the Hubo-II+
humanoid climbing with its hands and legs on meshes obtained through the Kinect-
Fusion algorithm [11]. These meshes are generated under indoor lighting conditions
with a hand-held Kinect, with no attempt to build a complete model. As a result, the
back and lower faces of the ladder and the chair are missing. Although the real chair
is a swivel chair, the simulation model is fixed. Because these meshes are extremely
large—1 million and 150,000 triangles, respectively—simulation is relatively slow.
For 1 second of simulation, both examples take approximately 1min of wall clock
time, with computation dominated by the contact response step.

5 Conclusion

This paper described a contact generation method that achieves state-of-the-art sta-
bility for “out of the box” robot simulation with unstructured triangle meshes. Exper-
imental results demonstrate physically plausible simulations on a variety of manipu-
lation and locomotion examples, including interactions with noisy, partial 3D scans
of real-world objects.

Interesting future directions might include studying the accuracy/speed tradeoffs
of clustering, and developing better clustering methods. For example, contact points
scattered on a plane can safely be reduced to their convex hull without any loss

millitsa@ece.neu.edu



372 K. Hauser

of accuracy in contact response. Another possibility is to incorporate methods for
accelerating BLEM contact detection with large meshes or point cloud data sets [18],
possibly using GPUs. Finally, it may be possible to develop methods that adapt
boundary thickness and time stepping dynamically to support collisions between
very thin objects, or to employ fallback methods that retract meshes out of collision
once boundary layers are penetrated.
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Manifold Representations for State
Estimation in Contact Manipulation

Michael C. Koval, Nancy S. Pollard and Siddhartha S. Srinivasa

Abstract We investigate the problem of using contact sensors to estimate the
configuration of an object during manipulation. Contact sensing is very discrimi-
native by nature and, therefore, the set of object configurations that activate a sensor
constitutes a lower-dimensional manifold in the configuration space of the object.
This causes conventional state estimationmethods, such as particle filters, to perform
poorly during periods of contact. The manifold particle filter addresses this problem
by sampling particles directly from the contact manifold. When it exists, we can
sample these particles from an analytic representation of the contact manifold. We
present two alternative sample-based contact manifold representations that make no
assumptions about the object-hand geometry: rejection sampling and trajectory roll-
outs. We discuss theoretical considerations behind these three representations and
compare their performance in a suite of simulation experiments. We show that all
three representations enable the manifold particle filter to outperform the conven-
tional particle filter. Additionally, we show that the trajectory rollout representation
performs similarly to the analytic method despite the rollout method’s relative sim-
plicity.

1 Introduction

Humans effortlessly use their sense of touch to manipulate objects. Imagine groping
around on a nightstand for a glass of water, or feeling around a cluttered kitchen cab-
inet while searching for the salt shaker. Each of these tasks involves contact manip-
ulation during which we make persistent contact with the environment. Observing
contact is critical during these tasks to localize objects during manipulation.
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Armed with real-time observations from tactile sensors [4, 11, 15], manipulators
should also be able to estimate the state of the manipulated object—a problem we
formalize as the state estimation for contact manipulation problem (Sect. 2).

Early work attempted to solve this problem by deriving analytical state estimators
and controllers to track and control the pose of an object from contact positions based
on simple models of physics [5]. However, these models fail to accurately capture
the reality of manipulation because there is a large amount of uncertainty in both the
object’s motion and the robot’s observations.

Otherwork has employed aBayesian approach by using a particle filter to estimate
the pose [19] and physical properties [20] of an object duringmanipulation. However,
our prior work [6] revealed that the conventional particle filter (CPF) performs poorly
at real-time update rates and suffers from a startling problem: the CPF systematically
performs worse as sensor resolution increases (Sect. 3).

This problem arises because contact sensing accurately discriminates between
contact and no-contact. Topologically, the set of states that are consistent with a con-
tact observation lies in the lower dimensional observable contact manifold embedded
in the configuration space of the object (Sect. 2). Particles sampled from the state
space during contact have low probability of being on the observable contact mani-
fold and, as a result, there is particle starvation in the vicinity of the true state. The
manifold particle filter (MPF) provides a principled way of solving this problem by
sampling particles directly from the observable contact manifold (Sect. 4).

Applying the MPF to contact manipulation requires sampling particles from the
observable contact manifold [6]. When it exists, an analytic representation (AM) of
the manifold provides an exact and computationally efficient way of sampling from
the dual proposal distribution (Sect. 5). However, computing an analytic representa-
tion of the contact manifold is not always possible.

We present (Sect. 6) two alternative sample-based contact manifold representa-
tions that make no assumptions about the object-hand geometry: rejection sampling
(RS) and trajectory rollouts (TR). The RS representation distributes samples uni-
formly in the space surrounding the manifold, while the TR representation con-
centrates many samples on the regions of the manifold that we are most likely to
encounter during execution.

Our results (Sect. 7) reveal the trade-offs between these representations. RS per-
forms the worst. By distributing samples uniformly everywhere, even in unlikely
regions, RS sparsely covers the observable contact manifold. Surprisingly, TR per-
forms nearly as well as AM. By focusing samples on likely regions, TR saturated
those regions at a resolution that was indistinguishable from the AM representation.
A key reason is that likely regions occupy only a small portion of the observable
contact manifold in our experiments, where the hand pushes straight towards the
object.

Our key takeaway is to exploit structure. By exploiting the manifold structure of
the contact state estimation problem,we are able to outperform theCPF. Furthermore,
by exploiting the geometry of the hand-object interaction with trajectory rollouts,
we are able to perform as well as the analytical method.
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We are excited by our future directions. First, in generalizing state to include
material properties and shape, which would enable us to simultaneously estimate
shape and pose from contact. Second, in closing the loop between state estimation
and control to develop robust closed-loop policies for contact manipulation.

2 State Estimation for Contact Manipulation

Let x ∈ X be the state of a dynamical system which evolves over time under actions
u ∈ U and produces observations z ∈ Z . The state estimation problem addresses the
computation of the belief state, a probability distribution over the current state xt

given the past history of actions u1:t and observations z1:t [17]:

b(xt) = p(xt|z1:t, u1:t). (1)

We focus on the state estimation for contact manipulation problem, where the
state is the pose x ∈ X = SE(n) (Fig. 1-Left) of the manipulated object and an action
u ∈ U (Fig. 1-Middle) is a relative motion of the hand. During contact, the object
moves according to the stochastic transition model p(xt|xt−1, ut) that encodes the
physics of the object’s motion in response to pushing action ut . The stochasticity of
the transition model may be due to unknown physical properties of the object (e.g.
friction coefficients), imperfections in the physics simulation, or error in executing
ut [2].

Contact sensors attached to the surface of the hand provide observations zt ∈ Z
(Fig. 1-Right) that indicate whether the object is touching the sensor. This is equiv-
alent to testing whether xt ∈ Xo, where Xo ⊆ X is the set of states where the object
is in contact with one or more sensors. While x ∈ Xo, zt may provide additional
information about the configuration of the object through noisy measurement of its
contact with the hand. Both of these properties are combined into the stochastic

Fig. 1 HERB pushing a rectangular box across the table. The state x ∈ X is the pose of the box
relative to the hand. An action u ∈ U is a relative motion of the hand. After taking action u, HERB
receives an observation z ∈ Z indicating where the object touched the hand

millitsa@ece.neu.edu



378 M.C. Koval et al.

observation model p(zt|xt, ut) as the probability of state xt generating observation zt

after executing action ut .

The Contact Manifold. Contact manipulation poses a unique state estimation chal-
lenge because the state evolves on a lower-dimensional manifold embedded in X.
We can partition X into three parts depending upon the type of contact occurring
between the hand and the object: (1) penetrating contact Xpen, (2) non-penetrating
contact Xc, and (3) no contact Xfree. These three sets are defined by the interplay
between the geometry of the object and the geometry of the hand.

Let Ph ⊆ R
n be the geometry of the hand and Po(x) ⊆ R

n be the geometry of the
object at configuration x ∈ X. The set of all object poses that are in collision with
the hand form the configuration space obstacle [8]

Xobs = COo(Ph) = {x ∈ X : Ph ∩ Po(x) �= ∅}

of the hand in the object’s configuration space.
Any configuration in Xpen = int(Xobs) is invalid because the object penetrates the

hand. Conversely, any configuration in Xfree = X\Xobs is in free space where the
object is out of contact with the hand. Therefore, any valid object configuration that
is in contact with the hand must lie on the contact manifold Xc = Xobs\ int(Xobs).

Figure2 shows the contact manifold for the BarrettHand pushing an elongated
rectangular box in X = SE(2). Topologically, the contact manifold is a torus in
SE(2) with the top and bottom edges of the θ -dimension identified. The manifold is
repeated twice along the θ -axis because the box exhibits rotational symmetry.

The Observable Contact Manifold. We know that x ∈ Xc during periods of contact.
However, our contact sensors may not be able to sense contact over the entire surface

Fig. 2 Contact manifold Xc for a two-dimensional BarrettHand pushing a rectangular box. Each
point x ∈ Xc corresponds to a configuration of the object x ∈ Xc that is in non-penetrating contact
with the hand and is uniquely colored by the active contact sensors. Configurations that are in
contact with multiple sensors are white
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of the hand. We will define the observable contact manifold Xo ⊆ Xc as the set of
object poses that are capable of generating contact observations z ∈ Zc.

Let Ps ⊆ Po\ int(Po) denote the surface of the hand that is instrumented with con-
tact sensors. The set of observable states Xs that could generate a contact observation
is given by the configuration space obstacle

Xs = COo(Ps) = {x ∈ X : Ps ∩ Po(x) �= ∅}

of the sensors in the object’s configuration space. The observable contact mani-
fold Xo = Xs ∩ Xc consists of the set of valid object configurations that have high
probability of generating a contact observation z ∈ Zc.

Figure2 shows the contact manifold colored by which sensors are active at each
point. Any state in the large, dark orange region of the manifold are in contact with—
and, thus, are likely to activate—the left distal contact sensor. States in the largewhite
region of the manifold are simultaneously in contact with multiple sensors.

Discriminative Observation Model. Contact sensors accurately discriminate
between contact and no-contact. We call an observation model discriminative if
we can partition the set of observations Z into sets of contact Zc ⊆ Z and no-contact
Znc = Z\Zc observations such that there are few false-positive and false-negative
indications of contact. Therefore, a discriminative observation model satisfies Pr(z ∈
Zc|x ∈ Xo, u) > 1 − ε during periods of contact and Pr(z ∈ Znc|x /∈ Xo, u) > 1 − ε

during no-contact. We otherwise make no assumptions about the ability of an obser-
vation to localize the object.

3 Conventional Particle Filter

The Bayes filter is the most general algorithm for filtering a belief state given a
sequence of actions and observations by recursively constructing b(xt) from b(xt−1)

using the update rule

b(xt) = η p(zt|xt, ut)

∫

X
p(xt|xt−1, ut)b(xt−1)dxt−1 (2)

where η is a normalization factor. The terms p(zt|xt, ut) and p(xt|xt−1, ut) are, respec-
tively, the observation and transition models. The recursion is initialized with a prior
belief b(x0) provided by task-specific knowledge or other sensors (e.g. an object
recognition system).

The particle filter [17] is a non-parametric formulation of the Bayes filter that rep-
resents the belief state b(xt)with a discrete set of samples. The samplesXt = {x[i]

t }n
i=1

are called particles and are distributed according to the belief state x[i]
t ∼ b(xt). The

particle filter implements the Bayesian update (Eq.2) by recursively constructing Xt

from Xt−1 using a technique called importance sampling.
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The conventional particle filter (CPF) is summarized in Algorithm 1. The key
insight behind this realization is that it is difficult to directly sample from the target
distribution (Eq. 2), but it is relatively easy to sample from the transition model.
Therefore, we sample x[i]

t from the proposal distribution
∫

X p(xt|xt−1, ut)b(xt−1)

dxt−1 (line 3) by forward-simulating Xt−1 to Xt using the motion model. Next, we
compute an importance weight w[i]

t = p(zt|xt, ut) for each forward-simulated parti-
cle (line 4).

The importanceweights result fromdividing the target distribution by the proposal
distribution. As a result, the samples x[i]

t , alongwith their importanceweightsw[i]
t , are

distributed according to the target distribution b(xt) [17]. Intuitively, the weighting
step incorporates the observation model into the update by assigning higher weight
to particles that are consistent with zt .

The particle filter periodically resamples the set of weighted particles (line 6) with
replacement to distribute Xt according to the desired posterior b(xt). Frequent resam-
pling is necessary to prevent the weights from growing unbounded and degenerating
over time [17].

Particle Starvation During Contact. The particle filter, as described above, is
agnostic to the observation model and has been applied to a variety of applica-
tion domains [10, 19]. However, contact sensors are unique because they operate in
two discrete states: contact and no contact. When z ∈ Zc, the belief state has a sin-
gular component that is concentrated on the lower-dimensional observable contact
manifold. Conversely, when z ∈ Znc, p(zt|xt, ut) is uniform over free space and pro-
vides little useful information. This property makes contact sensors fundamentally
different than cameras and depth sensors, which have relatively smooth observation
models.

In practice, particle filters are updated in discrete steps. The execution of an action
concentrates any states that penetrate the hand onto the contact manifold. As a result,
the hand’s contact sensors gain full dimensionality and the CPF is not completely
ineffective at estimating the state. However, the CPF requires a large number of
particles to increase the probability that some fall into the small swept volume of
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each sensor [6]. As a result, the CPF suffers from particle starvation during periods
of contact: there are often no particles in the vicinity of the true state.

Figure3-Top shows an effect that particle starvation has on the post-contact per-
formance of the CPF. The conventional particle filter correctly filters the belief state
before contact in (a–b). However, after contact occurs, b(xt) becomes singular and
importance sampling fails. As a result, the CPF converges to an erroneous belief that
the box rolling off of the finger tip instead of settling into the palm.

Surprisingly, this effect causes the particle filter to perform worse as sensor res-
olution or the update rate increases [6]. As sensor resolution increases, the swept
volume of each sensor becomes narrower. As the update rate increases, the distance
traveled by the hand between updates decreases, and the swept volume becomes
shorter. As a result, the CPF requires a large number of particles to successfully
track the state.

We have shown that the conventional particle filter is poorly suited for the contact
manipulation problem because the state evolves on a lower-dimensional manifold.

4 Manifold Particle Filter

Suppose the state space X is partitioned into m disjoint components M = {Mi}m
i=1,

where M1, . . . , Mm−1 ⊆ X are manifolds and Mm = X\ ∪m−1
i=1 Mi is the remaining

free space. The belief state b(x) may have a singular component with non-zero
probability concentrated on the lower-dimensional manifolds {Mi}m−1

i=1 .
We redefine the belief state as the weighted sum

b(xt) =
∑

Mi∈M

b(xt|Mi)Pr(xt ∈ Mi) (3)

over manifolds, where b(xt|Mi) is the belief over Mi given that xt ∈ Mi.1

The manifold particle filter (MPF), summarized in Algorithm 2, also represents
the belief using particles. For each particle, we first choose whichmanifold to sample
from according to Mi ∼ Pr(xt ∈ Mi). Then, we sample the particle x̄[i]

t ∼ b(xt|Mi)

from the corresponding conditional belief using a sampling technique that is appro-
priate for the structure of Mi.

Ideally, we would compute Pr(xt ∈ Mi) by marginalizing over Mi. Unfortunately,
this is fundamentally impossible for two reasons. First,marginalizing requires knowl-
edge of b(xt), precisely the distribution that we are trying to estimate. Second,∫

Mi
b(xt) dxt = 0 because Mi is a measure zero set.
Instead, we approximate Pr(xt ∈ Mi) using only the most recent observation

Pr(xt ∈ Mi) ≈ p(zt|Mi, ut)

p(zt|ut)
(4)

1From this point forward we will use b(xt) as shorthand for the weighted sum in Eq.3.
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where p(zt|Mi, ut) is the probability that zt was generated by a an xi ∈ Mi and
p(zt|ut) = ∫

X p(zt|xt, ut) dxt is the prior probability of receiving observation zt . Equa-
tion (4) is a good approximation in the casewhere p(zt |xt, ut) accurately discriminates
between the manifolds.

Finally, we sample a particle x̄[i]
t according to the belief distribution over the

chosen manifold b(xt|Mi). Our key insight is that we can apply a different sampling
technique for each Mi that is specifically designed to take advantage of the structure
of the manifold. For the manifolds {Mi}m−1

i=1 , we sample from the dual proposal
distribution [16] as described below. In the case of the free space Mm, we sample x̄[i]

t

with the conventional technique and reject any x̄[i]
t ∈ ∪m−1

i=1 Mi. This rejection sampling
step is necessary to avoid biasing the estimate of b(xt) towards the manifolds.

Dual Proposal Distribution. Importance sampling from the conventional proposal
distribution fails on Mi for i < m because they are lower-dimensional manifolds. In
this case, we will sample from the dual proposal distribution [16]

x̄[i]
t ∼ η

p(zt|Mi, xt, ut)

p(zt|Mi, ut)
, (5)

where η is a normalization constant. We can find the corresponding importance
weights

w̄[i]
t =

∫

Mi

p(x̄[i]
t |xt−1, ut)b(xt−1|Mi)dxt−1. (6)

by dividing the target distribution (Eq. 2) by the proposal distribution (Eq.5).
The conventional proposal distribution forward-predicts using the motion model

and computes importance weights using the observation model. Conversely, the dual
proposal distribution samples particles from the observationmodel andweights them
by how well they agree with the motion model [16].

Mixture Proposal Distribution. Just as how the conventional proposal distribution
performs poorlywith accurate sensors, the dual proposal distribution performs poorly
when there is observation noise [16]. The MPF uses the dual proposal distribution
to sample from the manifolds and, as a result, shares the same weakness.

We use a mixture proposal distribution [16] to mitigate this effect by combining
both sampling techniques. Instead of sampling all of the particles from the MPF, we
sample n particles from the CPF and d particles from the MPF. We then combine the
two sets of particles with the weighted sum (1 − φ)Xt + φX̄t before resampling. The
mixing rate 0 ≤ φ ≤ 1 is a parameter that allows the algorithm to smoothly transition
from the CPF (φ = 0) to the MPF (φ = 1).

Intuitively, d = |X̄t| is the number of particles necessary to simultaneously cover
all of the manifolds and n = |Xt| is the number of additional particles necessary to
represent b(xt) in free space.
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5 Manifold Particle Filter for Contact Manipulation

In this section, wewill apply theMPF to the state estimation for contact manipulation
problem. To do so, we will define the observable contact manifold Xo and free space
Xfree as the relevant subsets of X. We also describe a technique for computing the
importance weights w[i]

i using kernel density estimation [13].
Figure3 shows the performance of the MPF relative to the CPF. Before contact

(a–b), Pr(xt ∈ Xo) ≈ 0 and both filters update using the conventional proposal dis-
tribution. After contact (c–d), Pr(xt ∈ Xo) ≈ 1 and the manifold particle filter begins
sampling from Xo. Sampling from the observable contact manifold allows the MPF
to accurately track the object’s pose during persistent contact.

Importance Sampling from the Contact Manifold. We must weight the sam-
ples drawn from the dual proposal distribution with their corresponding importance
weights w̄[i] = ∫

X p(xt|xt−1, ut)b(xt−1)dxt−1. Intuitively, this integrates our belief
state b(xt−1) prior to taking action ut into b(xt) [16].

We evaluate w̄[i] by forward-simulating the previous set of particles Xt−1 to time
t by sampling from p(xt|xt−1, ut), then evaluating the density of the distribution at
x̄[i]

t using a density estimation technique [13]. Ideally, we would compute a density
estimate over the manifold Xo. Unfortunately, while there has been some work on
density estimation on Riemannian manifolds [12], it is difficult to apply these algo-

(b) (c) (d)(a)

Fig. 3 Snapshots of the CPF and MPF during execution. Unlike the CPF, the MPF avoids particle
starvation by explicitly tracking the probability distribution on the observable contact manifold Xo.
a Prior belief. b Pre-contact. c Post-contact. d Final belief
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rithms to the approximate and sample-based representations of Xo described below.
This is exacerbated by the fact that many of our forward-simulated particles will not
lie on Xo.

Instead, we use kernel density estimation [13] to approximate the probability
density over X, then restrict the estimate to Xo ⊂ X. Figure3 shows an example
of the resulting density estimate over Xfree (Fig. 3-Middle) and Xo (Fig. 3-Bottom)
computed using Gaussian kernels with bandwidths selected by Silverman’s rule of
thumb [14].

6 Representing the Contact Manifold

Implementing the manifold particle filter requires sampling particles from Xo with
probability proportional to their observation likelihood x[i]

t ∼ ηp(zt|xt, ut)/p(zt|ut).
Sampling from this distribution requires maintaining a representation of the observ-
able contact manifold Xo.

We will discuss three possible representations of the contact manifold. Two of
these, the rejection sampling (Fig. 4a) and trajectory rollout (Fig. 4b) representations,
approximate the continuous manifold Xo with large set of discrete samples. The third
technique (Fig. 4c) takes advantage of additional structure in geometry of the problem
to solve for an analytic representation of Xo.

Rejection Sampling. The most straightforward way of sampling from Xo ⊂ X
is through rejection sampling in the ambient space X. Rejection sampling itera-
tively samples candidate states x[i] ∼ uniform(X) until it finds a sample x[i] ∈ Xo

in the desired set. Using this technique, we can generate a large set of samples
X̃o = {x[i]}n

i=1 ⊂ Xo that densely cover Xo in a pre-computation step. At runtime,
we importance sample from the discrete set X̃o with w[i] = p(zt|xt, ut)/p(zt|ut) as
importance weights.

Unfortunately, rejection sampling fails for the same reason as the conventional
particle filter: Xo is a measure-zero set and there is zero probability of successfully
sampling an x[i] ∈ Xo [6]. Instead, we rejection sample from the set

Fig. 4 Several approximate representations of the contact manifold. Representations a and b
approximate Xo with discrete sets of samples. Representation c computes an approximate, ana-
lytic representation Xo
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X̃ = {
x ∈ X : minps∈Ps,po∈Po(x)||ps − po|| ≤ ε

}

of object configurations that are within distance ε ∈ R
+ of the hand. The set X̃o is a

reasonable approximation for Xo when ε is on the same order of magnitude as the
numerical inaccuracies of the motion and observation models (e.g. simulation step
size).

Figure4a showsXo covered by a set of 10,000 rejection-sampled configurations X̃o

of the BarrettHand in contact with the rectangular box shown in Fig. 2. The samples
X̃o are not exactly on Xo and are distributed uniformly over the ambient space X.
This is, in most cases, an acceptable approximation for a true uniform distribution
over Xo.

Trajectory Rollouts. Rejection sampling attempts to densely cover all of Xo with
samples X̃o that are independent of the prior belief b(x0). As a result, many of the
samples generated by rejection sampling will be found in regions of Xo that remain
low probability during the entire duration of execution. We can exploit this structure
by concentrating more samples in the regions of Xo that we are likely to encounter
during execution.

We can generate samples X̃o that are biased towards these regions by performing
trajectory rollouts for a set of sampled beliefs. We begin by sampling a particle from
the prior x[i]

0 ∼ b(x0). Next, we forward-simulate the particle for T steps using the
motion model x[i]

t ∼ p(xt|xt−1, ut) with ut chosen according to our policy.2 Finally,
we add any x[i]

t ∈ Xo to X̃o. This process repeats until |X̃o| reaches the desired size.
Figure4b shows 10,000 samples taken from 3000 trajectory rollouts with a fixed

“move straight” action and b(x0) roughly centered in front of the hand. The trajectory
rollout technique achieves dense coverage of the reachable area of the state space—
which consists of the front of the hand with orientations consistent with b(x0)—at
the cost of sparse coverage of the rest of the manifold.

Unfortunately, the non-uniformity of our samples means that X̃o is biased towards
absorbing regions of the state space.We compensate for this bias through importance
sampling: we assign each x[i] ∈ X̃o an importance weight w[i] = p(z|x, u)/[p(z|u)

p̃(x)] where p̃(x) is the density of X̃o at x. We estimate p̃(x) using a standard kernel
density estimation technique [13] of X̃o and, thus, produce samples that are uniformly
distributed over the ambient space X.

Analytic Representation. In some special cases of hand-object geometry we can
compute an analytic representation of Xo. This is possible, for example, in the com-
mon case where Ph and Po are polygons in R2 [8] or polyhedra in R3 [7].

Without loss of generality, we will consider polygonal objects in SE(2). In this
case, we can geometrically compute the C-obstacle Xobs(θ) for a fixed orientation θ

of the object as

Xobs(θ) = Ph ⊕ −Po ([0, 0, θ ])

2If the policy is not known, we sample u ∼ uniform(U).
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where A ⊕ B = {a + b : a ∈ A, b ∈ B} denotes the Minkowski sum of sets A
and B.

Since Ph and Po(θ) are polygonal, Xobs(θ) is also polygonal and can be computed
via a convolution of Ph and Po(θ) [18]. The contact manifold Xc(θ) at orientation θ

simply consists of the perimeter of the polygon Xobs(θ). Figure4c shows several θ -
isocontours of Xc superimposed over a high-resolution polyhedral approximation of
the contact manifold. The same process can be repeated with Ph and Ps to construct
an analytic representation of Xo(θ).

Finally, we approximate the observable contact manifold as a union X̃o

= ∪θ∈ΘXo(θ) over a large, discrete set of orientations Θ .3 Discretizing θ approxi-
mates Xo with a polyhedron X̃o that shares the same polygonal iso-contours at all
θ ∈ Θ .

Sampling an x[i] ∼ X̃o is possible by first sampling a θ ∈ Θ , then uniformly sam-
pling an x[i] fromour analytical representation ofXo(θ). Alternatively, one could sam-
ple from an approximate, polyhedral representation of X̃o by interpolating between
iso-contours. In both cases, the samples are correctly drawn uniformly with respect
to a measure defined over the lower-dimensional Xo.

7 Experiments and Results

We designed a set of simulation experiments to compare the MPF with the CPF for
the state estimation for contact manipulation problem, and to explore the differences
between the three representations of the contact manifold.

Based on the particle starvation problem, we hypothesize that

H1. The MPF will outperform the CPF after contact.

Among the three representations of the contact manifold, we expect the rejection
sampling (RS) representation to perform the worst due to its relatively sparse distri-
bution of samples. The trajectory rollout (TR) representation solves this problem by
concentrating samples on the regions of the contact manifold that we are most likely
to encounter.

Therefore, we hypothesize:

H2. Trajectory rollouts will outperform rejection sampling.
H3. The analytic contact manifold will outperform rejection sampling.

However, we hypothesize that the analytic representation will outperform both
the RS and TR representations because it exactly represents the contact manifold:

H4. The analytic contact manifold will perform best.

3Uniformly discretizing θ maymiss critical events where the object first comes into or leaves contact
with the hand. If these events are important, it is possible to analytically solve for the critical values
of θ through careful analysis of the geometry [3].
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Experimental Design. We implemented CPF, MPF-AM, MPF-RS, and MPF-TR in
a custom two-dimensional kinematic simulation environment with polygonal geom-
etry. Each experiment consisted of a simulated BarrettHand pushing a rectangular
box in a straight line at a speed of 1cm/s for 50cm. The initial belief state was set to
b(x0) = N (0,Σ) with Σ1/2 = diag[5 cm, 5 cm, 20◦].
Motion Model. We simulated the motion of the object using a penetration-based
quasistatic physics simulator [9] with a 1mm step size. During each update, the
finger-object coefficient of friction μ and the radius of the object’s pressure dis-
tribution c were sampled from the Gaussian distributions μ ∼ N(0.5, 0.22) and
c ∼ N(0.05, 0.012) truncated at μ, c > 0.

Observation Model. Binary observations were simulated for each of the hand’s sen-
sors by computing the intersection of the contact sensor with the object’s geometry.
Ground-truth observations were simulated by applying the same observation model
to a special “ground truth” particle sampled from b(x0).

Dependent Measure. We measure performance of the estimators by tracking the root
mean square error (RMSE) of the object’s position (Fig. 5a-Top) and orientation
(Fig. 5a-Bottom) over a large number of experiments.

Conventional versus Manifold Particle Filter (H1). Both the CPF and the MPF
used 100 particles. The MPF used an analytic representation of the contact manifold
and a mixing rate of φ = 0.1.

Figure5a shows that—as expected—both filters behave similarly before contact
(t ≤ 0) and there not a significant difference inRMSE.After contact (t > 0), theMPF
quickly achieves 4.4cm less RMSE than the CPF. These results support hypothesis
H1: the MPF achieves lower post-contact error than the CPF.

0
2
4
6
8

10

R
M

SE
 (

cm
) CPF

MPF

-5 0 5 10 15

Time (s)

0
5

10
15
20
25
30
35

R
M

SE
 (

◦ )

0
2
4
6
8

10

R
M

SE
 (

cm
) RS

TR
AM

-5 0 5 10 15

Time (s)

0
5

10
15
20
25
30
35

R
M

SE
 (

◦ )

(a) (b)

Fig. 5 a Estimation error of the CPF andMPF. b Performance of MPF using the rejection-sampled
(RS), trajectory-rollout (TR), and analytical (AM) manifold representations. In both cases, the data
is aligned such that contact occurs at t = 0
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Contact Manifold Representation (H2–H4). We also compared the RMSE error
of the MPF using the rejection sampling (RS), trajectory rollouts (TR), and an ana-
lytic (AM) representations of the contact manifold. The RS representation consisted
of 10,000 samples that were held constant throughout all of the experiments. The
TR representation generated a different set 10,000 samples for each experiment by
collecting five samples each from 2000 trajectory rollouts. Finally, the AM repre-
sentation was implemented by sampling from polygonal iso-contours of Xo spaced
every 3◦ of angular resolution.

Figure5b shows that all three implementations of theMPF outperformed the CPF.
As expected, the AM and TR representations both outperformed the RS representa-
tion, supporting hypotheses H2 and H3. This occurs because the RS representation
attempts to sparsely cover the entire surface Xo with a relatively small number of
samples, while the TR representation densely covers the states that we aremost likely
to reach.

Surprisingly, hypothesis H4was not supported by the data: the AM representation
did not achieve lower error than the TR representation. This occurred because the TR
representation was able to saturate the regions of Xo that we are likely to encounter
during execution. By doing so, the TR representation achieves such dense coverage
of the relevant parts of that it is unlikely to fail at sampling from the dual proposal
distribution.
Sampling Failures. Figure6 supports our intuition that the relatively poor perfor-
mance of the RS representation is a result of it frequently failing to sample from
the dual proposal distribution. The TR and AM representations fail to sample from
the dual proposal distribution for only <30% of updates. Conversely, the RS repre-
sentation fails to sample >70% of the time. When sampling fails, the MPF behaves
identically to the CPF and suffers from the same problem of particle starvation. As a
result, the RS representation performs relatively poorly compared to the RS and TR
representations in Fig. 5b.

Fig. 6 Percent of the time
that the MPF succeeded at
sampling from the dual
proposal distribution during
contact. Sampling fails when
all particles sampled from
the contact manifold have a
low probability p(zt |xt, ut) of
generating zt
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8 Discussion and Future Work

In this section, we discuss how partial sensor coverage and different contact manifold
representations effect the manifold particle filter. Additionally, we discuss several
possible ways of addressing the limitations of the MPF in future work.

Contact Manifold Representations.Wediscussed several possible implementations
of the contactmanifold that can be used to sample from the dual proposal distribution:
rejection sampling (RS), trajectory rollouts (TR), and an analytic representation
(AM). Each of these representations makes different assumptions about the structure
of the problem.

TheRSandTRrepresentations approximateXo with adiscrete set of pre-computed
samples X̃o. These techniques make no assumptions about the geometry of the prob-
lem and widely applicable. Both techniques outperform the CPF, but MPF-TR out-
performsMPF-RS. This occurs because the TR representation concentrates X̃o in the
regions of the state space that we are most likely to see during execution. As a result,
sampling from the dual proposal distribution is less likely to fail with TR than RS.

Unlike RS, the set of samples X̃o generated by TR are specific to b(x0) and cannot
be generalized between problem instances. Even worse, pre-computing X̃o requires
rolling out a large number of trajectories using the computationally expensivemotion
model. In summary, TR trades more pre-computation time for better online perfor-
mance.

When it exists, an analytic representation of the contactmanifold provides an exact
representation of Xo. For polygonal geometry in SE(2), the analytic representation
requires minimal pre-processing and could possibly be updated in real-time as the
geometry of the hand changes. Additionally, it is efficient to uniformly sample states
from Xo at runtime. Unlike the sample-based representations, these samples will be
distributed uniformly with respect to the measure over Xo instead of the underlying
space X. Finally, there is no chance of failing to sample from the dual proposal
distribution due to a sparsity of samples.

The Observability of Contact. Contact sensors frequently do not cover the entire
surface of a hand. For example, the proximal links of the BarrettHand are not covered
with tactile sensors and the SynTouch BioTac [4] sensor only provides tactile sensing
on the interior of the fingertip. Even the iHY hand [11], which tightly integrates
TakkTile sensors [15] into its mechanical design, does not cover the outside surface
of the hand with sensors. As a result, it is important to consider the effect that
observability of contact has on our state estimation ability.

The difference between “contact” and “observed contact” is captured in our defi-
nitions of the contact manifold Xc and the observable contact manifold Xo ⊆ Xc. The
geometry of the non-observable region of the contact manifold Xno = Xc\Xo impacts
the difficulty of the state estimation for contact manipulation problem. Ideally, the
transition model will quickly move states out of Xno into Xo by pushing them into
contact with a sensor. Any stable states in Xno, e.g. those that come to rest against a
flat surface, will accumulate belief during execution.
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Contact with Multiple Objects.We implicitly assume that the hand can only contact
the object that we are manipulating. This may not be possible in highly cluttered
environments where we must contact multiple objects to achieve the desired task [1].
In future work, we hope to explore methods of generalizing theMPF to environments
with multiple—both static and movable—objects. We believe it is possible to do so
through limited factoring of the belief state (e.g. through Rao-Blackwellization) to
avoid requiring exponentially more particles.

Shape Uncertainty. We assume that the hand and object both have known geometry.
This is often not true when using compliant/under-actuated hands (e.g. the iHY
hand [11]) or manipulating un-modeled objects. Small variations of the object-hand
geometry can cause large changes in the shape and topology of the contact manifold.
Wehope to address this additional source of uncertainty in futurework by considering
distributions over object and hand geometry. This would in effect, create a “fuzzy”
contactmanifold that consists of the union of several hypothesized contactmanifolds.
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Exploitation of Environmental Constraints
in Human and Robotic Grasping

Raphael Deimel, Clemens Eppner, José Álvarez-Ruiz,
Marianne Maertens and Oliver Brock

Abstract We investigate the premise that robust grasping performance is enabled
by exploiting constraints present in the environment. These constraints, leveraged
through motion in contact, counteract uncertainty in state variables relevant to grasp
success. Given this premise, grasping becomes a process of successive exploitation of
environmental constraints, until a successful grasp has been established. We present
support for this view by analyzing human grasp behavior and by showing robust
robotic grasping based on constraint-exploiting grasp strategies. Furthermore, we
show that it is possible to design robotic hands with inherent capabilities for the
exploitation of environmental constraints.

1 Introduction

Humans are excellent graspers. Despite decades of research on robotic grasping, we
have yet to establish the same level of competency in robotic systems. What lets
humans grasp so well? There are many answers to this question, most are associated
with active research areas in robotics. In this paper, we explore the hypothesis that
human grasp performance is to a significant extent the result of carefully orches-
trated interactions between the hand and the environment. We investigate how this
hypothesis may impact the development of versatile robotic grasping systems.
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The premise of the work reported in this paper is the following: A competent
grasper must exploit constraints present in the environment by employing phys-
ical contact so as to counteract uncertainty in state variables most relevant to
grasp success. If this premise is true, robust and versatile grasping is the process of
determining sequences of motions to leverage these constraints in the most effective
manner.

Video recordings of human grasping provide immediate support for our premise.
Human grasps routinely involve contact with the environment. However, we are not
aware of systematic studies on the use and purpose of such contacts in the psychology
literature. In this paper, we begin to close this gap by reporting on novel human
grasping experiments. We establish a set of parameters to characterize contact with
the support surface during grasping. And we present human grasping experiments to
show that the use of environmental constraints increaseswith the human’s uncertainty
about the environment.

Ongoing research on robotic grasping provides further support for our premise.
Novel gripper and hand designs often include compliant materials or actuators. In our
view, this does not only lead tomore robust interactions between hand and the grasped
object, it also facilitates the exploitation of environmental constraints. There are
several studies of novel hands, reviewed in the next section, that deliberately exploit
environmental constraints in specific application scenarios or for specific grasps.
Research in grasp planning also has begun to leverage environmental constraints,
however, either to a limited extent or in specifically tailored approaches. Beyond
these instances, to the best of our knowledge, there is no comprehensive approach
for the generic, orchestrated use of environmental constraints in robotic grasping.

In the remainder of this paper, we outline the beginnings of an integrated research
agenda towards robotic grasping by leveraging environmental constraints. This
agenda spans the study of human grasping, the development of appropriate grasp
strategies, the required perceptual strategies to determine when each of the strategies
is most appropriate, and the design of robotic hands tailored for the exploitation of
environmental constraints.

2 Background

To support our claim, we divide related work into three categories based on the
types of interactions they consider. The first category, which marks the beginnings
of grasping research in robotics, analyzes static grasps. The second category exploits
interactions between hand and object. The final and most recent category exploits
interactions between hand, object, and environment, enabling the consideration of
environmental constraints for robust grasping.
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2.1 Force and Form Closure

Early grasping research emphasizes the concepts of force and form closure, reflect-
ing a static grasping relationship between hand and object. A grasp is commonly
expressed as a set of disembodied point contacts. Physical interactions occurring
during the grasp—and sometimes even the limitations that result from the kinemat-
ics of the hand—are often not accounted for during grasp planning. These approaches
require detailed models of both the environment and the hand.

This line of research continues to be active and successful, as evidenced by a
large number of sophisticated and capable grasp planners and simulators [21]. In
our experience, however, the grasps determined by these approaches do not reliably
transfer to the real world. To provide adequate hardware for the precise placement
of specific contact points on objects, researchers designed mechanically complex,
rigid hands with many degrees of freedom [12].

Early studies of human grasping also followed this static view. This is reflected in
grasp taxonomies, classifying grasp according to the final hand posture attained after
the grasp process is completed [5, 11]. Even the early work on postural synergies,
which has had a profound impact on robotics, initially only considered synergies
of static grasp postures [24]. These studies do not capture the dynamic processes
and the exploitation of environmental constraints we believe to be crucial for robust
grasping.

2.2 Interactions Between Hand and Object

During grasp execution, mechanical compliance in the hand leads to an adaptation
of the hand’s configuration to the object’s shape. This shape adaptation aids grasp
success by compensating for uncertainties in actuation and world model, and by
attaining a large number of contact points. Thereby shape adaptation significantly
increases the chances of achieving force closure with a grasp. Much of the recent
work in robotic grasping attempts to leverage this effect explicitly.

Rodriguez et al. [23] optimized the shape of non-compliant fingers to yield the
same contact point configuration irrespective of object size. Shape adaptability can be
enhanced by adding compliant parts [14]. The positive pressure gripper [1] represents
an extreme case in this regard. It uses granular material to achieve compliance of the
entire gripper to large parts of the object’s geometry.

An effective way of achieving shape adaptability is underactuation. The SDM
hand [8], the Velo gripper [4], the i-HY hand [22], and hands by Grioli et al. [13]
couple the actuation of degrees of freedom using tendon-pulley systems, adapting
the shape of the hand to the object while equalizing contact forces.

The nature of hand-object interaction has also been studied in humans. The effect
of shape adaptability is well known for human hands and studies have elucidated the
degree to which humans vary their behavior to take advantage of it. Christopoulos
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et al. [3] showed that humans react to pose uncertainty of a cylinder and orient their
hand to align it, presumably to be able to maximize the benefits of shape adaptability.
However, other experiments may point at the fact that humans also rely on more
complex interactions with the environment for grasping under difficult conditions.
When the vision of humans is impaired, they fail more often at first grasp attempts of
isolated (environmental-constraint free) objects [20]. The degree of the demonstrated
effect seems surprising. We believe that in this specific experiment, it is due to the
lack of environmental constraints exploitable for grasping.

2.3 Interactions Between Hand, Object, and Environment

Features in the environment may constrain the motion of hand and object. This
is most evident for support surfaces, such as tables and floors. These constraints,
when used properly, can aid grasping. Furthermore, we postulate that the necessary
perceptual information for leveraging such constraints is often easier to obtain than
the information required for the successful execution of an unconstrained grasp.

Recent research in robotic grasping leverages environmental constraints in the
suggestedmanner, e.g. to position the hand relative to the object [6], to cage objects [6,
17], or to fixate an object during planar sliding [6, 7]. Some pre-grasp manipu-
lation relies on environmental constraints to improve grasp success. For example,
Chang et al. [2] rotate pan handles into a specific orientation prior to grasping by
exploiting the pan’s friction and remote center of mass.

All of the aforementioned grasp strategies rely on multiple interactions prior to
establishing force closure for the final grasp. These phases often are designed to
reduce uncertainties in specific variables relevant to grasp success.

The idea of environmental constraints appears in early work by Lozano-Pérez,
Mason, and Taylor [18, 19]. Here, the intrinsic mechanics of the task environment
are exploited to eliminate uncertainty and to achieve robustness.

The study of environmental constraint exploitation by humans so far has been
limited to replicating instances of observed behavior on robots [2, 15]. For example,
Kaneko et al. [15] extracted a set of grasping strategies from observations of a human
subject. These strategies include interactions with environmental constraints.

We believe that this recent trend towards the exploitation of environmental con-
straints represents an important opportunity to improve robotic grasping capabilities.
To take full advantage of this opportunity,we should understand the strategies humans
employ, transfer them to robotic systems, and develop robotic hands tailored to this
exploitation.
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3 Environmental Constraints in Human Grasping

In this paper we argue that competent grasping exploits constraints in the environ-
ment. In this section, we describe our work towards the identification of successful
strategies for the exploitation of environmental constraints in human grasping. In a
first step, we define operational measures to quantitatively characterize the exploita-
tion of a specific environmental constraint, namely the support surface of a grasped
object. We also show that the interaction with the support surface becomes more
pronounced when grasping is made more difficult by impairing human vision. We
view this finding as support for our main premise.

3.1 Quantifying Contact Interactions with Support Surfaces

We choose the following parameters to quantify the contact interaction with the
support surface during a grasping trial: the number of distinct support contacts,N , the
mean travel distance of all support contacts, d (spatial extent of contact interaction),
the mean duration of all support contacts, Δtc (temporal extent), and the maximum
force exerted orthogonal to the support surface, fmax (energetic extent). Additionally,
we measure the grasp duration Δtg, i.e. the time elapsed between the first contact
with either the object or the support surface and object lift. We will show that these
parameters serve as a meaningful characterization of the interaction with the support
surface.

3.2 Experiment

Five right handed adults (aged 20–25 years, two females) participated in the experi-
ment. They were naive to the rationale behind the experimental design. All partici-
pants reported normal or corrected-to-normal vision.

A grasp trial began with the participant’s hand extended and resting at a start
position, see Fig. 1. An object was placed at a fixed location on top of a tablet
computer located behind an occlusion panel blocking the participant’s view. Then,
the occlusion panel was removed and the participant was able to observe the scene.
After a delay of 3 s, the participant received an auditory signal to grasp the object.
During the grasp, the tablet computer recorded N , Δtc, and d, see Fig. 2. The trial
ended with another auditory signal, in response to which the participant released
the object and returned the hand to the start position. A force/torque sensor was
attached to the tablet to determine contact with the object or the support surface, and
to measure fmax. Finally, a camera was used to detect object lift.

The experiment was performed under two conditions: control and impaired. In the
control condition, human vision was not altered. In the impaired condition, partic-
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Fig. 1 Experimental setup

Fig. 2 Examples of the measured support contacts when grasping a screw (participant FG). Left
control condition, right impaired condition. The participants were located in the positive direction
of the x axis, see Fig. 1. The black rectangle indicates the object’s initial position and size. Sup-
port contacts occurred within a time interval of ≈0.13 s and ≈0.78 s in the control and impaired
conditions, respectively

ipants wore custom goggles that blurred details of the objects’ shape and degraded
depth perception, see Fig. 3. It is difficult to quantify the effects of the goggles,
but they allowed to induce a consistent and severe reduction in human vision. The
impaired condition trials preceded the control trials to prevent participants from
observing the details of the object shapes. Each participant performed 100 trials: ten
objects, five repetitions per object, each under two conditions.

We used the following objects: a button, a salt shaker, a roll of adhesive tape, a
match box, a marker pen, sunglasses, a comb, a plastic screw, a toy, and a chest-
nut. All objects were painted black to remove color cues for distinguishing them
and to homogenize the contrast with the surroundings (see Fig. 3). The participants
wore a conductive glove to improve the reliability of the touchscreen measurements.
Participants were seated as shown in Fig. 1, with their head supported by a chin and
forehead rest. The viewing distance to the center of the tablet was 45cm.
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Fig. 3 From left to right the target objects, the blurring goggles, and the target objects as seen
through the goggles

Fig. 4 Pearson’s correlation coefficients averaged over all subjects; left control condition; right
impaired condition

3.3 Results

The parameters N, Δtc, d, fmax, and Δtg measured in the five trials for an object were
averaged for each participant. We performed two kinds of analyses: a correlation
analysis and a series of tests for possible effects induced by the impairment.

The correlation analysis was performed based on the following reasoning: given
that the chosen parameters are supposed to quantify different aspects of the same
phenomenon, their inter-correlations should be high. Figure4 depicts the Pearson
correlation coefficients in a cross correlation matrix for all five parameters in the
control and the impaired condition. There were differences between the two condi-
tions. Further analysis suggests that those differences were due to different variances
of the parameters between both conditions.

In the second part of our analysis, we tested if the magnitude of the chosen
parameters was significantly larger in the impaired condition. A one-tailed paired
t-test (Holm-Bonferroni corrected, and global α = 0.05) revealed significant effects
for all parameters and for all participants.
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3.4 Discussion

The results of our study support two conclusions. First, the proposed parameters
are meaningful for the characterization of the interaction with the support surface,
as they exhibited high inter-correlations. Second, humans increase the interaction
with the support surface when their vision is experimentally impaired as indicated
by significant differences in the measured parameters between the two conditions.
This is consistent with the main premise of this paper, i.e. that robust grasping should
exploit environmental constraints to compensate for uncertainty. In our experiments,
the visual impairment results in an increase in the number of support contacts, and
an increase in the duration of support contacts and in their travel distance. Further-
more, the participants apply higher contact forces in the impaired condition. The
grasping time in the impaired condition also increases significantly. Traditionally,
in the study of human grasping, increased grasping time is interpreted as increased
use of tactile feedback [10, 20]. We indeed noticed that in some trials, in particular
under the impaired condition, the participants established and maintained contact
with the support surface while still reaching for the object. This use of a environ-
mental constraints, while not part of this study, can also be viewed as support for our
premise.

This initial study is a first step towards amore detailed analysis of human strategies
for exploiting environmental constraints during grasping. Our goal in this line of
research will be to identify successful exploitation strategies and to characterize the
conditions for which they are successful. We hope to transfer these insights to robots
so as to endow them with improved grasping capabilities.

4 Exploitation of Environmental Constraints by Robots

In the previous section, we concluded that humans increase their use of an environ-
mental constraint in response to perceptual uncertainty. In this section, we investigate
how robots can exploit such constraints. Exploitation can be performed by devising
appropriate grasping strategies or by designing hands tailored for this purpose. We
report on our work in both of these areas.

4.1 Grasp Strategies

Our goal is to design grasp strategies that exploit environmental constraints to
increase grasp success and to show that there are a variety of environmental con-
straints that can be leveraged by those strategies.
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4.1.1 Exploiting Environmental Constraints Increases Grasp Success

We compare two grasp strategies that leverage the same environmental constraint to
a different degree. The environmental constraint in this experiment is provided by
the supporting table surface. As the height of objects decreases, grasping becomes
more difficult. We expect grasp success to be higher if the constraint provided by the
table surface to guide finger placement on the object is exploited to a higher degree.

Constant wrist pose: The first strategy was introduced in our prior work [9].
Grasp poses are generated by fitting geometric primitives like cylinders, spheres,
and boxes to depth measurements of the scene. To increase the likelihood of grasp
success, pre-grasp poses are refined in response to environmental constraints. For
this strategy, the palm of the hand is aligned with the support surface. The hand is
then positioned as low as possible above the support surface so that the fingers do not
contact the surface during closing. This strategy uses the environmental constraint
provided by the support surface to position the hand but does not exploit contact
interactions.

Force-compliant closing: The second strategy uses force control to establish
contact of the fingertips with the support surface and proceeds to slide the fingers
along the surface during closing, maintaining constant contact force by compliantly
repositioning the wrist (see Fig. 5). Kazemi et al. [17] present a similar strategy;
while they control orientation based on force feedback, we employ visual feedback.

The main difference between the two compared strategies is that the first only
attempts to come as close as possible to the surface using RGB-D information about
the scene, whereas the secondmaintains physical contact with the surface throughout
thewhole grasp. The same environmental constraint—the table surface—is exploited
visually in one and haptically in the other.

To evaluate the strategies we placed different sized cylinders (see Fig. 6a) on a
table in front of a 7-DOF WAM equipped with a force-torque sensor and a Barrett
Hand BH-262. All experiments reported in this section are averaged over five trials.

Figure8 shows grasp success as a function of cylinder diameter. While big cylin-
ders could be grasped reliably with both strategies, the grasp of smaller cylinders
only succeeded with force-based exploitation of the environmental constraint. Strat-
egy 1 causes the finger tips to hover slightly above the surface when contact with the
object is made, due to the circular trajectory during hand closure. This insufficient

Fig. 5 Force-compliant closing strategy, from left to right positioning using visual feedback, con-
tacting table surface using force feedback, closing fingers using position feedback while wrist is
force-compliant in z-direction (last three images)
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Fig. 6 Objects used in grasping experiments. a Cylinders with 8, 12, 16, 22, 32, 40, 50, 75 and
110mm. b Blocks with height 3, 6, 10, 19 and 29mm and weight 79, 158, 233, 451, and 684g

exploitation of the surface constraint leads to a reduced success rate for small-sized
objects. In contrast, the force-compliant finger closing uses the surface constraint at
all times to position fingertips as close to the table as possible. Grasp success is not
perfect though, as the cylinders can easily roll off the fingertips. An example of this
failure mode is shown in Fig. 9a.

This experiment shows that exploiting a surface constraint to a higher degree leads
to more robust grasping.

4.1.2 Exploiting Different Environmental Constraints

We want to show that there are multiple environmental constraints that can be
exploited. To achieve good grasping performance in a variety of settings and for
diverse objects, it is then necessary to employ the most appropriate strategy. The
multitude of available constraints also necessitates perceptual capabilities to distin-
guish situations inwhich one strategy should be preferred over the other. Tomake this
point, we implemented the slide-to-edge strategy and compared it to the previously
presented force-compliant finger closing.

Slide-to-edge: The slide-to-edge strategy exploits a surface and an edge feature
in the environment. It contacts the object using the surface, slides it towards an edge,
and wraps the thumb around the protruding part of the object to establish a grasp. The
different phases of our slide-to-edge strategy are illustrated in Fig. 7. This strategy
can also be seen as a distinct pre-grasp interaction which reconfigures the object
enabling contact on parts of it that were previously inaccessible. A similar strategy
was presented in [16], focusing on the planning of feasible motions.

We evaluated the slide-to-edge strategy by comparing it to the force-compliant
closing strategy for different sized blocks (see Fig. 6b) placed on a table as before.
For all blocks, the slide-to-edge strategy achieves reliable performance (see Fig. 8),
whereas the force-compliant strategy is only successful for flat blocks.
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Fig. 7 Slide-to-edge grasp strategy, from left to right positioning using visual feedback, contact sur-
face using force feedback, moving towards the edge while being force-compliant in the z-direction
of the wrist, closing the thumb when the hand is above the edge (detected via visual feedback), and
lifting
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Fig. 8 Comparison of the three grasping strategies

Fig. 9 Exemplary failure and success cases for the force-compliant closing strategy. a Failure due
to object’s inertia. b Chance success. c Failure due to slip

The slide-to-edge strategy is less sensitive to variation in the size and weight of
the blocks. The flat and wide shape of the blocks enables the robot to move parts
of them over the edge, creating the opportunity to perform a more reliable grasp on
the shorter side of the block. Failure cases for the slide-to-edge strategy included
wrong tracking during the visual servoing positioning, missing object contact during
sliding, and premature thumb closing.

The force-compliant strategy succeeds when the fingernails jam against one of the
block’s sharp edges, as can be seen in Fig. 9b. This is achieved consistently for the
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smaller blocks. For taller blocks, the fingernails do not contact the object, leading to
slip and grasp failure, as seen in Fig. 9c. In a few cases, however, the nails caught the
object just before slipping out of the hand. While these cases are counted as grasp
success in our experiments, one should note that the intended grasp was not achieved.
Success must be attributed to coincidence and the design of the finger nails.

The experiment demonstrates that different ways of exploiting environmental
constraints succeed under different conditions. It also shows that the success of
exploiting environmental constraints depends object characteristics in non-trivial
ways. It is therefore desirable to employ a variety of grasp strategies for which the
conditions of success have been characterized. Perceptual skills then must classify
environments according to which of the strategies’ conditions of success are met
best.

4.2 Hand Design

In this section we present our initial efforts to design a hand specifically for the
exploitation of environmental constraint during grasping. If indeed exploitation
of environmental constraints enables robust grasping, such hands should lead to
improved grasping performance.

Environmental constraints can be exploited most effectively through contact. We
therefore design hands so as to attain and maintain contact without the need for
sophisticated sensing and control.We achieve this through the extensive use of under-
actuation and passive compliance.

Our previously presentedRBOHand is shown in Fig. 10 [6]. It employs pneumatic
continuum actuators in three fingers and has two deformable pads that form the palm.
The hand is highly robust (does not fail after thousands of grasps), canwithstand blunt
collisions, is inherently safe, and easy and cheap to manufacture. And it achieves
very robust grasping performance on objectswithwidely varying geometries,without
sensing or control, simply by inflating the continuum actuators (see Fig. 10, a more
detailed experimental evaluation for these objects can be found in reference [6]). We
obtain these desirable properties at the expense of precise position or force control.

4.2.1 Surface-Constrained Grasp with the RBO Hand

Grasp strategies should take advantage of the hand’s ability to compliantly attain and
maintain contact with the environment. We presented such a strategy, the surface-
constrained grasp, in prior work [6]. This strategy, illustrated in Fig. 11 and for a
particularly difficult object in Fig. 12, makes extensive use of the environmental
constraints provided by the support surface. It uses contact between the palm and
the support to level the hand with the object. The fingers slide along the support
to establish reliable contact with the object. Finally, the fingers adapt to the shape
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Fig. 10 RBO hand and a selection of objects it can grasp

Fig. 11 Execution of a surface-constrained grasp, from left to right approach phase, exploitation
of table to position and orient the hand, the fingers pull the object across the constraint surface,
compliance achieves large contact area, and object lift

Fig. 12 Surface constrained grasp picking up a piece of tissue, from left to right exploitation of
table to position and orient the hand, exploitation of table to ensure contact with the flat object,
compliant grasping, established grasp, and object lift

of the object to establish a robust grasp. These ways of exploiting environmental
constraints are facilitated by the hand’s design and do not require sensing or control.

4.2.2 Slide-to-edge Grasp with RBO Hand

We implemented the slide-to-edge grasp from Sect. 4.1.2 using the RBO hand. An
execution of this strategy is illustrated in Fig. 13. In the first phase, the hand’s palm
establishes contact with the edge, eliminating position uncertainty. Subsequently, the
fingers are flexed and the fingertips establish contact with the table, achieving caging.
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Fig. 13 Edge grasp with the RBO hand, from left to right approach, compliant contact with the
edge, sliding object along surface, sliding fingers along surface, and lift

The hand rotates about the edge/palm contact to ensure contact between the fingers
and the support surface, while the compliant fingers slide along the support surface
until a grasp is established. Finally, the hand retracts from the edge at an angle of
15◦, lifting the fingertips from the surface and detaching the palm form the edge at
the same time.

4.2.3 Experiments

In previous work, we demonstrated the ability of the RBO hand to grasp a diverse
set of objects of comparable size (see Fig. 10) [6]. We now complement these exper-
iments by evaluating grasp performance with objects of widely varying sizes. We
compare the previously published surface-constrained grasp with the novel slide-to-
edge grasp. In all experiments,wemeasure the hand’s ability to exploit environmental
constraints during grasping by characterizing the region of success under systematic
displacements of the object relative to the hand. We consider tolerance to significant
displacement as a sign of good constraint exploitation.

In our grasping experiments, we used the set of cylinders shown in Fig. 6a. The set
of blocks fromFig. 6b cannot be grasped by the current hand design due to limitations
in actuation and hand aperture. Objects were displaced along one axis in twelve (ten)
200mm increments, using nine different cylinder sizes, for a total of 108 (90) trials
for the surface-constrained (slide-to-edge) grasp. To create a dense spatial coverage
with a feasible number of experiments, every position was sampled only once for
each object size.

The results of these experiments are shown in Fig. 14a. Both strategies achieved
grasp success in large and contiguous areas of the explored parameter space. Con-
sistent grasp success under significant variations in object size and placements is a
strong indication for the robustness of constraint exploitation provided by the hand
design. Note that the hand does not use sensing or control to achieve this grasping
performance.

The results in Fig. 14a also show that the grasps are successful under different
conditions. The surface-constrained grasp requires cylinders to be at least 22mm
in diameter, whereas the edge grasp requires the presence of an edge within about
100mm of the object. This confirms the results from Sect. 4.1.2 and further empha-
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Fig. 14 Grasping results for cylinders of varying sizes and varying horizontal displacements: circles
indicate grasp success, crosses indicate failure. a Surface-constrained grasp. Distance measure as
indicated in Fig. 11. b Slide-to-edge grasp. Distance measure as indicated in Fig. 13

sizes the necessity of employing multiple strategies in response to the specific grasp
problem.

Our experiments show that hand design targeted to exploit environmental con-
straints can lead to robust grasping performance for a variety of object shapes and
sizes without the need for sensing and complex control. This advantage, however,
comes at the cost of dexterity. The low number of actuators renders the precise con-
trol of finger forces, as required for in-hand manipulation for example, very difficult.
We will explore in future research if it is possible to strike a good balance between
passive compliance for constraint exploitation and detailed control for dexterous
manipulation.

5 Conclusion

The work presented in this paper describes the early stages of an integrated research
agenda in robotic grasping. This agenda combines the study of human grasping to
identify strategies and principles leading to their competencies with the transfer of
these principles to robotic grasp planners as well as to robotic hand design.

Informed by a growing body of research in robotic grasping, we formulated the
premise that robust and reliable grasping must exploit environmental constraints
during the grasping process. In support of this, we presented experiments to show
that humans respond to increased difficulty in the grasping problem by increasingly
exploiting environmental constraints. We believe that the study of human exploita-
tion strategies will provide important insights into how robotic grasping algorithms
can achieve robust grasping performance. Following this motivation, we presented
several such strategies on two different robot platforms. Each of the strategieswas tai-
lored to exploit constraints commonly present in real-world grasping problems. We
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demonstrated the success of constraint exploitation in real-world grasping exper-
iments. Finally, we demonstrated the utility of designing hands to facilitate the
exploitation of environmental constraints by presenting a mechanically compliant
and highly deformable hand. This hand robustly grasps objects of varying sizes and
shapes, without the need for explicit force sensing or feedback control.
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Restraining Objects with Curved Effectors
and Its Application to Whole-Arm Grasping

Jungwon Seo, Mark Yim and Vijay Kumar

Abstract This paper develops the theory and algorithms for immobilizing/caging
polyhedral objects using curved (for example, planar, cylindrical, or spherical) effec-
tors, in contrast to customary point effectors.We show that it is possible to immobilize
all polyhedral objectswith three effectorswith possibly nonzero curvature, with finite
extent. We further discuss how to cage the objects and obtain a stable grasp from
such a cage. The theory can also be applied to immobilize/cage polygonal objects
on the plane. As one application of the theory, we address the problem of whole-arm
grasping with robot arms.

1 Introduction

Our main interest is in immobilizing and caging objects. If an object is immobilized,
it can neither translate nor rotate. Caging seeks to establish obstacles around an
object such that it cannot escape arbitrarily far away. In contrast to previous work,
we do not limit ourselves to point effectors (fingertip contacts): it has been customary
to consider point contacts and induced wrenches related to the contact normals in
studying the mobility of a grasped object [6, 8]. In addition, a mobility theory based
on the relative curvature of contacting bodieswas established in [12, 13]. Parallel-jaw
grasping [2] is oneway to obtain stable grasps, although the grasps do not immobilize
objects. Recently, it has been shown that grasping can be facilitated by forming cages
first [11, 14]. There have also been efforts to compute cages [16].

In this work, we constructively show that all polyhedral objects can be immo-
bilized with three curved (for example, planar, cylindrical, or spherical) effectors
providing only frictionless, rigid, unilateral contacts. In [12], the authors proposed
a conjecture that asks if general n-dimensional objects can be immobilized by n
frictionless, suitably concave effectors; our result thus confirms the conjecture for
polyhedral objects. We also discuss how to establish cages exploiting the concavity
of the curved effectors and obtain a stable grasp from the cages by simple motion
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planning. We thus propose to integrate effector design into the synthesis of grasps
and cages. Although not as simple as point effectors, the curved effectors are simple
enough to be easily manufactured, for example, by 3D printing, or emulated in many
ways, for example, by cupping the fingers and palm of a multi-fingered hand.

As one application of our theory, we address whole-arm grasping, where robot
arms grasp an object not only using their end-effectors but also possibly exploiting
other contacts with the arms and torso. Even contact planning for whole-arm grasp-
ing becomes intractable as the number of point contacts to be established increases.
Whole-arm grasping has been addressed by data-driven approaches [4]. In contrast,
we shall introduce a model- and rule-based approach employing energy-based link-
age reconfiguration [3, 5], which can be verified analytically. This work builds on
our previous paper [15] that addressed the synthesis of spatial grasping; in this paper,
we incorporate more complete algorithms and analysis for immobility and caging
conditions.

The paper is organized as follows. We begin by reviewing some preliminary
concepts in Sect. 2. We discuss our theory and algorithms for immobilizing/caging
polyhedral/polygonal objects with curved effectors in Sect. 3. We then address the
problem of whole-arm grasping in Sect. 4 as one application of the theory. We con-
clude in Sect. 5 with suggestions for future work.

2 Preliminaries on Grasping and Caging

We are concerned with an object in contact with effectors restricting its motion. A
grasp refers to such a configuration with additional information on contact wrenches
[6, 8], force/moment pairs exerted at the involved contacts. We only consider the
contact wrenches of frictionless, rigid, unilateral contacts, which can be represented
as the positive linear combination of unitwrenches along the contact normals (Fig. 1a,
b). A grasp can be in equilibrium if the resultant wrench can be made zero in such a
way that not all contact wrenches are equal to zero.

If there is no object twist consistent with the contact wrenches of an equilibrium
grasp, the object is said to be immobilized to the first order (form-closure). Even

(c)(b)(a)

Fig. 1 a Immobilizing the regular triangle with the three point effectors located at the center of
each edge. b Clamping the tetrahedron with the two plane effectors contacting the vertex-face pair.
c Caging the triangle with the three point effectors. The red arrows are involved unit wrenches in
a, b, and all upcoming figures
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if such a twist exists, any finite motion may be restricted by considering curva-
ture effects. For example, in Fig. 1a, the object can instantaneously rotate about its
centroid (so a first-order kinematic analysis does not predict immobility), but any
finite rotation will result in penetrating the effectors. This idea is formalized using
the concept of second-order immobility [12, 13]. Seven (four) point effectors are
required to immobilize general three-dimensional objects to the first (second) order.
Such immobility conditions are purely geometric; information on contact geometry
is thus sufficient to investigate first- or second-order immobility.

Although not immobilizing, clamping [2], also known as parallel-jaw grasping,
is one way to realize a stable equilibrium grasp with two planar “jaws”. Moreover,
the grasp can be force-closed [6] by considering friction. Even if not, the clamped
object can only move on the plane of the jaws. Consider the antipodal pair of a
convex, polyhedral object, i.e., the intersection of the object with a pair of parallel
support planes, which can be a vertex-vertex, vertex-edge, vertex-face, edge-edge,
edge-face, or face-face pair. According to [2], the last four types of antipodal pair
can provide a clamp as shown in Fig. 1b. Note that they can determine the width of
the object, the minimum distance between two parallel supporting planes.

Without contacting an object, effectors may just surround the object such that
it cannot escape from their cage (Fig. 1c). In [14], the concept of an F-cage was
formalized. Let F be a scalar function defined on effector configurations. Then an
F-cage is a configuration of the effectors that cages an object even if they have
freedom to move while maintaining the value of F . An F-cage is an F-squeezing
(stretching) cage if it still cages the object even if the effectors have freedom to move
while decreasing (increasing) the value of F . For two point effectors, F can simply
be the distance between them, and the prefix “F-” can be ignored as in [16].

3 Restraining Objects with Curved Effectors

In this section, we discuss how to immobilize and cage all polyhedral objects (or just
polyhedra for short) with at most three curved effectors providing frictionless, rigid,
unilateral contacts. It is sufficient to consider only planar, cylindrical, and spherical
effectors, shown in Fig. 2, which will be used only for a planar, a line, and a point
contact at a face, a convex edge, and a pointed vertex of a polyhedron, respectively,
as can be previewed in Fig. 3.

3.1 Immobilizing Polyhedral Objects with Curved Effectors

We first discuss how to synthesize immobilizing grasps using at most three curved
effectors shown in Fig. 2. We also show that our grasps are complete, that is, they
can immobilize all polyhedra.
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d ω
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ω

Fig. 2 Examples of a planar, a cylindrical, and a spherical effector. The planar effector has a
rectangular shape. The latter two are cut parallel to the axis of revolution of a cylinder and a
sphere, respectively. Their dimensions are shown as w (width), r (radius), � (length), d (depth), and
ω (aperture)

(a)

P

Q

R

ξ (b)
P

ξ
b (c)

ξ

Fig. 3 Immobilizing grasps using (a) a vertex-vertex antipodal pair, (b) a vertex-face antipodal
pair, and (c) an edge-edge antipodal pair. The inscribed red line segment, right circular cone, and
tetrahedron respectively in (a), (b), and (c) will be used in Fig. 6

None of the effectors can individually immobilize polyhedra. However, two or
three effectors can provide immobility by exploiting the antipodal pairs of the convex
hull of a given polyhedron, as will be explained below. The nonzero curvature of a
cylindrical or spherical effector and the multiple unit wrenches of a cylindrical or
planar effector contact play an important role in the immobility. Note that if a virtual
edge or face [10], that is, an edge or face belonging to the convex hull but not to the
original polyhedron, needs to be contacted by a cylindrical or planar effector, w and
� (Fig. 2) should be large enough to entirely cover the virtual element.

Immobility using a vertex-vertex antipodal pair: Let (P, Q) denote the pair;
see Fig. 3a. Suppose that the two support planes can be made perpendicular to P Q
and contact only P and Q, respectively. We can have two spherical effectors contact
P and Q, respectively, such that their contact normals are collinear to ξ (the line
collinear to P Q) because spherical effectors are locally flat and the vertices are
pointed. Now the polyhedron can only rotate about ξ as long as the effectors have
a radius less than 1

2d(P, Q), where d(·, ·) is the Euclidean distance between the
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two elements, because any finite displacement of P Q will result in penetrating the
effectors. An additional contact by a spherical effector at R can further restrict any
finite rotation about ξ if the radius of the effector is less than d(R, ξ) and its contact
normal intersects ξ .

Immobility using a vertex-face antipodal pair: Suppose that the pair determines
the width. Consider a planar effector contacting the face and a spherical effector,
whose radius can be arbitrary, contacting the vertex P such that its contact normal,
collinear to ξ , orthogonally intersects the planar effector; see Fig. 3b. Now the object
can only rotate about ξ : the object is at least clamped by the two effectors (only planar
motion on the planar effector possible); moreover, any finite translation on the plane
results in penetrating the spherical effector. An additional contact by a cylindrical
effector at one of the edges incident to P can further restrict any finite rotation about
ξ if its contact normal intersects ξ : the edge with the least slope with respect to the
face satisfies the condition; the radius of the cylindrical effector should be less than b
as shown in the figure.

Immobility using an edge-edge antipodal pair: Suppose that the pair deter-
mines the width. Consider two cylindrical effectors, whose radius can be arbitrary,
respectively contacting the two edges such that their contact normals are all parallel
to ξ , the common perpendicular of the two edges; see Fig. 3c. If ξ intersects both
effectors, the object is immobilized: it is at least clamped by the two effectors; more-
over, one of the cylindrical effectors only allows the object to translate along its axis
of revolution, but such translation is not allowed by the other effector.

The elements that the effectors contact, except for the edge in Fig. 3b, can easily
be reached because they belong to the convex hull; the minimum required aperture
of a cylindrical or spherical effector can be determined by the object geometry.
The following theorems verify the completeness of the grasps: all polyhedra can be
immobilized by applying the grasps. We first verify that even only the first type of
grasp can be sufficient.

Theorem 1 Every polyhedron can be immobilized with three spherical effectors of
appropriately chosen dimensions.

Proof We first show that every polyhedron has a vertex-vertex antipodal pair (P, Q)

that allows two support planes perpendicular to P Q and contacting only P and Q,
respectively. Consider the collection of the vertices of the polyhedron. Let (P, Q)

be a pair of vertices determining the maximum distance between two vertices of the
collection. Consider two planesΠP andΠQ perpendicular to P Q and contacting the
polyhedron respectively at P and Q. No other vertex of the polyhedron can be located
on ΠP and ΠQ because (P, Q) determines the maximum distance. Therefore, ΠP

(ΠQ) is supporting the polyhedron only at P (Q); (P, Q) is the desired vertex pair.
Next, we show that an additional vertex, denoted as R, can be found such that a

contact normal at R by a spherical effector intersects the line of P Q. Let R be the
vertex that is the most distant from the line of P Q. Consider a plane ΠR parallel to
P Q, perpendicular to the plane of �P Q R, and contacting the polyhedron at R. No
other vertex of the polyhedron can be located on ΠR except on ξR , a line passing
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through R and parallel to P Q on ΠR , because R determines the maximum distance.
However, R is not a mid-edge vertex. Therefore, we can make the contact normal of
a spherical effector intersect the line of P Q; R is the desired vertex.

We finally get immobility with three spherical effectors respectively contacting
P , Q, and R as explained in immobility using a vertex-vertex antipodal pair. �

The next theorem shows completeness in terms of general polyhedra, i.e., poly-
hedra that do not have parallel elements that can be edges or faces.

Theorem 2 Every general polyhedron can be immobilized with either (1) two cylin-
drical effectors or (2) a planar, a cylindrical, and a spherical effector of appropriately
chosen dimensions.

Proof Every general polyhedron can be clampedwith either a vertex-face or an edge-
edge antipodal pair. The polyhedron can then be immobilized using the antipodal pair
by applying immobility using a vertex-face antipodal pair or immobility using
an edge-edge antipodal pair. �

Our approach can be generalized in a number of ways. On the one hand, more
types of grasps can be considered by employing other types of antipodal pairs. For
example, Fig. 4 shows an immobilizing grasp with two spherical effectors and one
planar effector on an edge-face antipodal pair; it can be proved that if the involved
contact wrenches can be in equilibrium, then we actually get immobility. On the
other hand, the effector shapes can also be generalized because we only need the
curvature of contact points.

We now proceed to designing an algorithm to obtain the grasps. First, it takes
O(n log n) expected time to compute the convex hull of a given polyhedron, where n
is the number of the vertices. Then all of the antipodal pairs of the convex hull can be
found in O(n2) time by applying a technique introduced in [2]. For a vertex-vertex
or vertex-face antipodal pair, it additionally takes O(n) time to find the third contact
location. Note that, however, the overall complexity will also depend on collision
detection algorithms if the global geometry of the effectors is to be checked. Figure5
shows some example grasps found by the algorithm; more than 100 grasps could be
found in less than 5s with a simple C++ implementation.

Fig. 4 An immobilizing
grasp using the edge-face
antipodal pair that
determines the width

P

Q
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Fig. 5 The two or three curved effectors colored in green are grasping the rock model with 1,000
faces (courtesy Malcolm Lambert, Intresto Pty Ltd.). The rock is immobilized using a a vertex-
vertex pair, b a vertex-face pair (a cylindrical effector is not shown), c an edge-edge pair, and d an
edge-face pair

3.2 Caging Polyhedral Objects with Curved Effectors

We now discuss the synthesis of cages using the global geometry of the effector
models in Fig. 2. The cages are based on the immobilizing grasps in Fig. 3; it is
sufficient to use only the two effectors at the antipodal pairs. The inscribed shapes
in Fig. 3, reproduced in Fig. 6, allow us to establish sufficient conditions for caging.

Cage using two spherical effectors: Given a vertex-vertex antipodal pair, (P, Q),
we consider how to cage P Q with two spherical effectors; see Fig. 6a. Suppose that
the effectors are only allowed to move such that their axes of revolution are always
collinear; the axis is denoted as η. Then P Q is caged with the effectors if δ is small
enough to guarantee (1) P and Q are respectively in the “pockets”, i.e., the interior
of the convex hull, of the effectors and (2) c < d(P, Q), where c is the maximum
opening between the two effectors.

(a)
P

Q

c
δ

η (b) η η

a

r

rc

δ +d

O

δh

(c)
A B

C
D

d1

δ

d2

Fig. 6 Cages using two curved effectors. The red inscribed shapes are reproduced from Fig.3. a A
cage using two spherical effectors. c = c(δ) denotes the maximum distance between a point on the
rim of one effector and a point on the surface of the other effector; thus P Q (and thus the polyhedron)
cannot escape from the effectors if c < d(P, Q). b A cage using a spherical and a planar effector.
If δ + d < a, the vertex of the cone cannot be located below (closer to the planar effector than) its
current position. Therefore if additionally δ < h, the cone (and thus the polyhedron) cannot escape
from the two effectors. c A cage using two closed-ended cylindrical effectors. Note that δ denotes
the vertical distance between the two effectors in all the three cases

millitsa@ece.neu.edu



418 J. Seo et al.

Cage using a spherical and a planar effector: Given a vertex-face antipodal
pair determining the width, we consider how to cage the cone in Fig. 6b with a
spherical and a planar effector. First suppose that two infinitely large planar effectors
are clamping the cone at the apex and base. We now allow the effectors to move in
such a way that they remain parallel to each other. If their distance is less than a, the
side length of the cone, the clamp can stably be recovered by just making the effectors
approach each other; moreover, the distance between the apex and the effector at the
base is always larger than h, the height of the cone. Instead of the planar effector at
the apex, now consider a spherical effector only allowed to relatively translate along
its axis η perpendicular to the other planar effector (Fig. 6b). Then the cone is caged
with the effectors if δ is small enough to guarantee (1) the apex is in the pocket of the
spherical effector, (2) δ + d < a, and (3) δ < h: (2) and (3) guarantee that the apex
cannot escape from the pocket by the analysis above. Note that the planar effector
at the base only has to be large enough to contain a disk of radius r + rc centered at
O , where η intersects the planar effector.

Cage using two cylindrical effectors: Given an edge-edge antipodal pair deter-
mining the width, we consider how to cage the tetrahedron in Fig. 6c with two cylin-
drical effectors. Consider again the two infinitely large planar effectors clamping the
tetrahedron at the edge pair (AB, C D). If their distance is less than a, the smallest
value among d(

←→
AB, C), d(

←→
AB, D), d(

←→
C D, A), and d(

←→
C D, B), where

←→
AB is the line

of AB, and so on, the clamp can stably be recovered by just making the effectors
approach each other. Moreover, the lowest (closest to the bottom effector) possible
positions of A and B can be found by rotating the tetrahedron about C D lying on the
bottom effector. The highest possible positions of C and D can also be found sim-
ilarly. Instead of the planar effectors, now consider two cylindrical effectors facing
each other and only allowed to relatively translate on their common perpendicular η.
To simplify analysis, assume that the sides of the effectors are closed as can be seen
in Fig. 6c. Then the tetrahedron is caged with the effectors if δ is small enough to
guarantee (1) AB and C D are respectively in the pockets of the cylindrical effectors,
(2) δ + d1 + d2 < a, and (3) d1 (d2) is large enough to contain the lowest (highest)
positions of A and B (C and D): (2) and (3) guarantee that the edges cannot escape
from the pocket by the analysis above.

As a corollary of Theorems 1 and 2, the three types of cages are complete. More-
over, other effector geometry can also be considered; using cylindrical or spherical
surfaces is just one way to satisfy the caging conditions.

The following theorem states what happens if the two caging effectors get closer.

Theorem 3 For the three types of cages discussed above, an equilibrium grasp is
obtained if the two effectors are controlled such that the relative velocity is along η

and δ monotonically decreases until contact is established.

Proof We first show that δ is a grasping function [14] for the cages. In each type, the
configuration space of the two effectors can be represented asM = SE(3) × SE(3);
δ is a semi-algebraic scalar function δ : M → R invariant with respect to the rigid
transformations of the effectors as a whole in that it is the distance between the
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effectors (Fig. 6). Furthermore, the preimages of δ do not cage the object below
(above) a certain value m (M) such that m < M , for example, m = 0 and M = h in
Fig. 6b. Then δ is a grasping function according to [14].

In addition, the cages are δ-squeezing cages [14] in that the object remains caged
even if δ decreases, and then there exists a path in M that leads the effectors into a
configuration that can realize an equilibrium grasp. Furthermore, in terms of the one-
dimensional set representing the relative configuration space of the two effectors, δ
can be considered as a convex, i.e., linear, function. Then we get to a configuration to
realize an equilibrium grasp only by moving the effectors such that δ monotonically
decreases by the result of [14]. �

A translation that monotonically decreases δ will be referred to as a squeezing
motion in the remaining discussion. Note that, however, the resultant grasp might
not be the one we have expected; for example, the circular rim of a spherical effector
may unexpectedly contact the object. Still, it is guaranteed to be a configuration to
realize equilibrium. We may then add more contacts to further secure the grasp.

3.3 Immobilizing/Caging Polygonal Objects with Curved
Effectors

In this subsection, the results of Sects. 3.1 and 3.2 are applied to polygonal objects
(or just polygons for short) with curved effectors on the plane.

Corollary 1 Every polygon can be immobilized with two circular effectors of appro-
priately chosen dimensions.

Corollary 2 Every general polygon, whose convex hull does not have parallel edges,
can be immobilized with a linear and a circular effector of appropriately chosen
dimensions.

Here is a sketch of proof. For Corollary 1, consider a pair of vertices determining
the diameter. Two circular effectors contacting the vertices can then provide planar
immobility. For Corollary 2, we use the fact that a general polygon allows clamping
only at an edge-vertex pair. Then a linear and a circular effector at the pair can
provide planar immobility. To illustrate, see Fig. 7a, b and imagine the circular (linear)
effectors are actually contacting the vertices (edge).

We can also construct planar cages of two curved effectors inspired by the geom-
etry of the grasps; see Fig. 7a, b. As implied by the red line segment and cone in
the figures, the caging conditions can be established similarly to Fig. 6a, b. We can
also add more grasp/cage pairs. As shown in Fig. 7c, two point effectors suffice to
immobilize/cage some concave polygons; the related caging condition is discussed
in [16]. Finally, the following corollary can be proved similarly to Theorem 3.
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Fig. 7 The polygon can be caged by a the two circular effectors, b the linear and circular effectors,
and c the two point effectors. Effector dimensions are shown as r (radius), � (length), and d (depth)

Corollary 3 For the cages shown in Fig.7, an equilibrium grasp is obtained if the
two effectors are controlled such that the relative velocity is along η and the distance
monotonically decreases until contact is established.

4 An Application to Whole-Arm Grasping

Our approach in Sect. 3 seeks tominimize the number of restraining effectors without
losing stability. We show how this approach can be applied to whole-arm grasping
with robot arms, which can be effective for grasping large, bulky objects with rela-
tively small end-effectors and the armchain between them.

4.1 Approach

Whole-arm grasping is naturally related to an open kinematic chain. Here, we partic-
ularly consider a planar open kinematic chain where revolute joints are connecting
rigid links moving on the plane; the platformwill be just referred to as amanipulator.
The planar architecture suffices to realize even our spatial grasps in that the three
effective contact wrenches respectively from the three contacts should be from a pla-
nar pencil and thus coplanar. We again assume that the manipulator only provides
frictionless, rigid, unilateral contacts. But, our strategy based on such conservative
assumptions can also be effective for physical environments with nonzero friction
and compliance. At least two of the manipulator links should be shaped to provide
the curved effectors in order to apply our theory; we call them end-effectors. They
may be made exchangeable to suit the size and shape of an arbitrary object (Fig. 8a,
b). Without making dedicated end-effectors, the curved shapes may be emulated
in some ways, e.g., the flexion of a joint for a circular effector (Fig. 8c) for planar
grasping (Sect. 3.3).

Our approach to whole-arm grasping is composed of two phases: preshaping
and squeezing. In the preshaping phase, we move the manipulator such that its two

millitsa@ece.neu.edu



Restraining Objects with Curved Effectors and Its Application … 421

(a) (b) (c) d

r

Fig. 8 a A manipulator for whole-arm grasping. The base and the two end-effectors of the planar
open kinematic chain provide a planar and spherical surfaces, respectively. We can also consider a
collection of exchangeable effectorswith various sizes and shapes.bAnexample of an immobilizing
whole-arm grasp on the rock model with the manipulator. c The flexion of the PR2’s elbow can
emulate a circular (or cylindrical) effector shown in the figure

end-effectors can cage the object. The fact that we can aim at any of our cages, whose
collection is not a set of measure zero, can facilitate involved motion planning. In the
squeezing phase, the two end-effectors perform a squeezing motion. Meanwhile, we
can have other links contact the object without losing stability, which can be justified
by the following corollary:

Corollary 4 Suppose that the end-effectors of a manipulator are caging an object as
shown in Figs.6, 7. An equilibrium grasp is obtained if the manipulator moves such
that the end-effectors are performing a squeezing motion until contact is established.

Proof Recall Theorem 3. Here, the configuration spaceM of the manipulator can be
thought of as SE(3) × S

m , where the first (second) term addresses the configuration
of the base (m joints), but the same argument can also be applied by regarding δ, the
distance between the two effectors, as a grasping function again. �

Although other links, besides the end-effectors, contact the object, the corollary
shows that the grasp can still be in equilibrium as long as the end-effectors are
squeezing. The squeezing phase can be performed in a blind manner without direct
feedback of the object pose. In fact, the approach is also popular in multi-fingered
grasping [7], where data-driven approaches have mainly been used for preshaping
and squeezing, i.e., closing the hand. In contrast, we use a model-based approach
possibly for a hyper-redundant arm that does not have an obvious closing motion.

4.2 Planning and Executing Whole-Arm Grasping

4.2.1 Planning Whole-Arm Grasping

The central algorithm is Algorithm 1; the key idea is as follows. Let C denote the
configuration space of a given object-manipulator system, isomorphic to SE(3) ×
SE(3) × S

m for two independent rigid bodies (the object and the base of the manipu-
lator) and m manipulator joints. It is assumed that the kinematic model of the system
is known. The algorithm takes as input an initial configuration of the system ci ∈ C , a
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6 + 6 + m-dimensional vector; it returns a reference trajectory for the manipulator,
γ (s) : [0, 1] → SE(3) × S

m , where s is a non-dimensional parameter increasing
with time. The following paragraphs elaborate each line of the algorithm.

Algorithm 1 Motion planning for whole-arm grasping

Input: An initial configuration of an object-manipulator system, ci ∈ C
Output: A reference trajectory for whole-arm grasping, γ
1: Construct two configurations: cp ∈ C for preshaping, cs ∈ C for squeezing.
2: Plan a trajectory γi p for the preshaping: from ci to cp .
3: Plan a trajectory γps for the squeezing: from cp to cs (possibly in parallel with Line 2).
4: Concatenate γi p and γps into γ , the resultant trajectory from ci to cs via cp .

Line 1: We first construct cp, cs ∈ C that are supposed to describe configurations
at which preshaping and squeezing should aim, respectively (Fig. 9a). They can thus
be interpreted as desirablewaypoints. cp is constructed such that the twoend-effectors
cage the object in a kinematically feasible manner. cs is constructed such that the
manipulator deliberately intersects the object; one simple strategy is to make just
the two end-effectors approach and intersect the object, but other links can also be
considered as shown in Fig. 9a. At cp and cs , the manipulator should be described as
simple polygons (Fig. 9a) to facilitate the squeezing as will be explained. In planar
grasping for polygons, cp may be constructed simply by enclosing the object with
the manipulator such that the opening is less than the width of the object.

Line 2: We plan for a trajectory from ci to cp. During the motion, we do not want
the manipulator to interact with the object; thus any collisions should be avoided.
This can be considered as an ordinary path planning problem. Ultimately, some
manipulations such as toppling or tilting might be needed to reach cp; but it is
outside the scope of this paper.

Line 3: We now plan for a trajectory from cp to cs while ignoring the object
geometry. In order to realize a squeezing motion, the manipulator should be regarded
as a closed kinematic chain. Furthermore, the length of the virtual link between the

(a)

cp

cs

(b)

p j p j+1

Fig. 9 a At the configuration cp (in grey), the spherical end-effectors are caging the object. The
wireframe shows the configurations of the end-effectors at cs after the squeezing motion (see the
arrows), where the longest link is also intersecting the object as shown. If we additionally consider
the virtual link connecting the end-effectors, the manipulator configurations can be described as
simple polygons. b The level set of d(·, ·) appeared in Eq. (1) allows us to address the planar shape
of the link p j p j+1 connecting the joints p j and p j+1 for collision avoidance. Some of the level sets
are shown as solid boundaries
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two squeezing end-effectors must monotonically decrease. This is a hard problem in
general, but can be efficiently solved by Iben et al.’s algorithm [5], for interpolating
between two planar, simple polygonswithout any self-intersections. In the algorithm,
link lengths can be fixed or monotonically changed, which allows us to implement
squeezing. The resultant motion basically reconfigures the two polygons “towards
eachother” according to ametric definedbetween apair of polygons, e.g., the �2-norm
on the vector of vertex coordinates. Whenever the direct reconfiguration increases
the value of an energy function such as

E =
∑ 1

d(pi , p j p j+1)2
, each term is for joint pi and link p j p j+1 (i �= j, j + 1)

(1)

we follow the downward gradient of E to avoid self-collisions.
Iben et al.’s algorithm employed in Line 3 is basically for line segment links

without joint limits, i.e., θi ∈ (−π, π) where θi is the angle of joint i (θi = 0 when
the two links are collinear). We further discuss how to adapt the algorithm so as
to address link shapes that are not line segments and joint ranges narrower than
(−π, π), i.e., θi ∈ [−�i , ui ]where 0 < �i , ui < π . First, in order to address nonzero
link volume, we propose to use (d(pi , p j p j+1) − δ j )

2 as the denominator of each
term of E where δ j is determined for each link p j p j+1 such that the collection
of x’s on the level set d(x, p j p j+1) − δ j = 0 can address the collision hull of the
link (Fig. 9b). Note that two adjacent links overlap each other. Second, If (1) any
θi is close to its limit, i.e., θi ∈ [−�i ,−�i + ε] or θi ∈ [ui − ε, ui ] for some ε > 0
and (2) the manipulator is described as a concave polygon, we propose to apply an
expansive motion [3] to straighten all joints such that θi can return to the “safe” range
beyond the margin of ε. During an expansive motion for a closed chain, every joint is
monotonically unfolded until the chain is convexified. Such a motion always exists
as long as the chain is described as a simple, concave polygon and is computed by
convex optimization [3]. In case the manipulator is described as a convex polygon,
there also exists such an angle-monotone motion to address the joint limit issues [1].
It can be shown that the adaptations do not affect the convergence of the algorithm.

Algorithm1 can be performed efficiently. Line 1 can be considered as inverse kine-
matics problems; any collision-aware inverse kinematics algorithm can be applied.
Line 2 can be implemented by efficient path planning algorithms such as RRT-based
algorithms. Line 3 terminates in a finite number of steps computing the integral curve
of a vector field [5].

4.2.2 Executing Whole-Arm Grasping

We make the manipulator follow the resultant trajectory in a quasi-static manner
because we are basically concerned with the relative configuration of the object and
manipulator. In fact, the motion will necessarily be interrupted on the way because it
is designed to collide with the object. If there is neither friction nor compliance, the
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Fig. 10 a CKbot modules providing one rotational degree of freedom. b Two 3-d.o.f. arms and
a 3-d.o.f. spine between them. c One planar effector, two spherical effectors, and two cylindrical
effectors (left to right). d A two-armed modular manipulator

configuration where the manipulator stops moving can realize a caged, equilibrium
grasp by Corollary 4; the configuration can thus be an acceptable grasp.

In many cases where we cannot ignore friction, the manipulator might get stuck
on the way. In other words, it might not be able to reach the configuration of the ideal
case because nonzero friction can cause jamming and wedging [6]. However, both
phenomena imply force-closure [6], which in turn implies involved wrenches are in
equilibrium. Thus the jammed or wedged configuration can also be an acceptable
grasp; we then have more candidates for acceptable grasps due to nonzero friction.

Even if we cannot ignore compliance, the local stability of the resultant grasp is
guaranteed. If the manipulator happens to immobilize the object, the object remains
locally dynamically stable under a common stiffness model [12]; nonzero friction
can further enhance the stability. Even if not immobilizing, the force-closure grasp
by the caging effectors can be made stable [9]. The guaranteed stability allows us to
exert internal forces, further securing the resultant grasp, only by position control,
i.e., simply by letting the manipulator “move” as planned. A terminating condition
can then be stated as follows: terminate the motion of the manipulator after it stops
moving and its joint torque values exceed appropriate threshold values.The threshold
values should take the safety of the system into account. More refined terminating
conditions can be considered if visual or tactile sensing is available.

4.3 Implementing Whole-Arm Grasping

We implemented whole-arm grasping with CKbot,1 our chain style modular robot
system. In terms of kinematics, each module can be used as an 1-d.o.f. swivel or
elbow joint (Fig. 10a). Figure10b shows the subassemblies of two 3-d.o.f. arms and
a 3-d.o.f. spine. The arms are planar chains, composed of three elbow joints, such that
the energy-based squeezing can be applied; the spine, composed of two swivel joints
and one elbow joint, provides all the three rotational degrees of freedom by realizing
z-y-z Euler angles. Figure10c shows 3D printed curved end-effectors compatible

1http://www.modlabupenn.org/ckbot.

millitsa@ece.neu.edu

http://www.modlabupenn.org/ckbot


Restraining Objects with Curved Effectors and Its Application … 425

cp1

cp2

cs

cs

(a)

(b)

Fig. 11 a Preshaping: in the first two panels, the simulated modular manipulator with the 10-d.o.f.
armchain is moving to the preshape where the end-effectors are caging the rock. In the last two
panels, the end-effectors were zoomed in. Uncertainty in sensing and control can be accommodated
in the cages. b Squeezing: in each row, the real, 10-d.o.f. armchain is reconfiguring from the
preshape, cpi , to the common squeezed configuration, cs (left to right); the distance between the
end-effectors is monotonically decreasing without collisions

Fig. 12 Some example grasps by the modular manipulator (top) and the conventional manipulator,
PR2 (bottom). The PR2 is applying planar grasping (Sect. 3.3) that can be effective for the prismatic
objects

with CKbot; the arms in Fig. 10b actually have the two spherical end-effectors. In
Fig. 10d, the finished two-armed modular manipulator is shown.

Our software implementing Algorithm 1 is organized as ROS2 packages. They
provide methods for grasp synthesis, preshaping, and squeezing. Figure11a shows

2http://www.ros.org.
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the simulatedmodel of themodularmanipulator,with two5-d.o.f. arms, is preshaping
for a cage. Figure11b shows two examples of the energy-based squeezing for the
10-d.o.f. armchain. Finally, in the top row of Fig. 12, the tetrahedral carton, with the
texture of marble, is grasped by the chain of 4-d.o.f. and 2-d.o.f. arms in the first
panel, the chain of two 3-d.o.f. arms in the second panel, and the chain of 2-d.o.f. and
4-d.o.f. arms in the last panel. The grasps are respectively derived from the cages of
one planar and one spherical, two cylindrical, and two spherical effectors as can be
noticed by the end-effectors used in each grasp.

5 Concluding Remarks

We have presented the theory and algorithms for immobilizing and caging objects
using at most three simple, curved effectors with only frictionless, rigid, unilateral
contacts. Based on these results, we addressed the problem of whole-arm grasping
for grasping objects that are large compared to the size of end-effectors. Our future
work addresses optimizing the geometry of the curved effectors and incorporating
sensing for feedback during grasping.

Acknowledgments We gratefully acknowledge the support of NSF 1328805, 1138847, and ARL
Grant W911NF-10-2-0016.
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Data Association for Semantic World
Modeling from Partial Views

Lawson L.S. Wong, Leslie Pack Kaelbling and Tomás Lozano-Pérez

Abstract Autonomous mobile-manipulation robots need to sense and interact with
objects to accomplish high-level tasks such as preparing meals and searching for
objects. To achieve such tasks, robots need semantic worldmodels, defined as object-
based representations of the world involving task-level attributes. In this work, we
address the problem of estimating world models from semantic perception mod-
ules that provide noisy observations of attributes. Because attribute detections are
sparse, ambiguous, and are aggregated across different viewpoints, it is unclear
which attribute measurements are produced by the same object, so data association
issues are prevalent. We present novel clustering-based approaches to this problem,
which aremore efficient and require less severe approximations compared to existing
tracking-based approaches. These approaches are applied to data containing object
type-and-pose detections from multiple viewpoints, and demonstrate comparable
quality to the existing approach using a fraction of the computation time.

1 Introduction

Much of the everyday human physical environment is made up of coherent physical
objects. Environmental dynamics are well described in terms of the effects of actions
on those objects. Perceptual systems are able to report detections of objects with type,
location, color, and other properties. Humans naturally designate both goals and prior
information in terms of objects. Thus, it is appropriate for robots to construct ‘mental
models’ of their environment that are structured around objects, their properties, and
their relations to one another.
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In this work, we define it a semantic world model to be a set of objects with
associated attributes and relations. For concreteness, consider the following tasks
and their potentially relevant objects and attributes:

• Cooking steaks on a pan: Objects—Steaks, pan, stove, etc.
Attributes—CookedTime, Thickness, SteakPositionRelativeToPan

• Finding chairs for guests: Objects—Furniture, people
Attributes—IsChair, Sittable (if ¬IsChair), Movable, Location, SittingOn

• Rearranging objects on a table: Objects—Items on table
Attributes—Shape, Type, RelativePositionAndOrientation, GraspPoints

A common theme underlying these tasks, and many others, is that successful plan-
ning and execution hinges on good world-state estimation and monitoring. Dynamic
attributes listed above also highlight why object-based representations are uniquely
suitable for dynamic tasks: transition dynamics tends to operate on the level of
objects. For example, it is much more natural to express and reason about a piece of
steak that is being cooked, as opposed to points in a point cloud or cells in an occu-
pancy grid that are ‘cooked’. Although we focus on the static case in this paper, our
ultimate goal is to provide a framework for estimating andmonitoring large semantic
world models involving objects and attributes that change over time as a result of
physical processes as well as actions by the robot and other agents.

In this work, we address the problem of constructing world models from semantic
perceptionmodules that provide noisy observations of attributes. Due to noise, occlu-
sion, and sensors’ limited field of view, observations from multiple viewpoints will
typically be necessary to produce a confident world model. Because attribute detec-
tions are sparse, noisy, and inherently ambiguous, where it is unclear which attribute
measurementswere producedby the sameobject across different views,data associa-
tion issues become critical. This is the greatest challenge; if the measurement-object
correspondences were known, the resulting object-attribute posterior distributions
would be efficiently computable.

We begin by stating a formal model for a simplified 1-D version of the world-
model estimation problem in Sect. 2, and then review a classic solution approach
based on tracking in Sect. 3. Themain contribution of this work is the development of
several novel clustering-based data association approaches, described in Sects. 4 and
5. Application of the semantic world-modeling framework to object type-and-pose
estimation is then briefly discussed in Sect. 6, followed in Sect. 7 by experimental
results using data collected with a Kinect sensor on a mobile robot.

2 The 1-D Colored-Lights Domain

The approaches described in this paper apply to domains of arbitrary complexity.
For clarity of explanation we begin by introducing a model of minimal complexity
and then use it for an initial demonstration of the methods.
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The world consists of an unknown number (K) of stationary lights. Each light
is characterized by its color ck and its location lk ∈ R. A finite universe of colors
of size T is assumed. A robot moves along this 1-D world, occasionally gathering
partial views of the world with known field of views [av, bv] ⊂ R. Within each
view, Mv lights of various colors and locations are observed, denoted by ov

m ∈ [T ] �
{1, . . . , T} and xv

m ∈ R respectively. These (ov
m, xv

m) pairs may be noisy (in both
color and location) or spurious (false positive—FP) measurements of the true lights.
Also, a light may sometimes fail to be perceived (false negative—FN). Given these
measurements, the goal is to determine the posterior distribution over configurations
(number, colors, and locations) of lights in the explored region of the world.

We assume the following form of noise models. For color observations, for each
color t, there is a known discrete distribution φt ∈ ΔT (estimable from perception
apparatus statistics) specifying the probability of color observations:

φt
i =

{
P (no observation for color t light), i = 0

P (color iobserved for color t light), i ∈ [T ] . (1)

A similar distribution φ0 specifies the probability of observing each color given
that the observation was a false positive. False positives are assumed to occur in
a proportion pFP of object detections. For location observations, if the observation
corresponds to an actual light, then the observed location is assumed to be Gaussian-
distributed, centered on the actual location. The variance is not assumed known
and will be estimated for each light from measurement data. For false positives, the
location is assumed to be uniformly distributed over the field of view (Unif[av, bv]).

Next, we present the core problem of this domain. Given sets of color-location

detections from a sequence of views,
{{(

ov
m, xv

m

)}Mv

m=1

}V

v=1
, we want to infer the

posterior distribution on the configuration of lights {(ck, lk)}K
k=1, whereK is unknown

as well. If we knew, for each light, which subset of the measurements were generated
from that light, thenwewould getK decoupled estimation problems (assuming lights
are independent from each other). With suitable priors, these single-light estimation
problems admit efficient solutions; details can be found in the appendix.

The issue is that these associations are unknown. Therefore, we must reason over
the space of possible data associations. For each observation, let zv

m be the index
of the light that the observation corresponds to (ranging in [K] for a configuration
with K lights), or 0 if the observation is a false positive. zv

m is the latent association
for measurement

(
ov

m, xv
m

)
. Let zv be the concatenated length-Mv vector of all zv

m
variables in view v, and let {zv} be the collection of all correspondence vectors from
the V views. We then aggregate estimates over all latent associations1:

P ({(c, l)} | {{(o, x)}}) =
∑

{zv}
P ({(c, l)} | {z} , {{(o, x)}})P ({z} | {{(o, x)}}) . (2)

1Indices have been dropped to reduce clutter; please refer to two paragraphs above for indices.
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The first term is given by the decoupled estimation problems mentioned above,
and results in a closed-form posterior distribution given in the appendix. The desired
posterior distribution on the left is therefore, in exact form, a mixture over the closed-
formposteriors. Theproblem is that the number ofmixture components is exponential
in Mv and V , one for each full association {zv}, so maintaining the full posterior
distribution is intractable. Finding tractable approximations to this light configuration
posterior distribution is the subject of Sects. 3–5.

3 A Tracking-Based Approach

If we consider the lights to be stationary targets and the views to be a temporal
sequence, a tracking filter approach can be used. Tracking simultaneously solves
the data association (measurement correspondence) and target parameter estimation
(light colors and locations) problems. Of the wide variety of existing approaches for
this classic problem [4], the multiple hypothesis tracking (MHT) filter [18] is most
appropriate because it allows for an unknown number of targets. In fact, Elfring et
al. [11] recently adopted this approach to the semantic world-modeling problem, and
have provided extensive rationale for using MHTs over other tracking approaches.

We provide a gist of the MHT approach and discuss a problematic issue below;
readers are referred to Elfring et al. [11] for details. TheMHT algorithmmaintains, at
every timestep (view) v, a distribution over all possible associations of measurements
to targets up to v. At each view, MHT therefore needs to propagate each previous
hypothesis forwardwith each possible association in view v. Oneway to consider this
is as a tree, where nodes of depth v are associations up to view v, and a distribution
is maintained on the leaves. Each view introduces a new layer of nodes, where the
branching factor is the number of valid associations in that view.

Estimating this branching factor highlights the intractability of the MHT. Assume
we know which of the existing targets are within the current field of view based on
the hypothesis on previous views (this can be found by gating). Denote the indices
of these targets as the size-Kv set {k}v. Another common assumption used in the
tracking literature is that in a single view, each target can generate at most one
non-spurious measurement. We will refer to this as the one-measurement-per-object
(OMPO) assumption. We now define validity of correspondence vectors zv. First, by
theOMPOassumption, no entrymaybe repeated in zv, apart from0 for false positives.
Second, an entry must either be 0, and target index in {k}v, or be a new (non-existing)
index; otherwise, it corresponds to an out-of-range target. A correspondence zv is
valid if and only if it satisfies both conditions.

The following quantities can be found directly from zv:

n0 � Number of false positives (0 entries); (3)

n∞ � Number of new targets (non-existing indices);
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δk � I
{
Target k is detected (∃m. zv

m = k)
}
, k ∈ {k}v ;

n1 � Number of matched targets = Mv − n0 − n∞ =
∑

k

δk,

where I {·} denotes the indicator function and Mv is the number of measurements in
view v. The number of valid associations is given by the following expression:

Mv∑

n0 = 0

Mv−n0∑

n∞ = 0

(
Mv

n0, n1, n∞

)
×

(
Kv

n1

)
× n1! =

Mv∑

n0 = 0

Mv−n0∑

n∞ = 0

Mv!
n0!n∞! × Kv!

n1!(Kv − n1)! .

(4)

Even with 4 measurements and 3 within-range targets, the branching factor is 304, so
considering all hypotheses is clearly intractable. Many hypothesis-pruning strategies
have been devised (e.g., [6, 14]), the simplest of which include keeping the best
hypotheses or hypotheses with probability above a certain threshold. More complex
strategies to combine similar tracks and reduce the branching factor have also been
considered. In the experiments of Sect. 7 we simply keep hypotheses with probability
above a threshold of 0.01. As we will demonstrate in the experiments, an MHT filter
using this aggressive pruning strategy can potentially cause irreversible association
errors and make overconfident conclusions.

4 A Clustering-Based Approach

If we consider all the measurements together and disregard their temporal relation-
ship, we expect the measurements to form clusters in the product space of colors
and locations ([T ] × R), allowing us to derive estimates of the number of lights and
their parameters. In probabilistic terms, themeasurements are generated by amixture
model, where each mixture component is parameterized by the unknown parameters
of a light. Since the number of lights in the world is unknown, we also do not want
to limit the number of mixture components a priori.

A useful model for performing clustering with an unbounded number of clusters
is the Dirichlet process mixture model (DPMM) [2, 15], a Bayesian non-parametric
approach that can be viewed as an elegant extension to finite mixture models. The
Dirichlet process (DP) acts as a prior ondistributions over the cluster parameter space.
A random distribution over cluster parameters G is first drawn from the DP, then a
countably infinite number of cluster parameters are drawn from G, from which the
measurement data is finally drawn according to our assumed observation models.
Although the model can potentially be infinite, the number of clusters is finite in
practice, as they will be bounded by the total number of measurements (typically
significantly fewer if the data exhibits clustering behavior). The flexibility of the
DPMM clustering model lies in its ability to ‘discover’ the appropriate number of
clusters from the data.
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We now derive the DPMM model specifics and inference procedure for the
colored-lights domain. A few more assumptions need to be made and parameters
defined first. Our model assumes that the cluster parameter distribution G is drawn
from a DP prior DP(α, H), where H is the base distribution and α is the concentra-
tion hyperparameter (controlling the similarity of G and H, and also indirectly the
number of clusters). H acts as a ‘template’ for the DP, and is hence also a distribution
over the space of cluster parameters. We set it to be the product distribution of π , the
prior on colors, and a uniform distribution over the explored region. To accommodate
false positives, which occur with probability pFP, we scale G from the DP prior by a
factor of (1 − pFP) for true positives.

For ease of notation when deriving the inference procedure, we express the DP
prior in an equivalent form based on the stick-breaking construction [19]. The idea is
that the sizes of clusters are determined by a random process that first selects some
proportion of the whole (‘breaks the stick’), uses one part to define the size of a
cluster, and then recursively subdivides the rest. Parameters are drawn from the base
distribution H and associated with each cluster. More formally:

θ ∼ GEM(α); (cs, ls) ∼ H � π × Unif[A; B], (5)

where GEM (Griffiths-Engen-McCloskey) is the distribution over stick weights θ ,
and π ∈ Δ(T−1) is a prior distribution on colors, reflecting their relative prevalence.
By definingG(c, l) �

∑∞
s=1 θs × I [(c, l) = (cs, ls)],G is a distribution over the clus-

ter parameters and is distributed as DP(α, H). The rest of the generative process is:

θ ′
k =

{
pFP, k = 0

(1 − pFP) θk, k �= 0
; Cluster proportions (with FPs) (6)

μk, τk ∼ NormalGamma(ν, λ, α, β); Cluster location distr. params.

zv
m ∼ θ ′, m ∈ [Mv], v ∈ [V ]; Cluster assignment (for each obs.)

Color observation: Location observation:

ov
m ∼

{
φ0, zv

m = 0

φcz , zv
m �= 0

; xv
m ∼

{
Unif[av, bv], zv

m = 0

N
(
μk, τ

−1
k

)
, zv

m �= 0
. (7)

The most straightforward way to perform inference in a DPMM is by Gibbs
sampling. In particular, we derive a collapsed Gibbs sampler for the cluster corre-
spondence variables z and integrate out the other latent variables c, μ, τ, θ . In Gibbs
sampling, we iteratively sample from the conditional distribution of each zv

m, given
all other correspondence variables (which we will denote by z−vm). By Bayes’ rule:

P
(
zv

m = k
∣∣ z−vm, {{(o, x)}})

∝ P
(
ov

m, xv
m

∣∣ zv
m = k, z−vm, {{(o, x)}}−vm

)
P

(
zv

m = k
∣∣ z−vm, {{(o, x)}}−vm

)

∝ P
(
ov

m, xv
m

∣∣ {{(o, x)}}−vm
z=k

)
P

(
zv

m = k
∣∣ z−vm

)
. (8)
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In the final line, the first term can be found from the posterior predictive distributions
described in the appendix (Eqs. 15 and 18), noting that the observations being con-
ditioned on exclude (ov

m, xv
m) and depend on the current correspondence variable

samples (to determine which observations belong to cluster k).
The second term is given by the Chinese restaurant process (CRP), obtained by

integrating out the DP prior on θ . Together with our prior on false positives:

P
(
zv

m = k
∣∣ z−vm

) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − pFP)
N−vm

k
α+N−1 , k exists

(1 − pFP)
α

α+N−1 , k new

pFP, k = 0

, (9)

where N−vm
k is the number of observations currently assigned to cluster k (excluding

(v, m)), and N is the total number of non-false-positive observations across all views.
By combining Eqs. 8 and 9, we can sample from the conditional distribution of

individual correspondences zv
m. Although the model supports an infinite number of

clusters, the modified CRP expression (Eq.9) shows that we only need to com-
pute k + 2 values for one sampling step, which is finite as clusters without data are
removed. One sampling sweep over all correspondence variables {{z}} constitutes
one sample from theDPMM.Given the correspondence sample, finding the posterior
configuration is simple. Each non-empty cluster corresponds to a light. For each clus-
ter, applying Eqs. 15 and 17 to its associated data provides the posterior distributions
on the light’s color and location (with observation model precision) respectively. The
posterior marginal distribution on the light’s location is a t-distribution with mean
ν ′, precision α′λ′

β ′(λ′+1) , and 2α′ degrees of freedom.

5 Incorporating View-Level Information and Constraints

The DPMM-based solution to the colored-lights problem is a straightforward appli-
cation of the DPMM, but ignores two fundamental pieces of information:

• False negatives (FN): The DPMM does not consider which clusters are visible
when a measurement is made. It may therefore posit a cluster for a spurious
measurement when its absence in other views would have suggested otherwise.

• One-measurement-per-object (OMPO) assumption: Consider the scenario
depicted in Fig. 1c, where two blue lights are placed close to each other and hence
easily confusable. The DPMM ignores the OMPO assumption and may associate
both to the same cluster, even if they were both observed in every view.

Both are consequences of the DPMM’s conditional independence assumptions.
To see this, consider the concrete example depicted in Fig. 1, where we wish to

sample cluster assignments for an entire view’s Mv = 4 measurements. The DPMM
Gibbs sampler samples the cluster assignment for each measurement individually,
as shown in Fig. 1b. This causes the two right-most measurements to be assigned
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FP New

FP New

FP New

FP New

FP New
FP New

FP New

FP New

FP New
FP New

(a) (b) (c)

(d) (e)

View before sampling DPMM OMPO Violation

DPMM-FullView DPMM-Factored

Fig. 1 A concrete example for illustrating concepts in Sect. 5. a Each thick outer box depicts
measurements in the same single view (inner box), and the clusters that each measurement can be
assigned to (row below inner box). The view we consider has 4 measurements of lights’ locations
and colors. The existing clusters within the field of view are shown as colored circles (these were
determined from other views). Measurements can also be assigned to the two ‘clusters’ to the left
and right, for false positives and new clusters respectively. The task is to assign one of the 5 clusters
in the bottom row to each measurement in the inner box. b The DPMM samples cluster assignments
for each measurement independently. c This causes potential violations of the one-measurement-
per-object (OMPO) assumption, where each cluster generates at most one observation within each
view. d One solution is to consider all measurement assignments in the view jointly. However, as
explained in Sect. 5.1, this is inefficient. e A more efficient approximation is derived in Sect. 5.2 by
jointly considering only measurements that are OMPO-violating. Measurements that are unlikely to
cause constraint violation, such as the two left ones in the example, are considered independently.
This provides a trade-off between DPMM and DPMM-FullView

to the same cluster, a violation of the OMPO assumption. The assumption states
that at most one measurement in a single view can be assigned to each cluster; this
view-level constraint cannot be incorporated on the level of individual measurements
(DPMM). Likewise, a false negative only arises if none of the measurements in a
view are assigned to a cluster within the field of view. To handle these constraints
we must couple the measurements and sample their assignments jointly.

5.1 DPMM-FullView

More formally, consider the view’s joint correspondence vector zv. The induced con-
ditional distributionP

(
zv

∣∣ z−v
)
that theDPMMGibbs sampler uses is, by conditional

independence, the product of Mv copies of Eq.9:

PDPMM
(
zv

∣∣ z−v
) =

pn0
FP (1 − pFP)

(n1+n∞) αn∞
[∏

{m}1 N−v
zm

]

∏(n1+n∞)
m=1 α + N − m

, (10)
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where the definitions of n0, n1, n∞ are given in Eq.3, and {m}1 is the set of indices that
are matched to existing targets (i.e., n1 = | {m}1 |). To incorporate absence informa-
tion, suppose we knew which Kv of the existing K lights are within the field of view,
i.e., {k}v from Sect. 3.2 This, together with zv, allows us to determine the detection
indicator variables {δk} (Eq. 3) and their probabilities:

P ({δk}) =
∏

k∈{k}v

[
pD(k)

]δk
[
1 − pD(k)

]1−δk
, (11)

where pD is the (target-specific) detection probability defined in Eq.16. We combine
the additional information with the DPMMconditional distribution in a conceptually
simple fashion:

PFullView
(
zv

∣∣ z−v, {k}v) ∝ PDPMM
(
zv

∣∣ z−v
)
P ({δk}) I

[
zv satisfies OMPO

]
. (12)

The final term evaluates to 1 if the joint correspondence satisfies the OMPO assump-
tion, and 0 otherwise. Hence by construction the correspondence variables sampled
from this conditional distribution will incorporate the FN and OMPO constraints.

Although PFullView combines all the desired information, the inherent difficulty
is hidden in the ‘∝’ sign. The distribution first needs to be normalized before we
can sample from it, which is inefficient now because the support of the distribution
is the set of correspondence vectors satisfying the OMPO assumption. The OMPO
constraint fully couples the measurements’ cluster assignments, and all assignments
must be considered jointly, as depicted in Fig. 1d. We have essentially reverted to the
high branching factor of the MHT! (The exponential blowup of the hypothesis tree
is still avoided by sampling.) In the Fig. 1 example, PFullView must be evaluated for
304 different values of zv, compared to the 4 × 5 = 20 required for the DPMM.

5.2 DPMM-Factored

A closer look at the nature of the OMPO violation suggests a potential approximation
to PFullView. In Fig. 1c, the violation is caused by only the two right-most measure-
ments; the twomeasurements on the left are not easily confusable with the others and
hence are easy to handle from a data association perspective. This suggests coupling
only those measurements that cause OMPO violations. More generally, suppose we
can partition each view’s set of measurements into ‘violating’ subsets, where all
OMPO violations are contained within a single subset (with high probability). That
is, a good partition has the property that any twomeasurements belonging to different
subsets will have low probability of being assigned to the same cluster (and hence

2The correct Bayesian approach is to integrate over the posterior distribution of each light’s loca-
tion, which is intractable. This can be approximated by sampling the locations, then averaging the
subsequent computations. In practice we found that using the posterior mean was sufficient.
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causing an OMPO violation). LetP denote such a partition, and let
{
zv

p

}
p∈P denote

the restrictions of zv to each subset p ∈ P . Then:

I
[
zv satisfies OMPO

] ≈
∏

p∈P
I
[
zv

p satisfies OMPO
]
. (13)

Returning to Fig. 1c, the most refined partition contains three subsets, where the sole
non-singleton contains the two right-most OMPO-violating measurements.

The other two terms inPFullView (Eq.12) are product distributions that factor nicely
according toP . We therefore arrive at the following factored approximation:

PFactored
(
zv

∣∣ z−v, {k}v) ∝
∏

p∈P
PDPMM

(
zv

p

∣∣ z−vp
)
P

({δk} |p
)
I
[
zv

p OMPO
]
. (14)

This formmakes clear that each factor can be normalized and sampled independently.
With a good partition, this breaks up the large joint computation in DPMM-FullView
into several smaller oneswithin each subset ofP . Using the partition described above
for the concrete example in Fig. 1 gives us the sampling process depicted in Fig. 1e,
where only the OMPO-violating measurement pair is considered jointly. This results
in computing 5 + 5 + 22 = 32 values, which is slightly greater than DPMM (20)
but significantly fewer than DPMM-FullView (304).

One issues remains: Where does the partition come from? This is crucial for all
factored approximation: the aggressiveness of partitioning determines the trade-off
between approximation error and efficiency. On one extreme, the DPMM model is
similar to a fully-factored model (but does not take into account false negatives);
on the other extreme, DPMM-FullView is equivalent to a one-set partition. The
example in Fig. 1c once again provides an answer: ‘violating’ subsets can be found
by examining clusters in the DPMM samples. Specifically, if measurements tend to
be assigned to the same cluster across samples, then clearly they are strong violators
and should be considered jointly. We therefore group measurements together if the
proportion of samples in which they are assigned to the same cluster exceeds some
threshold value. This proportion allows one to select an appropriate trade-off level.

6 Application to Object Type-and-Pose Estimation

As mentioned in Sect. 2, the colored-lights domain is representative of the semantic
world-model estimation problem by considering lights as objects and locations and
colors as attributes. Extension to additional attributes and higher-dimensional loca-
tions (3-D locations, 4-D or 6-D poses) is straightforward since the correspondence
priors described in Sects. 3–5 do not depend on the observations. If attributes are inde-
pendent, we simply take the product of their observation models when determining
their posterior or predictive distributions, e.g., in Gibbs sampling (Eq. 8). Dependent
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(a) Single viewpoint (b) Aggregation of object detections from multiple viewpoints

Fig. 2 a Given a tabletop scene (top), wewant to estimate the types and poses of objects in the scene
using a black-box object detector. From a single Kinect RGB-D image, however, objects may be
occluded or erroneously classified. In the rendered image (middle; detections superimposed in red),
three objects are missing due to occlusion, and the bottom two objects have been misidentified.
The semantic attributes that result in our representation are very sparse (bottom; dot location is
measured 2-D pose, color represents type). b Aggregation of measurements from many different
viewpoints (top) is therefore needed to construct good estimates. However, this introduces data
association issues of the type addressed in this work, especially when multiple instances of the
same object type are present. From all the object detection data, as shown (bottom) by dots (each
dot is one detection), our goal is to estimate the object types and poses in the scene (shown as thick
circles centered around location estimate; color represents type, circle size reflects uncertainty).
The estimate above identifies all types correctly with minimal error in pose

attributes will need to be jointly considered as a single unit. For example, for pose
estimates with non-diagonal error covariances, the normal-gamma prior needs to be
replaced with a normal-Wishart prior.

We applied our discussed approaches to object type-and-pose estimation on table-
top scenes, illustrated in Fig. 2. This is similar to the colored-lights domain, where
‘type’ is equivalent to ‘color’, and ‘pose’ is a 3-D version of ‘location’.3 3-D point
cloud data was obtained from a Kinect sensor mounted on a mobile robot. A ROS
perception service attempts to detect instances of the known shape models in a given
point cloud. This is done by locating horizontal planes in the point cloud, finding
clusters of points resting on the surface, and then doing stochastic gradient descent
over the space of poses of the models to find one that best matches the cluster [12].
Example matches for a scene are illustrated in Fig. 2a.

As shown, multiple instances of the same object type are present (increasing
association difficulty), objects may be partially or fully occluded from a single view-
point (cyan patches are occluded regions), object types can be confused (the white
L-shaped block on the left), and pose estimates are noisy (the orange box in the

3For simplicity, we assume that the error covariance is axis-aligned and use an independent normal-
gamma prior for each dimension, but it is straightforward to extend to general covariances.
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center). Aggregation of object detections across different viewpoints and solving the
subsequent data association issues, as depicted in Fig. 2b, was therefore essential.

For our scenarios, objects of 4 distinct types were placed on a table. A robot
moved around the table in a circular fashion, obtaining 20–30 views in the process.We
constructed 12 scenes of varying object and occlusion density to test our approaches;
results for 4 representative scenarios are described in the next section.

7 Results

Qualitative results for 4 representative scenarios are shown in Fig. 3. Images from
above are for comparison convenience only; the camera’s viewing height is much
closer to the table height, as shown in Fig. 2a, so in each view only a subset of
objects is observable. We compare three approaches: multiple hypothesis tracking
(MHTF from Sect. 3), generic DPMM clustering (DPMM from Sect. 4), and the
factored approximation to DPMM-FullView (DPMM-Factored from Sect. 5.2). In
Fig. 3, the most likely hypothesis is shown for MHTF, and the maximum a posteriori
(MAP) sample (out of 100) is shown for the clustering-based approaches.

1

2

3

4

(a) (b) (c) (d)

Fig. 3 Qualitative results for three world-model estimation approaches in four scenarios. The
bird’s-eye view of the scenes is for comparison convenience only; the actual viewing height is much
closer to the table. The most likely hypothesis is shown for MHTF, and the maximum a posteriori
sample is shown for the clustering-based approaches. Each small colored dot is a semantic (object
type-and-pose) detection. Each target / cluster is depicted by an ellipse, centered at the posterior
mean location. Ellipse axis lengths are proportional to the standard deviation in their respective
dimensions. Ellipses are color-coded by the most likely posterior object type: red = red soup can,
black = orange baking soda box, green = white L-shaped block, blue = blue rectangular cup. Line
thickness is proportional to cluster size. See text in Sect. 7 for qualitative comparisons. a Scene
from above. b MHTF. c DPMM. d DPMM-Factored
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All approaches work well for scenario 1, where objects are spaced far apart. As
objects of similar type are placed near each other, DPMM tends to combine clusters
since it ignores the OMPO assumption. This is most apparent in scenario 3, where
two soup cans (red) and three soda boxes (black) are combined into large clusters.
By reconsidering the OMPO assumption, DPMM-Factored performs significantly
better and is on par qualitatively with the MHTF, except for an extra cluster (bottom
left, green) in scenario 2. In this case, the measurements corresponding to the white
L-shaped object are dispersed, causing the shown extra-cluster error to be likely.
Examining more samples reveals that a significant proportion (31%) do not have the
extra cluster; they just happen not to be MAP samples. This means that the estimator
has significant uncertainty as to whether or not the extra object exists. Although
in this case the DPMM-Factored MAP sample is wrong, it highlights a feature
of our approach. Consider a task, e.g., grasping, that requires an accurate estimate
of this object’s neighborhood. Given the high uncertainty in the samples, the robot
should decide to gather more observations of the region instead of operating based
on the incorrect MAP sample. In contrast, the MHTF is over 90% certain of its
estimate because most other possibilities have been pruned. Although MHTF would
have been less certain as well if all hypotheses were retained during filtering, the
necessary aggressive pruning tends to make MHTF overconfident in its estimates.

Scenario 4 highlights another related difference between the tracking filter and
batch approaches. Here two closely-arranged orange boxes are placed near a shelf,
such that frommost views at most one of the two boxes can be seen. Only in the final
views of the sequence can both be seen (imagine a perspective from the bottom-left
corner of the image). Due to the proximity of the boxes, and the fact that at most
one was visible in the early views, MHTF eventually pruned all the then-unlikely
hypotheses positing thatmeasurements came from two objects.When finally both are
seen together, although a hypothesis with two orange boxes resurfaces, it is too late:
the remaining association hypotheses already associate all previous measurements
of the boxes to the same target, in turn giving an inaccurate location estimate. In
contrast, DPMM-Factored re-examines previous associations (in the next sampling
iteration) after the two boxes are seen together, and can correct such errors. One way
to consider this difference is that DPMM-Factored is a batch algorithm, whereas
MHTF is simply a forward filter and does not have this capability.

Quantitativemetrics are given inTable1, averaged over the association hypotheses
for MHTF and over 100 samples (after discarding burn-in) for DPMM and DPMM-
Factored. To evaluate predicted targets and clusters against our manually-collected
ground truth, for each ground truth object, the closest cluster within a 5cm radius is
considered to be the estimate of the object. If no such cluster exists, then the object
is considered missed; all predicted clusters not assigned to objects at the end of the
process are considered spurious.We also compare against a baseline approach, Raw,
that does not performanydata association. It uses the object types andposes perceived
in each view directly as a separate prediction of the objects present within the visible
field of view. The metrics in the table are evaluated for each view’s prediction, and
the Raw table rows show the average value over all views. The location and type
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metrics are only computed for clusters assigned to detected objects, i.e., the clusters
whose number is being averaged in the third metric.

The need for aggregatingmeasurements across views is exemplified byRaw’s ten-
dency to miss objects or confuse their types within single views. DPMM overcomes
the latter issue by clustering across views, but still misses many objects because it
ignores the OMPO assumption and agglomerates nearby similar objects. DPMM-
Factored approximately respects this constraint and performs significantly better,
missing few objects while maintaining accuracy in the posterior type-and-pose esti-
mates. Although quantitatively it is slightly behind MHTF, this extra improvement
comes at a several-factor computational expense, and potentially introduces filtering-
related overconfidence issues mentioned earlier.

8 Related Work

Cox and Leonard [7] first considered data association for world modeling, using an
MHT approach as well, but for low-level sonar features. The motion correspondence
problem, which is similar to ours, has likewise been studied by many (e.g., [8, 9]),
but typically again using low-level geometric and visual features only. Perhaps most
similar to our problem is the recent work of Elfring et al. [11], which considers
attribute-based anchoring and semantic world modeling with an MHT approach.

To our knowledge, our application of clustering to semantic world modeling is
novel. More generally, sampling-based approaches have been applied to data asso-
ciation [9, 16], and may be applicable to approximate our DPMM-FullView model.

The important role of objects in spatial representations and semantic mapping
was explored by Ranganathan and Dellaert [17], although their focus was on place
modeling and recognition. Anati et al. [1] have also used the notion of objects for
robot localization, but did not explicitly estimate their poses.

Object recognition and pose estimation has receivedwidespread attention from the
computer vision and robotics communities. Hager andWegbreit [13] provide a good
review as well as a unique approach. For pose estimation from multiple viewpoints,
active perception has also been popular recently (e.g., [3, 10]). Our work differs in
that we place no assumptions on the choice of camera poses, and we focus on data
association issues. Moreover, we emphasize that object type-and-pose estimation
was only chosen as a concrete and familiar proof of concept application, and our
framework is applicable to many other semantic attributes and tasks.

9 Discussion

We have presented several clustering-based data association approaches for estimat-
ing semantic world models. We use Dirichlet process mixture models (DPMM) as
our underlying framework. However, DPMMs perform poorly in their generic form

millitsa@ece.neu.edu



446 L.L.S. Wong et al.

because they ignore a crucial view-level constraint. Two improvements were there-
fore developed by incorporating the constraint exactly and approximately respec-
tively. In preliminary experiments based on tabletop object type-and-pose estima-
tion, the latter approach (DPMM-Factored) achieved performance comparable to
an existing tracking-based approach using a fraction of the computation time.

As discussed in the introduction, semanticworldmodels are useful inmanyobject-
centric tasks, involving a diverse set of attributes.We are currently exploring applica-
tions involving attributes beyond object type and pose. To be truly applicable, world
models must also cope with objects moving over extended periods of time. Since the
presented sampling procedure for inference iterates through all views, it is clearly
impractical to apply it to the entirety of the robot’s observation history. Instead, a
hybrid approach combining the benefits of filtering and batch data association is
desirable. Extending our framework to handle temporal dynamics while maintaining
tractability over long horizons is the subject of future work.
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Appendix: Posterior and Predictive Distributions
for a Single Light

In this appendix, we verify the claim from Sect. 2 that finding the posterior and pre-
dictive distributions on color and location for a single light is straightforward, given
that we know which observations were generated by that light. Let {(o, x)} denote
the set of light color-location detections that correspond to a light with unknown
parameters (c, l). Color and location measurements are assumed to be independent
given (c, l) and will be considered separately. We assume a known discrete prior dis-
tribution π ∈ Δ(T−1) on colors, reflecting their relative prevalence. Using the color
noise model (Eq.1), the posterior and predictive distributions on c are:

P (c | {o}) ∝
[
∏

o

φc
o

]
× πc; P

(
o′ ∣∣ {o}) =

T∑

c=1

P
(
o′∣∣c

)
P (c|{o})

=
T∑

c=1

φc
o′ P (c | {o}) . (15)
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We can use this to find the light’s probability of detection:

pD � 1 − P
(
o′ = 0

∣∣ {o}) = 1 −
T∑

c=1

φc
0 P (c | {o}) . (16)

Unlike the constant false positive rate pFP, the detection (and false negative) rate is
dependent on the light’s color posterior.

For location measurements, we emphasize that both the mean μ and precision
τ = 1

σ 2 of the Gaussian noise model is unknown. Modeling the variance as unknown
allows us to attain a better representation of the location estimate’s empirical uncer-
tainty, and not naïvely assume that repeated measurements give a known fixed reduc-
tion in uncertainty each time. We use a standard conjugate prior, the distribution
NormalGamma(μ, τ ; λ, ν, α, β).4 It is well known (e.g., [5]) that after observing n
observations with sample mean μ̂ and sample variance ŝ2, the posterior is a normal-
gamma distribution with parameters:

λ′ = λ + n; ν ′ = λ

λ + n
ν + n

λ + n
μ̂; α′ = α + n

2
; β ′

= β + 1

2

(
nŝ2 + λn

λ + n

(
μ̂ − ν

)2
)

. (17)

The upshot of using a conjugate prior for location measurements is that the mar-
ginal likelihood of location observations has a closed-form expression. The posterior
predictive distribution for the next location observation x′ is obtained by integrating
out the latent parameters μ, τ , and has the following expression:

P
(
x′ ∣∣ {x} ; λ, ν, α, β

) =
∫

(μ,τ )

P (x | μ, τ)P (μ, τ | {x} )

= 1√
2π

β ′α′

β+α+

√
λ′

√
λ+

Γ (α+)

Γ (α′)
, (18)

where the hyperparameterswith ‘′’ superscripts are updated according to Eq.17 using
the empirical statistics of {x} only (excluding x′), and the ones with ‘+’ superscripts
are likewise updated but including x′. The ratio in Eq.18 assesses the fit of x′ with
the existing observations {x} associated with the light.

4The typical interpretation of normal-gamma hyperparameters is that the mean is estimated from λ

observations with mean ν, and the precision from 2α observations with mean ν and variance β
α
.

millitsa@ece.neu.edu



448 L.L.S. Wong et al.

References

1. Anati, R., Scaramuzza, D., Derpanis, K., Daniilidis, K.: Robot localization using soft object
detection. In: IEEE International Conference Robotics and Automation (2012)

2. Antoniak, C.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric
problems. Ann. Stat. 2(6), 1152–1174 (1974)

3. Atanasov, N., Sankaran, B., Ny, J.L., Koletschka, T., Pappas, G., Daniilidis, K.: Hypothe-
sis testing framework for active object detection. In: International Conference Robotics and
Automation (2013)

4. Bar-Shalom, Y., Fortmann, T.: Tracking and Data Association. Academic Press, New York
(1988)

5. Bernardo, J., Smith, A.: Bayesian Theory. John Wiley, New York (1994)
6. Cox, I., Hingorani, S.: An efficient implementation of Reid’s multiple hypothesis tracking

algorithm and its evaluation for the purpose of visual tracking. IEEE Trans. Pattern Anal.
Mach. Intell. 18(2), 138–150 (1996)

7. Cox, I., Leonard, J.: Modeling a dynamic environment using a Bayesian multiple hypothesis
approach. AI J. 66(2), 311–344 (1994)

8. Cox, I.J.: A review of statistical data association techniques for motion correspondence. Int. J.
Comput. Vis. 10(1), 53–66 (1993)

9. Dellaert, F., Seitz, S., Thorpe, C., Thrun, S.: EM, MCMC, and chain flipping for structure from
motion with unknown correspondence. Mach. Learn. 50(1–2), 45–71 (2003)

10. Eidenberger, R., Scharinger, J.: Active perception and scene modeling by planning with prob-
abilistic 6D object poses. In: IEEE/RSJ Intl. Conf. Intelligent Robots and Systems (2010)

11. Elfring, J., van den Dries, S., van de Molengraft, M., Steinbuch, M.: Semantic world modeling
using probabilistic multiple hypothesis anchoring. Robot. Auton. Syst. 61(2), 95–105 (2013)

12. Glover, J., Popovic, S.: Bingham Procrustean alignment for object detection in clutter. In:
IEEE/RSJ Intl. Conf. Intelligent Robots and Systems (2013)

13. Hager, G., Wegbreit, B.: Scene parsing using a prior world model. Int. J. Robot. Res. 30(12),
1477–1507 (2011)

14. Kurien, T.: Issues in the design of practical multitarget tracking algorithms. In: Y. Bar-Shalom
(ed.) Multitarget-Multisensor Tracking: Advanced Applications, pp. 43–84. Artech House
(1990)

15. Neal, R.: Markov chain sampling methods for Dirichlet process mixture models. J. Comput.
Graph. Stat. 9(2), 249–265 (2000)

16. Oh, S., Russell, S., Sastry, S.: Markov chain Monte Carlo data association for multi-target
tracking. IEEE Trans. Autom. Control 54(3), 481–497 (2009)

17. Ranganathan, A., Dellaert, F.: Semanticmodeling of places using objects. In: Robotics: Science
and Systems (2007)

18. Reid, D.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24(6), 843–
854 (1979)

19. Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sin. 4, 639–650 (1994)

millitsa@ece.neu.edu



Driven Learning for Driving: How
Introspection Improves
Semantic Mapping

Rudolph Triebel, Hugo Grimmett, Rohan Paul and Ingmar Posner

Abstract This paper explores the suitability of commonly employed classification
methods to action-selection tasks in robotics, and argues that a classifier’s introspec-
tive capacity is a vital but as yet largely under-appreciated attribute. As illustration
we propose an active learning framework for semantic mapping in mobile robotics
and demonstrate it in the context of autonomous driving. In this framework, data are
selected for label disambiguation by a human supervisor using uncertainty sampling.
Intuitively, an introspective classification framework—i.e. one which moderates its
predictions by an estimate of how well it is placed to make a call in a particular
situation—is particularly well suited to this task. To achieve an efficient implemen-
tation we extend the notion of introspection to a particular sparse Gaussian Process
Classifier, the Informative Vector Machine (IVM). Furthermore, we leverage the
information-theoretic nature of the IVM to formulate a principled mechanism for
forgetting stale data, thereby bounding memory use and resulting in a truly life-
long learning system. Our evaluation on a publicly available dataset shows that an
introspective active learner asks more informative questions compared to a more
traditional non-introspective approach like a Support Vector Machine (SVM) and in
so doing, outperforms the SVM in terms of learning rate while retaining efficiency
for practical use.
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1 Introduction

In answering the question ‘where am I?’ roboticists have gone to great lengths to
model, manage and, indeed, exploit uncertainty. This, however, is not as yet the case
when it comes to asking ‘what is this?’. Aswe aspire to robust, long-term autonomous
operation our systems have to contend with vast amounts of continually evolving,
non-i.i.d. data from which information needs to be assimilated. This presents a chal-
lenge and an opportunity particularly to the robotics community as here the real cost
of failure can be significant. We believe that realistic estimates of uncertainty are
pivotal to achieving robust and efficient decision making in robotics. In particular,
classification as a precursor to action-selection seems to be largely disregarded by
the community.

We frame our argument in the context of offline semantic mapping. Significant
progress in autonomous driving in recent years has inspired a view that success-
ful autonomous operation in complex, dynamic environments critically depends on
a-priori available semantic maps representing ostensibly permanent aspects of the
environment such as lane markings, traffic light positions and road sign informa-
tion (see, for example, [3, 22]). Owing to their safety-critical nature, these maps are
typically created manually for particular routes [5]. This is, of course, an expensive
process which scales badly with the number of routes for which autonomous opera-
tion is to be provided.Much, therefore, can be gained by reducing human involvement
in this process and thus providing a robust and scalable solution.

A prominent approach to tackling such a challenge is that of active learning,
where classification results are iteratively refined by asking a human supervisor for
ground-truth labels in ambiguous cases and incorporating the added information
into classifier training. To the best of our knowledge this paper is the first in robotics
to present an efficient and scalable active learning framework for the task of offline
semantic mapping. Crucially, however, our work is also set apart from the vast major-
ity of the related works in active learning by the unusual stance we take with regards
to uncertainty estimates in the system. Commonly, active learning relies on selecting
data for human labelling using a variant of uncertainty sampling, by which data are
selected according to how confident a classifier is in individual predictions (see, for
example, [17]).

However, Grimmett et al. [7] show that several of the classification frameworks
commonly used in robotics are unrealistically overconfident in their assessment of
class membership. To characterise this attribute, the authors introduce the notion
of the introspective capacity of a classification framework: the ability to estimate
a classification confidence which realistically reflects how qualified the classifier is
to make a particular class decision in each individual test instance. In this paper we
show that introspective classification harbours significant benefits for active learning
as compared to more traditional, non-introspective approaches. In particular, our
contributions are
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• the application of an active learning framework to semantic mapping in robotics,
• the application of the notion of introspection to the Informative Vector Machine
(IVM) [10] as an efficient extension to [7],

• the application of the IVM specifically to achieve introspective active learning,
which is demonstrated to lead to more effective information extraction over more
traditional approaches, and

• the introduction of a principled mechanism for the IVM to forget less important
data to provide for scalable, life-long active learning on a mobile robot.

The work presented here first appeared as a workshop paper by the same authors
[21]. However, here we offer a more detailed treatment as well as the following
significant extensions:

• the introspective capacity of the IVM is established, including the effects of varying
the sparsity factor,

• qualitative results are included of when the IVM is confident (correctly and incor-
rectly) in its classifications, and

• timing information is provided regarding the training of an IVM.

We apply our framework to the detection of traffic lights in a real, third-party
vision dataset and demonstrate iteratively improved semantic mapping, whichmakes

Fig. 1 Active learning in a semantic mapping context. This figure shows semantic maps indicating
the positions of traffic lights along a street in Paris.Circles denote the locations of ground-truth traffic
lights. The shading encodes the correctness of the classification output as provided by a probabilistic
classifier: red denotes a recall of 0 (no detections), and green denotes a recall of 1 for that particular
traffic light (all views of that object correctly detected). False positives are shown as grey squares.
From left to right, we first see a typical passive detector, followed by our active-learning framework
at epochs 0, 2, and 9 respectively. Note that in the active learning setting the shading of the circles
progresses from red to green as a greater proportion of traffic lights are correctly detected with
increasing confidence. Similarly the number of false positives reduces dramatically. By epoch 2 the
active learning framework already outperforms the passive detector. In this paper we show that our
formulation of an introspective active learning approach provides for more efficient information
extraction—and thus a higher learning rate—over conventional active learning approaches
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efficient use of available label information. A typical qualitative example of our
system output is shown in Fig. 1.

2 Related Works

Active learning is an established and vibrant field of research spanning a significant
number of application domains. Consequently, a variety of methods have been pro-
posed for selecting informative measurements for labelling and/or for incrementally
training a learning algorithm. For example, Freund et al. [6] propose disagreement
among a committee of classifiers as a criterion for active data selection. McCullum
and Nigam [12] apply this to text classification using high label inconsistency as
a query criterion coupled with expectation maximisation (EM) for online learning.
More recently, Joshi et al. [8] address multi-class image classification using SVMs
and propose criteria based on entropy and best-versus-second-best (BvSB) mea-
sures based on the hyperplane-margin for determining uncertain points. Tong and
Koller [19] pick unlabelled data for query based on minimising the version space
within amargin-based SVM formulation. Kapoor et al. [9] propose an active learning
system for object categorization using a GP classifier where data points possessing
large uncertainty (using posterior mean and variance) are queried for labels and used
to improve classification.

Within the robotics community, active learning and directed information acquisi-
tion has received attention in recognition, planning and mapping tasks. For example,
Dima et al. [4] present unlabelled data filtering for outdoor terrain classification
tasks with the aim of reducing the amount of training data to be human-labelled.
The approach relies on kernel density estimation over unlabelled data and estimating
a “surprise” score for image patches, hence only querying the least likely samples
given the density estimate for human labelling. In [13] the authors present a learn-
ing approach for continually improving place recognition performance by actively
learning an appearance model of a robot’s operating environment. The method uses
probabilistic topic models and a measure of perplexity to identify least explained
images which further drives retrieval of thematically linked samples leading to an
improvedworkspace representation. Recent work by Tellex et al. [18] explores active
information gathering for human-robot dialog. The authors formulate an information-
theoretic strategy for asking clarifying questions to disambiguate the robot’s belief
over the mapping between phrases and aspects of the workspace.

While, to the best of our knowledge, this is the first work in robotics applying
active learning to a semantic mapping task, our work is also set apart significantly
from prior art in active learning in that we introduce and demonstrate the benefits of
efficient introspective active learning. In this respect, the work most closely related
to ours is that of [9] above, in which an inherently introspective classifier is used but
its use is not motivated by its introspective qualities.
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3 Introspective Classification

The introspective capacity of a classifier characterises its ability to realistically
estimate the uncertainty in its predictions. Grimmett et al. [7] define the introspective
capacity as a classifier’s ability to moderate its output by an appropriate measure as
to how ‘qualified’ it is to make a call given its own prior experience, usually in the
form of training data. The intuition is that test data, which are in some form ‘similar’
to that seen in training, are classified with higher certainty than data which are more
dissimilar. This points towards non-parametric approaches potentially being more
introspective than parametric ones, as all the training data are available for inference
in the former, whereas inference in the latter is based on parametric models learned
from the data. Grimmett et al. [7] investigated several commonly used classification
frameworks providing probabilistic output and found that a Gaussian Process classi-
fier (GPC) [15] indeed is significantly more introspective than, for example, the more
commonly used Support Vector Machine (see, for example, [1]) with a probabilistic
calibration (such as, for example, provided by Platt et al. [14]).

In [7], this quality is attributed to a GPC’s Bayesian treatment of predictive vari-
ance. Consider a set of training data {X, y}, where X = {x1, . . . , x|X |} denotes the set
of feature vectors and y denotes the set of corresponding class labels. Probabilistic
predictions for a test point, x∗, are obtained in two steps. First, the distribution over
the latent variable corresponding to the test input is obtained by

p( f∗ | X, y, x∗) =
∫

p( f∗ | X, x∗, f )p( f | X, y)d f, (1)

where p( f | X, y) is the posterior distribution over latent variables. This is followed
by applying a sigmoid function σ(·), which in our implementation is the cumulative
Gaussian, and marginalising over the latent f∗ to yield the class likelihood p(y∗ |
X, y, x∗) as

p(y∗ | X, y, x∗) =
∫

σ( f∗)p( f∗ | X, y, x∗)d f∗. (2)

It is this marginalisation over all models induced by the training set, as opposed to
relying on a single minimisation-based estimate, which accounts for a more accurate
estimate of the inherent uncertainty in class distribution, and therefore endows GP
classification with a high introspective capacity.

3.1 Efficiency by Sparsification

Akey drawback of aGPC is its significant computational demand in terms ofmemory
and run time. This is due to the fact that the GPC maintains a mean μ, as well as a
covariance matrix �, which is computed from a kernel function and has size |y|2.
A number of sparsification methods have been proposed in order to mitigate this
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computational burden. For efficiency, in this work we adopt one such sparsification
method: the Informative VectorMachine (IVM) [10]. Themain idea of this algorithm
is to only use a subset of the training points denoted the active set, I, from which an
approximation q( f | X, y) = N ( f | μ, �) of the posterior distribution p( f | X, y)

is computed. The IVM algorithm computes μ and � incrementally, and at every
iteration j selects the training point (xk, yk)which maximizes the entropy difference
�Hjk between q j−1 and q j for inclusion into the active set. Because q is Gaussian,
�Hjk can be computed by

�Hjk = −1

2
log |� jk | + 1

2
log |� j−1|. (3)

The details of the implementation can be found in Lawrence et al. [11]. The algorithm
stopswhen the active set has reached a desired size. In our implementation,we choose
this size to be a fixed fraction γ of the training set q.

To find the kernel hyper-parameters θ of an IVM, two steps are iterated a given
number of times: the estimation of I given θ , andminimising themarginal likelihood
q(y | X) given I. Although there are no convergence guarantees, in practice already
a small number of iterations are sufficient to find good kernel hyper-parameters.

Importantly for our work, since inference with the IVM is similar to that with a
GPC, the IVM retains the model averaging described in Eq. (2). We argue therefore,
that the IVM provides a significant and well-established improvement in processing
speed over a GPC while maintaining its introspective properties (see Sects. 5 and 5.4
for details).

4 Scalable Active Learning: Drive, Ask, Improve

The power of an active learning framework lies in its ability to select a suitable
training set in an application-oriented way. It thus inherently allows the system to
adapt naturally to the non-stationarity of the data often encountered in long-term
robotics applications. The active learning framework considered here is a supervised
learning process by which a human operator provides class labels for machine-
selected test data, which are then fed back into classifier training to improve the
classification result of the next round. We examine performance over successive
epochs, which each consist of (re-)training, classification, and user-feedback. The
implementation of a scalable active learning framework requires two problems to
be addressed: firstly, a subset of test data has to be selected for re-training such that
classification performance increases in the next epoch. Secondly, measures have to
be taken that guarantee that the training set is bounded in size, since otherwise the
algorithm will sooner or later exhaust the resources of a finite-memory, real robotic
system.Wecompare this active learning approachwith amore conventional “passive”
alternative, that is, training a classifier once without any subsequent human-feedback
improvement.

millitsa@ece.neu.edu



Driven Learning for Driving: How Introspection Improves Semantic Mapping 455

We now outline the specific active learning algorithm employed in this work,
before providing details of both our data selection strategy and our approach to
forgetting (bounding the training set size).

4.1 The Active Learning Algorithm

Algorithm 1 describes our active learning framework which, for reasons given in
Sect. 3, uses an IVM as the underlying classifier. It requires five different input
parameters: the initial hyper-parameters θ0 used for training the IVM, the fraction
γ of training points that are used for sparsification, the batch size b, the normalised
entropy (NE) threshold ϑ that a test point needs to exceed to be considered for
retraining, and the maximum number of questions r that the algorithm may ask. The
last is intended to minimise nuisance to a human operator due to being asked too
many questions. The sub-routines in the algorithm are explained as follows.

Algorithm 1: Active Learning with an IVM
Data: training data D = (X, y), stream of test data X∗
Input: initial kernel parameters θ0, batch size b, active set size fraction γ , minimal

retraining score ϑ , maximum number of questions r
Output: stream of output labels y∗
i ← 0
while X∗ �= ∅ do

(θ i+1, Ii+1) ← TrainIVM(X, y, γ, θ0)
move next b test points from X∗ into X∗

i
P ← ∅
forall the x∗ ∈ X∗

i do
z ← IVMPrediction(Ii+1, θ i+1, x∗)
s ← ComputeRetrainingScore(z)
if s > ϑ then P ← P ∪ {(x∗, s)}

sort P by decreasing values of s
D+ ← ∅
for j ← 1 to MIN(r, |P|) do

(x+
j , s j ) ← element j of P

y+
j ←AskLabelFromUser (x+

j )

D+ ← D+ ∪ (x+
j , y+

j )

D ← D ∪ D+, i ← i + 1

TrainIVM uses the current training set, the active set fraction γ , and the initial
kernel parameters to find optimal kernel parameters θ i+1 and an active set Ii+1 as
described in Sect. 3.1. Throughout this work we employ a squared exponential kernel
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(which is the same as the Radial Basis Function kernel) with additive white noise:

k(xi , x j ) = σ 2
f e− (xi −x j )

2

2l2 + σ 2
n δi j , (4)

where δi j is the Kronecker delta, and θ = {σ 2
f , l, σ 2

n } are the signal variance, the
length scale, and the noise variance.
IVMPrediction returns an estimate of the probability z that the next test datum

x∗ has a particular class label, as given in Eq. (2). Based on this probability, the
normalised entropy measure is then computed. The top ranked r test data exceeding
the retraining threshold ϑ are labelled by the user and added to the training set for
the next epoch.

4.2 Data Selection Strategy: What Questions to Ask?

The key element of an active learning algorithm is the strategy by which a new test
point x∗ is considered for re-training. In Algorithm 1, this is done in the sub-routine
ComputeRetrainingScore. An intuitive and well-explored indicator of which
data might be suitable for inclusion is the classification uncertainty associated with
x∗. To characterise the uncertainty of the classification from the given class prediction
z = p(y∗ | X, y, x∗), we adopt the measure of normalised entropy H(z), such that
for the binary case,

H(z) = −z · log2(z) − (1 − z) · log2(1 − z), (5)

where H(z) ∈ [0, 1], with high values representing high uncertainty.
This, indeed is central to our work. While, in principle, any classification frame-

work which provides a distribution over class labels as output can be used in our
active learning framework, intuitively we expect those with more realistic estimates
of these probabilities to be more effective for active learning. Thus, we expect more
introspective classifiers to perform better in the sense that they will ask more infor-
mative questions, leading to a higher learning rate. In Sect. 5, we will show that this
is indeed the case when comparing the proposed framework based on an IVM with
one based on a more commonly used, probabilistically calibrated SVM.

4.3 Forgetting Uninformative Data to Bound Memory Use

The main problem with the active learning framework as we presented it so far is
that in theory the training set can grow indefinitely, because there are no guarantees
that the algorithm will stop asking new questions. This makes the algorithm less
flexible, especially if the input data can not be guaranteed to be within certain locality
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bounds, for example in a life-long learning application. Therefore, and for run time
efficiency, we bound the size of the training set by removing points from it when
it exceeds a given target size nt . To decide which points to remove, we leverage
the information-theoretic instruments that the IVM already provides. After each
training round, we keep the entropy differences given in Eq. (3) for all training points
and sort them in increasing order. Those training data which correspond to the first
ni − nt values, where ni is the current training set size, are then removed before
training in the next epoch. Intuitively, this method discards the data that were least
informative during the last training round. One caveat with this method is that it
assumes independence between the training data, which is not generally given. For
example, two data may both have small individual �H values, but when removing
both of them the entropy could change significantly. In this work we acknowledge
but do not explore this phenomenon. Instead, we note that in our experiments we
did not observe a deterioration in classification performance when we applied our
method for forgetting.

5 Experimental Results

In this section we investigate the performance of our introspective active learning
approach in terms of learning rate, data selection strategy, classification performance
and tractability. We compare and contrast our approach with one based on the much
more commonly used SVM classifier (calibrated to provide probabilistic output).
The task we set both learners is to detect traffic lights in a third-party image dataset.
Specifically, we use the publicly available Traffic Lights Recognition (TLR) data
set [16], which comprises 11,179 colour images taken at 25Hz from a car driven
through central Paris at speeds under 31mph. It has ground-truth labels for traffic light
positions and subtype labels ‘green’, ‘orange’, ‘red’, ‘ambiguous’ (though here we
are only concerned with the detection of traffic lights, irrespective of their state). As
recommended by the authors of the dataset, we disregard labels of type ‘ambiguous’
and exclude sections where the vehicle was stationary for long periods of time. We
use data from the first 5,800 frames for training and the remainder for testing. We
compute a template-based feature set inspired by Torralba et al. [20] which has a
successful track record in the detection of traffic lights [7]. Each training or test
window is represented by a feature vector of length 200.

When training the IVM we used an active set fraction γ of 0.2, which means that
informative points will be added to the active set until its size is 20% of the training
set size. We use a Squared Exponential (SE) with white noise kernel. Training such
a classifier takes approximately 1.5 s on a single 3.4GHz core.

The SVMs used here are trained using libsvm [2], and use the isotropic Radial
Basis Function (RBF) kernel, which is equivalent to the SE kernel used by the
IVM. They are trained using 10-fold cross-validation on top of a grid-search over
the parameters C (the penalty parameter for the error term) and γ (the inverse
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of the length scale for the isotropic RBF kernel), both in the space 2k where
k = {−7,−6, . . . ,+4}. Training takes approximately 10min.

5.1 Does Introspection Improve Active Learning?

One of the central claims of this paper is that the use of an introspective classifier
will lead to more informative questions being asked of the human expert. In order
to test this claim we perform a cross-over experiment (see Fig. 2) which starts with
both an IVM and an SVM are initially trained on the same data, 200 traffic lights
(positive) and 200 background patches (negative). Then, 1,000 new data (with a class
fraction of 1:1, the same as during training) are shown to both classifiers for testing.
Each chooses up to 50 data points (providing their normalised entropies are over a
threshold empirically set to be ϑ = 0.97) to add to their own training set for the next
round, resulting in two new and different training sets: the ‘IVM set’ and the ‘SVM
set’. A new IVM and SVM are now trained on each of the two new sets and evaluated
on a further 1,000 new data points. This process thus gives rise to four classifiers: two
IVMs trained on data selected by an IVMand a SVM respectively, and two equivalent
SVMs. We compute precision and recall for all four classifiers. The results after 100
repetitions of this experiment are shown in Fig. 3. As expected, both the IVM and
the SVM perform better when trained on the dataset chosen by the initial IVM,
suggesting that the questions asked by the IVM tend to be more informative. An
unpaired t-test shows this result to be significant to a level of over 95%.

The overall effect of introspection in an active learning setting seems to be an
increased learning rate, a claim which we support with the following active learning

Fig. 2 Here we show the
procedure for the cross-over
experiment, designed to test
whether one classifier
chooses points which do not
only benefit itself in the next
round, but are consistently
more useful for the other
type of classifier as well. We
compare an IVM and an
SVM, and choose the test
points with highest
normalised entropy to be
labelled to augment the
original training set

Training data

IVM SVM

Test data #1

Augmented 
training data

IVM SVM IVM SVM

Test data #2

Augmented 
training data

Ask questionsAsk questions
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Fig. 3 Data selected by the IVM lead to an improved learning rate in terms of precision and recall
for both an IVM and SVM over those selected by the SVM. Results are shown for 100 experimental
runs, and increases are significant to the 95% level. See text and Fig. 2 for more details

experiment, performed over 11 epochs. As described in Sect. 4, our active learning
algorithm is retrained after having seen a batch of test points, as opposed to running
the training algorithm after every new datum encountered. Every epoch consists of a
training phase, a classification phase, and a feedback phase. At the very start of epoch
0, the classifiers are trained on 50 positive (traffic light) windows and 500 negative
(background) windows extracted at random from the training frames.We choose this
class fraction disparity to reflect the fact that in real data sets, negative examples are
much more prevalent than positive examples. During each classification phase, the
classifiers are then tested on a batch of 1,000 windows extracted from the test frames.
The class fraction for these test windows is 1:10, the same as for training. Next, the
50 points with the highest normalised entropy (providing they are over ϑ = 0.97)
are added to the training set, ready for retraining at the start of the next epoch. Note
that each classifier (IVM and SVM) makes its own choices regarding which points
to add for the next epoch.

The results are shown in Fig. 4, where the IVM learner starts off with a worse f1
measure at epoch 0 but has already exceeded the SVM by epoch 2, and is better (with
non-overlapping 95% confidence bounds) in the steady state from then onwards. The
gradient of the plot in Fig. 4 is shown in Fig. 5, and shows that the rate of increase of
f1 measure (the learning rate) for the IVM is better than that of the SVM over the
first few epochs, and then always at least as good subsequently.

Figure4 further serves to justify empirically our choice of normalised entropy
as a valid criterion for data selection, by comparing it to randomly selecting new
training data. Intuitively, both methods should improve classification by virtue of the
fact that they increase the training set size. However, the results indicate that for both
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Fig. 4 Classification performance for both IVM and SVM variants as indicated by the f1-measure
after each epoch.Measurements are averaged over 100 runs. Error bars indicate the 95% confidence
region of the mean. The IVM using a normalised entropy-based data selection strategy (IVM-
active) consistently outperforms all other active learning variants in terms of learning rate and final
classification performance

Fig. 5 The gradient of the
f1 measure of the active
learners from Fig. 4
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the IVM and the SVM, using normalised entropy leads to more rapidly improving
classification performance.

5.2 Does Forgetting Affect the Performance?

Ourwork aims to contribute an introspective active learning algorithm that is efficient
in termsof computational effort and scalablewith respect to itsmemory requirements.
In this section we investigate the efficacy of the mechanism we have put in place to
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Fig. 6 Forgetting results in commensurate classification performance while successfully bounding
the active set size of the classifier. Each datum represents the mean (and associated 95% confidence
interval) over 100 experimental runs. LeftThe evolution of the training set size. The IVM+forgetting
learner has a target training set size nt = 550, the initial training set size. Right Classification
performance with and without forgetting. For corresponding SVM results, see Fig. 5

provide this tractability: forgetting. In experiments thus far, new training data were
added in each epoch. The IVM active set size is a fixed proportion of the training set
size, which has the benefit of increasing classification performance, but is detrimental
to processing time. In the context of a life-long-learner, this is not a scalable solution.

We therefore elect to cap the size of the training set at nt = 550 data, whichmakes
the computational effort constant. This ‘IVM with forgetting’ learner can add new
data, but only by simultaneously discarding enough data to reduce the training set
size to the target size nt . Figure6 (left) shows the training set size for the normal
IVM with unbounded training set, and an IVM with forgetting, capped at 550 data
(the initial training amount). Figure6 (right) shows the corresponding classification
performance as characterised by the f1 measure. It indicates that in this scenario, the
IVM with forgetting mechanism has the same performance as the unbounded IVM.
We note that this is likely to be dataset dependent.

5.3 What Does the Active Learner Ask?

In Fig. 7 we show the 27 most certain and 27 least certain test cases for an IVM
at epochs 0, 3, and 10, and whether they were correctly classified or not. Firstly, it
is reassuring to confirm that the certain classifications are always correct. At epoch
0 we see that the confident classifications are all of the background class, almost
entirely of fairly uniformly textured surfaces like tarmac, and that the unconfident
classifications are all regarding traffic lights. As the learners gather more data, the
traffic lights which at epoch 0 were uncertain, are now very confident at epoch 3.
At epoch 10, the uncertain group are more balanced in terms of traffic lights and
background, and we see that although there is a little more variation in terms of the
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Fig. 7 The 27 most certain
and 27 least uncertain test
classifications of an IVM at
epochs 0, 3, and 10 during
the active learning
experiment. A green border
indicates a correct
classification, and a red
border indicates an incorrect
classification
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confident patches, they are very similar to the confidence classifications at epoch 3.
This is consistent with the learning algorithm having reached an equilibrium after
epoch 3 in Fig. 4.

5.4 The Effects of Sparsity

In [7] we showed that the GPC is more introspective than other more commonly
used classification frameworks. In this paper we have argued the necessity of using a
sparse formulation for the sake of computational complexity, however, it is necessary
to ensure that the IVM is introspective in its own right. The useful characteristic of
an introspective classifier is that it tends to be confident when it is making true
predictions, and uncertain when it may be making false predictions. In addition, we
would like to see whether the introspective quality changes with the active set size;
intuitively, a truly introspective classifier will be more confident if it is exposed to
more data, and vice versa.

Similarly to the approach in [7] we have plotted the cumulative true and false
classifications against uncertainty in Fig. 8 for a single round of training and testing.
In the legend, “IVM γ = 0.4” indicates an IVM with an active set fraction of 0.4,
such that the active set contains 40% of the training set. These particular IVMs have
been trained on 550 data and tested on 11,000, with the ratio 1:10 positive:negative.
There are several things to notice from the graph. Firstly, we can see that by looking
at the curves for the IVMs with γ = {0.2, 0.4, 0.6, 0.8, 1.0}, indeed as we would
hope, having a larger active set results in a more confident classifier; however it is
interesting to see that there are diminishing returns: very little confidence is gained
between an active set fraction of 0.6 and 1.0. Secondly andmost importantly, the IVM
is introspective: the incorrect classifications occur with high uncertainty, whereas the
majority of the correct classifications occur with low uncertainty. Thirdly, we would
expect that as the level of sparsity decreases, we approach the behaviour of the GPC,
which is indeed what happens; the full GPC is commensurate with the IVMs with
γ = {0.6, 0.8, 1.0}.
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Fig. 8 The introspective capacity of the IVM.We show the number of true (top) and false (bottom)
classifications (positive and negative classes together) which are made with a normalised entropy
lower than a chosen value. For instance, if we were to threshold at NE = 0.5, we would have 6000
correct classifications with the IVM γ = 0.2 and <10 incorrect classifications

6 Conclusion

The contributions of this paper are three-fold: firstly, the notion of introspective
classification introduced earlier shows promise in the context of active learning,
where a reliable estimate of the classification uncertainty is required. We do this by
showing an improvement in both classification performance and learning rate over a
non-introspective classifier (Sect. 5.1). Secondly, an efficient version of the Gaussian
Process Classifier, namely the Informative Vector Machine is used, which makes the
approach particularly useful for robotics applications with large amounts of data. We
show visual examples of where it is confused and where it is confident (Sect. 5.3),
and use it to create the first offline semantic mapping algorithm via active learning.
Finally, we present an information-theoretic solution to the problem of increasing
memory requirements by forgetting the least informative data,whichmaintains a high
classification performance in our experiments, but more extensive experimentation
is required to confirm the success of this approach for the wider scope of mobile
robotics applications.
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RatSLAM: Using Models of Rodent
Hippocampus for Robot Navigation
and Beyond

Michael Milford, Adam Jacobson, Zetao Chen and Gordon Wyeth

Abstract We describe recent biologically-inspired mapping research incorporating
brain-based multi-sensor fusion and calibration processes and a new multi-scale,
homogeneous mapping framework. We also review the interdisciplinary approach
to the development of the RatSLAM robot mapping and navigation system over the
past decade and discuss the insights gained from combining pragmatic modelling of
biological processes with attempts to close the loop back to biology. Our aim is to
encourage the pursuit of truly interdisciplinary approaches to robotics research by
providing successful case studies.

1 Introduction

The brain circuitry involved in encoding space in rodents has been extensively tested
over the past thirty years, with an ever increasing body of knowledge about the
components and wiring involved in navigation tasks. The learning and recall of spa-
tial features is known to take place in and around the hippocampus of the rodent,
where there is clear evidence of cells that encode the rodent’s position and head-
ing. RatSLAM [1–3] is a robotic navigation system based on current models of
the rodent hippocampus, which has achieved several significant outcomes in vision-
based Simultaneous Localization And Mapping (SLAM), including mapping of an
entire suburb using only a low cost webcam [4, 5], and navigation continuously over
a period of two weeks in a delivery robot experiment [6]. These results showed for
the first time that a biologically inspired mapping system could compete with or
surpass the performance of conventional probabilistic robot mapping systems. The
RatSLAM system has recently been open-sourced and published [7].

We have also “closed the loop” back to the neuroscience underpinning the Rat-
SLAM system. In our research, we took a pragmatic approach to modelling the
neural mechanisms, and would engineer “better” solutions whenever the underlying
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biology did not appear to meet the robot’s needs. However, some of themodifications
necessary to make the models of hippocampus work effectively over long periods
in large and ambiguous environments raised new questions for further biological
study, including a potential neural mechanism for filtering uncertainty in navigation
[8]. The research has also led to recent experiments demonstrating that vision-based
navigation can be achieved at any time of day or night, during any weather, and in
any season using sequences of visual images as small as 2 pixels in size [9–12]. Most
recently we have led collaborative research with human- and animal-neuroscience
labs leading to novel human-inspired vision-based place recognition algorithms that
are starting to rival human capabilities at specific tasks [13, 14].

In this paper we describe two recent biologically-inspired areas of investigation
building on the existing RatSLAM system. We first provide a brief but necessary
overview of the core RatSLAM system. We then describe research mimicking the
hypothesized sensory calibration processes in the rodent brain and present experi-
ments demonstrating autonomous calibration of a place recognition system, a key
requirement for mapping and navigation systems. Finally, we describe new research
modelling the multi-scale, homogeneous mapping frameworks recently discovered
in the rat brain and present results showing the place recognition performance ben-
efits of such an approach. We conclude with a discussion of the key lessons learnt
in more than a decade of pursing an interdisciplinary robotics-neuroscience research
agenda.

2 RatSLAM

In this section we briefly describe the core RatSLAM algorithms upon which the new
research presented here is based. RatSLAM is a SLAM system based on computa-
tional models of the navigational processes in the part of the mammalian brain called
the hippocampus. The system consists of three major modules—the pose cells, local
view cells, and experience map. Further technical details on RatSLAM can be found
in [4, 6].

2.1 Pose Cells

The pose cells are a Continuous Attractor Network (CAN) of units connected by
both excitatory and inhibitory connections, similar to a recently discovered class of
navigation neurons found in many mammals called grid cells [15]. The network is
configured in a three-dimensional prism (Fig. 1), with cells connected to nearby cells
by excitatory connections, which wrap across all boundaries of the network. The
dimensions of the cell array nominally correspond to the three-dimensional pose of
a ground-based robot—x, y, and θ . The pose cell network dynamics are such that the
stable state is a single cluster of activated units, referred to as an activity packet or
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Fig. 1 The RatSLAM system, consisting of local view cells, pose cells and the experience map

energy packet. The centroid of this packet encodes the robot’s best internal estimate
of its current pose. Network dynamics are regulated by the internal connectivity as
well as by input from the local view cells.

2.2 Local View Cells

The local view cells are an expandable array of cells or units. Novel scenes drive
the creation of a new local view cell which is then associated with the raw sensory
data (or an abstraction of that data) from that scene. In addition, an excitatory link
is learnt (one shot learning) between that local view cell and the centroid of the
dominant activity packet in the pose cells at that time. When that view is seen again
by the robot, the local view cell is activated and injects activity into the pose cells
via that excitatory link. Re-localization in the pose cell network occurs when a
sufficiently long sequence of familiar visual scenes is experienced in the correct
sequence, causing constant injection of activity into the pose cells resulting in the
re-activation of the pose cells that were associated with that scene the first time.

2.3 Experience Map

Initially the representation of space provided by the pose cells correspondswell to the
metric layout of the environment a robot is moving through. However, as odometric
error accumulates and loop closure events occur, the space represented by the pose
cells becomes discontinuous—adjacent cells in the network can represent physical
places separated by great distances. Furthermore, the pose cells represent a finite
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area but the wrapping of the network edges means that in theory an infinite area can
be mapped, which implies that some pose cells represent multiple physical places.
The experience map is a graphical map that provides a unique estimate of the robot’s
pose by combining information from the pose cells and the local view cells. A new
experience is created when the current activity state in the pose cells and local view
cells is not closely matched by the state associated with any existing experiences. As
the robot transitions between experiences, a link is formed from the previously active
experience to the new experience. A graph relaxation algorithm runs continuously
to evenly distribute odometric error throughout the graph, providing a map of the
robot’s environment which can readily be interpreted by a human.

3 Brain-Based Sensor Fusion and Calibration

Current state of the art robot mapping and navigation systems produce impressive
performance under a narrow range of robot platform, sensor and environmental con-
ditions. In contrast, animals such as rats produce “good enough” maps that enable
them to function in an incredible range of situations and environments around the
world. From only four days after birth, rat pups start to learn how to best sense, map
and navigate in their environment [16, 17]. Rat pups have been seen to demonstrate
particular movement behaviours such as pivoting that are theorized to help them cal-
ibrate their sensory stream. Furthermore, adult rats rapidly adapt to changes in their
own sensing equipment or in their environment during their adult life [18]. It has
even been shown that it is possible to integrate novel sensory devices into a rat brain
and have the rats subsequently learn to utilise this novel input [19]. We investigated
the feasibility of adopting a “sensor agnostic” approach to mapping and localization
inspired by the adaptation capabilities of rats.

We describe a rat-inspiredmulti-sensor fusion and calibration system that assesses
the usefulness of multiple sensor modalities based on their utility and coherence
for place recognition both when a robot is first placed in an environment through
calibration behaviors [20] and autonomously while moving [21], without knowledge
as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and
outdoor environments with large illumination changes.

3.1 Approach

Herewe present our sensor-agnostic approach tomulti-sensory calibration and online
sensory evaluation. The system is algorithmic in nature; however it is loosely inspired
by rodent behavioural and neural processes.
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3.1.1 Sensor Pre-processing

Sensor data is pre-processed to enable agnostic evaluation of sensory information
through a standardized format. All sensor data is normalized by dividing by the
maximumpossible sensor readingproducing a value between (0, 1). Sensor data in the
form of multi-dimensional arrays, such as images, are down-sampled and separated
into a single line vector, for example, RGB images are converted to grayscale, down-
sampled to 12 × 9 and separated into a single vector 108 elements long. Sensor
pre-processing is applied to all sensor modalities producing a single vector for each
sensor called a template.

3.1.2 Multi-sensor Fusion

Sensor data similarity is evaluated utilizing a Sum of Absolute Differences (SAD)
comparison, in order to determine the similarity between the current template and
all previously stored templates. The best template match to the current sensor tem-
plate is the previously learnt template with the smallest difference score. We define a
template as familiar if a previously learnt template has a difference score less than a
predetermined recognition threshold, Sthresh. The current sensory template is defined
as novel if the best template match difference score is greater than the recognition
threshold. Furthermore, we define a technique for dynamically evaluating the utility
and reliability of sensors as the robot moves through the environment. Sensor reli-
ability is determined using two biologically inspired metrics, spatial coherence and
template expectation similarity. These metrics are binary operators and evaluate the
agreement between two sensory modalities. Each sensor is compared to each other
sensor using these two metrics and combined to produce a single coherence score
which is used to determine the utility of each sensor. Spatial coherence builds on
the idea of using geometric information to validate place recognition and utilizes
the experience map to determine the Euclidean distance between template matches.
Two sensors are deemed to be spatially coherent if the Euclidean distance between
the location matches is below a geometric threshold, gthresh. Template expectation
similarity determines the similarity between the current sensor data and a predicted
sensor reading generated from another sensor. Sensors are deemed to be reliable if
coherent with at least one other sensor or if no template match has been reported,
otherwise the sensor is tagged as unreliable.

Sensor data is fused together through the implementation of “super templates”,
formed by concatenating each sensor template into a single vector. When comparing
super templates, the component of the overall matching score corresponding to each
sensor is normalized by the number of readings for the sensor to remove any effect
of varying sensor vector sizes (Fig. 2).

millitsa@ece.neu.edu



472 M. Milford et al.

Fig. 2 Super templates are created by the concatenation of individual sensor data and compared
to previously learnt super templates using a weighted SAD. Super templates allow the storage of
sensory information for a particular scene, allowing all sensory data to be processed in a uniform
manner

3.1.3 Movement-Driven Autonomous Calibration

Autonomous calibrationof the place recognitionprocesses for each sensor is achieved
bymimicking the pivoting behavior of young rat pups when calibrating their sensors.
The main requirement of a robot is that it is capable of safely performing two donuts
within the operating environment and that the environment is primarily static for
the calibration behaviors. The performance of two donut behaviors is required to
allow the sensory equipment to experience an environmental scene twice, allowing
the distinction of novel and familiar sensory data.

Place recognition calibration is performed by monitoring the difference scores
between the current and previous sensory snapshots as the robot completes two
revolutions, the first a “novel” revolution and the second a “familiar” revolution,
since the robot is repeating a previous movement. The place recognition threshold is
set to themaximumdifference score for the familiar region of the calibration behavior.
This method captures the largest possible variance in difference score for a familiar
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Fig. 3 a Map indicating the calibration locations and robot path for the office environment.
b–e show photos of the calibration locations used within the office environment, which varied
between open plan space, corridors and a kitchen. f Campus environment. The route was traversed
during both day- and night-time conditions, with snapshots of the robot in the environment shown
along the route

template match. This process is a conservative one—while it is likely the system will
miss place matches in more perceptually challenging environments, false negatives
are generally less catastrophic than false positives. The system also calculates a
threshold quality score based on analysis of the difference score distribution over the
two revolutions.

3.2 Experimental Setup

All the dataset acquisition and testingwas performed inROSgroovy, all datasets ROS
bags are available for readers to download and process at: https://wiki.qut.edu.au/
display/cyphy/Michael+Milford+Datasets+and+Downloads. Detailed system para-
meters are provided in [20, 21].

3.2.1 Testing Environments

The testing environmentswere diverse and included a university campus and an office
building floor. The Campus dataset was traversed during day and night conditions to
test the system’s ability to handle varying environmental conditions (Fig. 3).
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3.2.2 Robot Platforms

The office robot configuration was built on an Adept MobileRobots Pioneer 3DX
utilizing a FireWire PointGrey Camera with Catadioptric mirror, 16 ultrasonic range
sensors, SICK laser range finder and Microsoft Kinect with RGB and Depth images.
The campus robot configurationwas also assembled on theAdeptMobileRobots Pio-
neer 3DX using 16 ultrasonic range sensors, SICK laser range finder and Microsoft
Kinect with RGB and Depth images.

3.3 Results

For reasons of brevity, here we present only the maps produced in each experiment—
which reveal whether the system was able to produce topologically correct maps
without any false connectivity between map locations. Further results can be found
in [20, 21].

3.3.1 Office Environment

The calibration behavior was performed in the office environment resulting in the
generation of the four sets of sensor thresholds and confidence scores shown in
Fig. 4. Evaluation of Fig. 4b illustrates that all the autonomously generated place
recognition thresholds are reliable (have a confidence score above 1), except the
thresholds for sensors 1 and 2 in office calibration location 1. These low confidence
scores were most likely due to the approximately equally distant and bland white
walls of office calibration location 1. Figure5 shows the experience maps are all

Fig. 4 a Autonomously calibrated thresholds from office calibration locations 1–4. Each group of
five bars corresponds to the five sensor calibrations at one calibration location. b Corresponding
calibration confidence scores. For each individual sensor, confidence scores less than 1 indicate a
sensor calibration failure
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Fig. 5 OpenRatSLAM experience maps for the office environment generated with wheel encoder
self-motion information using the (a) manually selected super template thresholds of 0.08 and 0.01
and (b) reliable autonomously calibrated thresholds from office calibration locations 1–4

topologically correct and have no incorrect loop closures, including the map created
using only 3 reliable sensors from office calibration location 1.

3.3.2 Campus Environment

Here we present results for the campus environment experimentation produced from
traversing the campus environment twice, first during the day and the second at
night. Place recognition thresholds calibrated in the office calibration locations that
resulted in a full set of trusted sensors (locations 2–4)were used for testing in the cam-
pus environment. Figure6 shows the resultant OpenRatSLAM maps for the campus
environment. All sensors were down weighted at various times during the exper-
iment, removing large amounts of false positive matches from individual sensors.
The dynamic sensor fusion system also removed some true positive matches, which
resulted in some regions of the map not being connected together. All the maps are
topologically correct although the recall rate for Fig. 6c is less than ideal. A reference
map without sensor weighting is shown in Fig. 6d.

3.4 Future Work

We are currently investigating the use of a much wider range of sensing modalities
such as WiFi. One of the most interesting insights from these multi-sensor fusion
experiments is that different sensor types have varying spatial specificities when
used in an associative mapping framework such as RatSLAM. Cameras offer the
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Fig. 6 a–c OpenRatSLAM experience maps of the campus environment generated with wheel
encoder self-motion information using reliable autonomously calibrated thresholds from office
calibration locations 2–4. d Map without online sensor weighting

potential for spatially precise place recognition performance, while sensors such as
WiFi offer broader spatial localization. Attempting to integrate the place recognition
information provided by each of these very different sensor types using a single
scale mapping framework is likely suboptimal. In the next section, we present a pilot
study investigating a multi-scale, homogeneous mapping framework inspired by the
multi-scale maps recently found in the rodent brain.

4 Multi-scale Mapping

Most robot navigation systems perform mapping at one fixed spatial scale, or over
two scales, often locally metric and globally topological [22–24]. Recent discoveries
in neuroscience suggest that animals such as rodents, and likelymany othermammals
including humans, encode the world using multiple but homogeneous parallel map-
ping systems, each of which encode the world at a different scale [15, 25]. Although
investigated in a theoretical context [26, 27], the potential performance benefits of
such a mapping framework have not yet been investigated in a real-world robotics
context. In this study, we investigated the utility of combiningmultiple homogeneous
maps at different spatial scales to perform place recognition [14]. The performance
of the multi-scale implementation was compared to a single scale implementation
using two different vision-based datasets.
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4.1 Approach

Our overall approach involves a feature extraction stage, a learning stage using arrays
of Support Vector Machines, and a place recognition stage that combines place
recognition hypotheses at different spatial scales.

4.1.1 Feature Extraction

Dimensional reductionwas performedbefore camera imageswere input to theSVMs.
We implemented two commonly used feature extraction methods—Principal Com-
ponent Analysis (PCA) and GIST. PCA [28] is an efficient dimension reduction
method which projects the original data into the directions with largest variances.
Camera images were down-sampled to 64 × 48 before applying PCA. The first 38
principal eigenvectors were picked which were shown to already capture 90% of
the data variance. For GIST features, we chose the model proposed by Oliva [29]
which provides a holistic description of the scene called Spatial Envelope. GIST was
also attractive because of the possibility of generating relevant insights into how the
biological visual mapping systemmay function. We extracted the GIST feature from
down sampled 64 × 48 images which resulted in a 512-dimensional feature.We then
extracted the top 32 principal eigenvectors, which captured approximately 90% of
the total variance.

4.1.2 Learning Algorithm

Support Vector Machines (SVM) [30] were chosen as the learning algorithm for two
reasons. Firstly, they are an effective method for finding an optimal hyperplane to
separate training data whilst simultaneously maximizing the classification margin,
making it suited to the task of training recognition of a specific spatial segment and
maximizing the difference between the training segment and other similar segments.
Secondly, the use of SVMs removes the need for the extensive parameter tuning
required of more biologically plausible grid cell models, such as continuous attractor
networks [2], although we do intend to eventually adopt these models to maximize
biological relevance.

4.1.3 Combining Multi-scale Place Match Hypotheses

Each array of SVMs produces a firing matrix M representing the matching scores
of the testing segments on the trained SVMs where element M(i, j) indicates the
response of the ith SVM from a training dataset to the jth segment in a test dataset.
Firing scores in each column j are then normalized to sum to one for each segment
recognition distribution:
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Fig. 7 Overlapping SVM
matching scores are
combined at the smallest
spatial scale in order to
accept or reject place match
hypotheses. In this case,
K = 3

M(i, j) = M(i, j)∑
i

M(i, j)
(1)

Place recognition hypotheses produced by each array of SVMs are only as accurate
as the average size of a segment in that array. To create a common scale in which
hypotheses from different spatial scales can be compared and combined, reported
place recognition matches are transformed to the scale space of the smallest segment
size. For K arrays of SVMs, the matching scores after normalization of each array
are:

Mp, p = 1, . . . , K (2)

Suppose there are Lp training segments for the matching score Mp. For a segment j
in a test data set, its coherence measurement on each training segment c (i, j), i =
1, . . . , Lp is determined by whether spatially overlapping hypotheses exist over all
SVMs scales. If not, the system reports “no coherent” match (c = 0):

c(i, j) =
{
1, Mp(i, j) > 0, ∀p

0, else
(3)

At the smallest spatial scale, there can be several competing place recognition
hypotheses that are supported by all other spatial scales. To determine the most
likely hypothesis, we sum the firing scores of the overlapping SVMs at each spatial
scale and classify segment j to the class C(j) with the largest accumulated firing
score (Fig. 7):

C(j) = argmaxi

∑
p

Mp(i, j), ∀c(i, j) = 1 (4)
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Fig. 8 The Rowrah dataset (left) and Campus data (right) with example frames

Table 1 Dataset descriptions

Dataset name Single traverse
distance (m)

Number of frames per
traverse

Resolution

Rowrah 1000 1570 320 × 240

Campus 800 1000 1280 × 960

4.2 Experimental Setup

We used two datasets (Fig. 8) to test the multi-scale algorithms, with details listed
in Table1. Each dataset consists of two traverses along the same route with the first
traverse used for training and the second traverse for testing. The Rowrah dataset
was collected from a forward-facing camera mounted on a motorbike and can be
downloaded at the following link: http://www.youtube.com/watch?v=_UfLrcVvJ5o.
The Campus dataset was sourced from a GoPro Hero 1 camera mounted on a bicycle
pushed by an experimenter. The bike was pushed through and in-between buildings
along a mixed indoor-outdoor path approximately 800m long. Due to GPS not being
viable, datasets were parsed frame by frame to build ground truth correspondence
between testing and training data sets for each spatial scale.

4.2.1 Training Procedure

Images from the first traverse of the environment were used for training while images
from the second traversewere used to evaluate performance. The overall training pro-
cedure consisted of the following three steps: dataset segmentation, feature extraction
and SVM training.

Dataset Segmentation

The images in each dataset were grouped into a total of S subsequent segments (S/2
segments per traverse). Larger values of S result in smaller size of each segment.
For the sake of intuition, we refer to different SVMs by the size of each segment,
not the number of segments. For example, each traverse in the Campus dataset is
approximately 800m and therefore splitting the Campus dataset into 170 segments
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(85 segments per traverse) resulted in an average segment size of approximately
9.4m. We then use “9.4m system” to refer to the SVMs with 170 segments.

Feature Extraction

Two feature types (as discussed in Sect. 4.1.1) were extracted from each dataset. The
feature vectors from all frames in a segment were combined into a single vector and
input into each of the SVMs.

SVM Training

To train a SVMmodel for each segment, we manually labeled the images in that seg-
ment as positive examples and those from the other N segments as negative examples.
Ideally, all other (S-1) groups would be used as negative examples. However, since
in real world situations it may not be possible to train on the entire training dataset,
we instead arbitrarily set N to be 9, indicating for each segment, we use 1 frame
group as a positive example and 9 other adjacent frame groups as negative samples

4.3 Results

We show three key sets of results—comparison between single and multi-scale place
recognition, ground truth plots and illustrative multi-scale place recognition combi-
nation plots.

4.3.1 Single- and Multi-scale Place Recognition

This section presents precision recall (PR) curves for the single- andmulti-scale place
recognition experiments. Each PR curve was generated by sweeping the accepted
range in each hypothesis rank. For both single- and multi-scale matching, it is, not
surprisingly, easier to perform place recognition when trying to match a spatially
broad segment than when trying to match a spatially specific segment. This disparity
is most likely due to two reasons; firstly because performance is bound to increase
when the false positive spatial error tolerance is bigger, and secondly, because the
larger segments are trained on a larger number of frames.

Precision-recall performance at all except very low precision levels improved
significantly across all experiments. At 100% precision, the recall rate was improved
by an average of 74.79% across all experiments. The biologically-inspired feature
GIST slightly outperformed PCA—at 100% precision, the recall rate for GIST was
improved by an average of 81.7% over all experiments, versus 67.9% for PCA.
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4.3.2 Ground Truth Plots

Figures11a, b present ground truth plots showing the true positives (green circles),
false positives (blue squares) and false negatives (red stars) output by the single and
multi-scale systems for the Rowrah datasets without (a) and with (b) multi-scale
combination. Straight lines connect the matching segments.

4.3.3 Multi-hypothesis Combination Plots

Figure11c–f show examples of how place match hypotheses at varying scales are
combined together. In general, a large number of false positives at the smallest spatial
scale (yellow color) are eliminated due to lack of support from larger spatial scales.
The examples in (c, d) show how secondary ranked spatially specific matches are
correctly chosen as the overall place match due to support from other spatial scales.
In (e) the best ranked spatially specific match is correctly supported by the other
spatial scales, while (f) shows a failure case where the incorrect 4th ranked spatially
specific match is more strongly supported by the other spatial scales that the 1st
ranked and correct spatially specific match. Interestingly, the most common failure
mode of the system is to report a “minor” false positive match—a place match to a
different location at the smallest spatial scale but within the correct place at a larger
spatial scale (Figs. 9, 10).

Fig. 9 Precision recall curves demonstrating the single- and multi-scale place recognition perfor-
mance for the Rowrah dataset

Fig. 10 Precision recall curve demonstrating the results with and without combination for Campus
dataset using gist features and PCA features
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Fig. 11 Ground truth plots for the a single and b multi-scale Campus dataset. c, d Show examples
of secondary-ranked spatially specific place matches (yellow) that became the primary overall place
match hypothesis due to support from other spatial scales. In e the first ranked spatially specific
match is supported, while f shows a failure case where a secondary ranked spatially specific match
is incorrectly chosen as the overall match due to more significant support from the other spatial
scales than the correct, first ranked spatially specific match

4.4 Discussion and Future Work

Place recognition performance was improved by combining the output from parallel
systems, each trained to recognize places at a specific spatial scale. Although here we
presented a specific implementation of both the vision processing and place recog-
nition framework, we believe that the novel multi-scale combination concept should
generalize to other systems. In future work, we will incorporate an odometry source
to enable the system to allocate segments directly based on distance travelled rather
than (in effect) time. Odometry information may enable us to expand our current
system to two-dimensional unconstrained movement in large open environments.
Testing the system in open field environments will be more analogous to many
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current rodent experiments and may increase the likelihood of generating neuro-
science insights. An obvious extension to the sensor fusion work presented here and
elsewhere [21, 31] would be to use a multi-scale mapping framework approach to
exploit the variable spatial specificity of different sensor modalities, such as cameras,
range finders and WiFi.

5 Achieving Balance in Interdisciplinary Research

If we were asked to identify the single key issue involved in conducting interdisci-
plinary (especially biologically-inspired) robotics research it would be this:

How can research achieve the appropriate balance between maintaining a faithful
representation of the modelled biological systems and producing state of the art
performance in the robotics domain at a relevant task?

To discuss this issue concisely in a paper such as this, one must necessarily make
some generalizations. Research focusing on maintaining fidelity to the underlying
source of biological inspiration often produces performance that is inferior to con-
ventionalmathematical approaches, but can lead to novel insightful predictions about
biological systems. Conversely, research that readily abandons any relevance to the
biologymay lead to better robotics performance but is rarely the cause of new discov-
eries in biological research. In addition, it becomes an increasingly painful process to
generate relevant testable predictions or insights in the biological field as the model
becomes more and more abstracted.

In the initial stages of the RatSLAM project, we started with what was then a state
of the art neural networkmodel of themapping processes observed in the rodent brain.
As we tested the algorithms in larger and more challenging environments and over
longer periods of time, we were forced to make some pragmatic modifications to the
algorithms to produce good mapping performance. These modifications seemingly
moved the model further away from biology. One example would be the pragmatic
decision to engineer the pose cells, artificial neurons that encode the complete three-
dimensional (x, y, ϑ) pose of a ground-based robot and are re-used at regular inter-
vals to efficiently encode large environments. The decision to move to pose cells
was made because the neuron types known at that time—place cells which represent
(x, y) location—and head-direction cells which represent orientation—were unable
to represent and correctly update multiple robot location hypotheses. Subsequently
neuroscientists discovered a new type of spatial neuron called a grid cell in the rodent
brain sharing similar although not identical characteristics [15, 32]. This discovery
demonstrated that a functionally driven investigation (engineering a new cell to pro-
duce better mapping performance) could lead to relevant insights or predictions in
another discipline, in this case neuroscience. It is interesting to speculate that, had
we abandoned the biological neural network completely and moved to a conven-
tional technique such as a particle or Kalman filter, it may have been harder to make
this specific prediction. Conversely, if we had maintained a more biological faithful
model, we may never have been able to test it in environments that were sufficiently
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challenging to require the ability to encode and propagate multiple location hypothe-
ses. At least in this particular example, it was only by following the “middle ground”
that we were able to make some contribution to both fields.
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Into Darkness: Visual Navigation Based
on a Lidar-Intensity-Image Pipeline

Timothy D. Barfoot, Colin McManus, Sean Anderson, Hang Dong,
Erik Beerepoot, Chi Hay Tong, Paul Furgale, Jonathan D. Gammell
and John Enright

Abstract Visual navigation of mobile robots has become a core capability that
enablesmany interesting applications from planetary exploration to self-driving cars.
While systems built on passive cameras have been shown to be robust in well-lit
scenes, they cannot handle the range of conditions associated with a full diurnal
cycle. Lidar, which is fairly invariant to ambient lighting conditions, offers one pos-
sible remedy to this problem. In this paper, we describe a visual navigation pipeline
that exploits lidar’s ability to measure both range and intensity (a.k.a., reflectance)
information. In particular, we use lidar intensity images (from a scanning-laser
rangefinder) to carry out tasks such as visual odometry (VO) and visual teach and
repeat (VT&R) in realtime, from full-light to full-dark conditions. This lighting
invariance comes at the price of copingwithmotion distortion, owing to the scanning-
while-moving nature of laser-based imagers. We present our results and lessons
learned from the last few years of research in this area.

1 Introduction

1.1 Motivation

Visual navigation is an enabling technology for mobile robots operating in chal-
lenging, real-world environments. Satellite-based positioning, such as GPS, is often
insufficient or unavailable in many interesting situations: indoors, in urban canyons,
under forest canopies, underground, underwater, and on other planets. As such, pas-
sive cameras and/or lidars are employed to provide as position estimation and also
help with path following, hazard detection, and object recognition. Cameras and

T.D. Barfoot (B) · C. McManus · S. Anderson · H. Dong · E. Beerepoot · C.H. Tong ·
P. Furgale · J.D. Gammell · J. Enright
University of Toronto Institute for Aerospace Studies, 4925 Dufferin St., Toronto,
ON, Canada
e-mail: tim.barfoot@utoronto.ca

© Springer International Publishing Switzerland 2016
M. Inaba and P. Corke (eds.), Robotics Research, Springer Tracts
in Advanced Robotics 114, DOI 10.1007/978-3-319-28872-7_28

487

millitsa@ece.neu.edu



488 T.D. Barfoot et al.

lidars are typically viewed as separate-yet-complementary sensors. Roughly speak-
ing, (passive) cameras are used to acquire appearance information and geometry
while (active) lidars are used to acquire geometry. The active nature of lidars make
themwell-suited toworking in any lighting condition, while passive cameras struggle
with lighting change.

An underexploited capability of 3D lidar is its ability to acquire appearance infor-
mation through intensity images. Intensity data is derived from the amount of trans-
mitted light that is reflected back from the scene. Traditionally, the raw output of a
lidar sensor is thought to be a 3D point cloud; instead, we consider the output to be a
pair of range and intensity images. Figure1 provides a comparison between passive
camera images and lidar intensity images for the same scene.

This paper describes how we use lidar intensity images (derived from a scanning-
laser rangefinder) to build a realtime, lighting-invariant visual pipeline that leverages
the heritage of the traditional stereo-camera pipeline.Weweremotivated to do this for
two reasons: (i) to navigate in full-dark conditions, and (ii) to recognize placeswe had
seen before, despite drastic changes in lighting.Much of ourwork is targeted at future
planetary exploration missions. For example, permanently shadowed craters near the
south pole of the Moon may contain water-ice and other useful volatiles. Missions
to these craters will require robots that are able to navigate in full darkness and in

Fig. 1 Examples of passive camera (top row) and lidar intensity (bottom row) images of the same
scene at three different times of day (13h38, 18h12, 05h43). Images acquired using an Optech
ILRIS3D survey-grade lidar with built-in passive camera. Raw SURF [5] features are marked in
all images. We see that the lidar intensity images and features look very similar regardless of the
sunlight conditions, while the passive camera images and features change significantly with lighting
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realtime (due to the low-latency communications and short lunar day). However,
beyond planetary exploration, robotics generally requires the ability to recognize
previously visited places in order to build consistent surveymaps and re-drive routes.

We successful built a lidar-intensity-image pipeline suitable for visual odometry
(VO) [10, 21, 23] and visual teach and repeat (VT&R) [22, 24]. However, due to
the scanning-while-moving nature of laser-based imaging, motion distortion can be
significant if the sensor’s motion is high relative to its framerate. In order to obtain
an accurate motion estimate, we were forced to innovate ways of coping with this
distortion [2, 3, 26–29], but we believe that it has been worth the effort to achieve
lighting invariance.

The rest of the paper is organized as follows. The remainder of Sect. 1 provides
a brief summary of related work and introduces the lidar-intensity-image pipeline.
Section2 discusses motion distortion and our various approaches to overcome it.
Section3 provides the results of some visual-odometry and visual-teach-and-repeat
experiments. Section4 discusses lessons learned and concludes the paper.

1.2 Related Work

We only briefly review other works that have used lidar intensity images (a.k.a.,
reflectance images) for motion estimation. McManus et al. [23, 24] provide more
information. Laser intensity images have been used in the past for surveying applica-
tions [8, 18] and some researchers have looked at automated point-cloud registration
techniques that use 2D interest points in the intensity images [1, 6].

The SwissRanger sensor, a ‘flash lidar’, also produces intensity/range images
but using a different principle than laser-based scanners. Unlike a laser scanner, the
SwissRanger uses an array of 24 LEDs to simultaneously illuminate a scene, offering
the advantage of higher framerates. However, the SwissRanger has a limited FOV,
short maximum range, and is very sensitive to environmental noise. Weingarten et
al. [30] used images from the SwissRanger for robotics applications; however, their
method, as well as others that followed [11, 32], only used range data from the sensor
and not the intensity data.

May et al. [20], and later Ye and Bruch [31], were the first to develop 3Dmapping
and appearance-based egomotion techniques using a SwissRanger. May et al. [20]
used intensity images to employ two feature-based methods for motion estimation: a
Kanade–Lucas–Tomasi (KLT)-tracker and frame-to-frame VO using SIFT features.
Their results indicated that the SIFT approach yielded more accurate motion esti-
mates than the KLT approach, but less accurate than the iterative closest point (ICP)
method. Although May et al. [20] demonstrated that frame-to-frame VO might be
possible with the SwissRanger, the largest environment in which they tested was
a 20m long indoor hallway, with no groundtruth. Furthermore, laser scanners are
very different from flash lidars in that they scan the scene with a single light source,
introducing new problems such as image formation and image distortion caused by
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Fig. 2 Stereo-image (above) and lidar-intensity-image (below) visual pipelines. Both pipelines
show the main steps required to go from raw images on the left to a pose solution on the right. On
the surface, we see that switching to lidar intensity images only alters the initial steps. However,
due to the scanning-while-moving nature of the lidar-intensity images, most of the blocks require
modification to compensate for motion distortion
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Fig. 3 Image stack concept.Wedetect sparse keypoints in the intensity image (at subpixel locations)
then, for each keypoint, pierce through the stack to look up the associated azimuth, elevation (based
on lidar’s mirror angles), range, and time (using bilinear interpolation). The result is a keypoint
augmented with its 3D position and timestamp

moving and scanning at the same time. We believe our work is the first and only one
to use laser-based intensity images in a realtime visual pipeline.

1.3 Lidar-Intensity-Image Pipeline

Figure2 provides an overview of our lidar-intensity-image pipeline, as well as the
typical stereo-image pipeline for comparison. The purpose of these pipelines is to
determine the robot’s motion from a sequence of images. The main steps of the lidar
pipeline are:
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(i) acquire a lidar intensity image,
(ii) carry out preprocessing to improve contrast in the image—either adaptive his-

togram equalization or a linear range correction,
(iii) detect sparse keypoints in the intensity image—we use SURF implemented on

a GPU but other methods should work,
(iv) build an ‘image stack’ (cf., Fig. 3) and for each keypoint pierce through to

form augmented keypoints—this provides the 3D position (azimuth, elevation,
range) and time of each keypoint,

(v) track keypoints—we match to the previous frame (VO) and a local map (VT&R),
(vi) detect and reject outliers—we use RANSAC,
(vii) solve for the robot’s motion using a nonlinear, least-squares method—we can

incorporate an attitude sensor such as a star tracker and/or IMU to help deter-
mine orientation.

We carry out these steps every time a new image is acquired.
Figure4 compares the lidar-intensity-image and stereo-image pipelines on the VO

problem.With the robot stopping every time it gathered images (approximately every
0.5m), we can see that the lidar and stereo pipelines both provide good estimates of
the robot motion compared to GPS groundtruth. However, if we allow the lidar to
acquire images while in motion, the VO performance degrades quickly as the images
becomes distorted. We discuss this motion distortion and our efforts to compensate
for it in detail in the next section.

2 Coping with Motion Distortion

2.1 Nature of Distortion

In this paper, we are concerned with laser-based 3D rangefinders that are capable of
producing high-quality intensity images. The main sensor we use for realtime oper-
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Fig. 4 Comparison of lidar-intensity-image (laser) and stereo-image VO. In this experiment the
robot stopped every time images were acquired (approximately every 0.5m). Both algorithms are
able to provide reasonable estimates (compared to GPS groundtruth) in this stop-scan-go paradigm
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ations is the Autonosys LVC0702, which uses a combined nodding and polygonal
mirror assembly to steer a single laser beam through a raster pattern in order to build
intensity/range images (cf., Fig. 5; left). It works out to about 50m in range.

To our knowledge, the Autonosys unit has the highest pulse repetition frequency
(PRF) of the single-laser scanners on the market at 500,000points/s. We use the unit
in a mode that produces 480 × 360 pixel intensity images at 2Hz. Even for a robot
moving at a modest speed, say 0.5m/s, there is noticeable distortion in the images if
they are acquired during motion (cf., Fig. 5; right). This is essentially an exaggerated
‘rolling shutter’ effect; an image is gathered over a fraction of a second, with every
pixel acquired at a unique (known) time.

We considered using a Velodyne HDL64E for our work, but found that the narrow
vertical field of view (16◦) and resolution (64 pixels) made the resulting intensity
images unsuitable for our approach; it would also require careful inter-calibration of
intensity values derived from the 64 separate laser sources.

Flash lidar does not suffer from the same motion distortion issues as laser-based
rangefinders and eventually may be provide lighting-invariant imagery. Currently,
however, inexpensive units such as the SwissRanger SR4000 have limited range
capabilities (less than 10m), struggle to cope with sunlight, and have low resolution
(e.g., 176 × 144 pixels). More expensive units, such as the ASC TigerEye, have
longer range and work outside but still have limited resolution (e.g., 128 × 128
pixels) and thus are not suitable for our image pipeline as of yet.

TheMicrosoft Kinect sensor produces similar data products to lidar (i.e., intensity
and depth images) but it does not work outside in direct sunlight, its range is limited
to approximately 7m, and the intensity image comes from a passive camera and thus
is not lighting-invariant.

Thus, for the time being, we need to be able to handle motion distortion in laser-
based lidar images. The next sections describe our efforts to cope with this issue.

r1,2

r0,1

r

F→p

F→k

F→l

Fig. 5 3D range sensors based on a single laser use a mirror assembly (left) to steer the beam
through a raster pattern in order to build an image. If the lidar is mounted on a moving robot, the
scene can undergo a non-affine transformation during imaging; in the checkerboard example (right),
some of the straight lines are distorted because the lidar was in motion during acquisition

millitsa@ece.neu.edu



Into Darkness: Visual Navigation Based on a Lidar-Intensity-Image Pipeline 493

2.2 Effect on Features

In our pipeline, we extract SURF features from the raw, motion-distorted images
and track them on a frame-to-frame basis (cf., Fig. 6). The effect of scanning while
moving has not been so severe as to cause feature tracking to fail catastrophically
in our experiments so far. Thus, we have avoided carrying out full-image motion
compensation. However, if the same scene is imaged twice at two very different
vehicle speeds, it is intuitive that feature matching will fail as the images will expe-
rience different amounts of motion distortion. We are currently carrying out a study
to characterize how large we can make the speed differential and still successfully
match features.

2.3 Motion-Compensated RANSAC

The next step is to identify outlying feature tracks and remove them from the pipeline.
We originally used the out-of-the-box random sample and consensus (RANSAC)
algorithm [12] typically found in the stereo-camera pipeline. This worked reasonably
well most of the time, but we found that the threshold used to separate inliers from
outliers was difficult to tune. We would typically end up with a lot of false negatives
(i.e., throwing away many good feature tracks) or a handful of false positives (i.e.,
letting some bad feature tracks in). We see these two cases in Fig. 7 (left; middle).
Note that when the threshold is tight the inliers are restricted to a horizontal band,
implying near-simultaneous capture. This is expected as the lidar scans quickly left-
to-right while slowly scanning up-and-down.

We found the reason forRANSAC’s difficulty to be our choice ofmodel. Typically,
RANSAC in the stereo-camera pipeline seeks to find a rigid, frame-to-frame pose
change that explains the most data. Due to the motion distortion present in the

Fig. 6 We extract SURF features from the raw (i.e., motion-distorted) images (left) and track them
on a frame-to-frame basis (right). This allows us to only motion-compensate a sparse number of
points rather than the entire image
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Fig. 7 In a VO pipeline, outliers are usually detected/rejected on a frame-to-frame basis using
RANSAC [12], which is used to solve for the rigid pose change between two frames that explains the
most features. Unfortunately, for intensity images gathered during motion, this model is insufficient
and results in false negatives if the matching threshold is too tight (left) or false positives (red) if
the threshold is too loose (middle). To overcome this, we created a motion-compensated version of
RANSAC that solves for the 6DOF velocity that explains the most features (right) [2]

imagery,we found that it wasmuchmore effective to haveRANSACfind the constant
velocity that explains the most data over a two-frame time interval. It turns out that,
as with the rigid pose change, the minimum number of feature tracks needed to fit
a constant velocity is still three. Thus, RANSAC proceeds as usual, but with this
change of model. We see the improved outlier rejection in Fig. 7 (right). We are now
able to keep the decision threshold tight and still obtain lots of good feature tracks
without false positives. Anderson and Barfoot [2] provide further details.

2.4 Continuous-Time Estimation for Pose

After removing outlying feature tracks, the last major step in the pipeline is to
solve for the pose change using an iterative, nonlinear, least-squares method such
as bundle adjustment [7]. It is again important in this step to account for the proper
timestamps of all observed features in order to combat the motion distortion. Tradi-
tional approaches represent the robot’s trajectory in discrete time (cf., Fig. 8; left).
This is sufficient because the exposure times associated with passive-camera image
capture are so short that they can be thought of as instantaneous.

Unfortunately, for lidar intensity images, this is not a good assumption. If we
simply put a discrete-time pose at nominal image capture times, we cannot account
for the actual (and varying) timestamps of the measurement observations and our
VO solution ends up being poor. If we put a discrete-time pose at every unique
measurement timestamp, the problem is computationally intractable but also under-
constrained (without including an additional prior).

We found a better idea was to consider the robot’s trajectory to be a continuous
function of time (cf., Fig. 8; right) so that we could query it at any particular time
at which a feature was observed. Thus, in general, we write the robot’s trajectory as
x(t) and then build a measurement reprojection error term as
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Fig. 8 Typically in robotics, the robot’s trajectory is represented in discrete time (left).We represent
the robot’s trajectory in continuous time (right), x(t), which allows us to query the pose at the exact
times the landmarks were observed; this is important due to the scanning-while-moving nature of
laser-based scanners

ek,j = zk,j − g
(
x(tk), �j

)
, (1)

where zk,j is the observation of landmark j at time tk , g(·, ·) is the lidar’s observation
model, and �j is the position of landmark j.We sumover all themeasurements to build
a nonlinear, least-squares cost function, J , that we seek to minimize with respect to
x(t):

J(x(t), �) = 1

2

∑

k,j

eT
k,jR

−1
k,j ek,j, (2)

where Rk,j is the measurement noise covariance associated with ek,j. We then seek
to solve the following optimization problem,

{
x(t)�, ��

} = argmin
x(t), �

J(x(t), �) (3)

for the optimal robot trajectory, x(t)�, and landmark positions, ��. We use Gauss-
Newton optimization with a robust kernel to find the best trajectory estimate.

Naturally, we still need to discretize x(t) in some way to make the state estimation
problem tractable and have considered a few ways of doing so:

(i) linear interpolation: represent the trajectory using discrete-time poses, xi, with
linear pose interpolation in between to evaluate measurement error terms at
their appropriate times [10]

(ii) spline: represent the trajectory as a weighted sum of a finite number of known
basis functions, x(t) = ∑

i ciφ(t), and solve for the optimal coefficients, ci [13,
15, 25]

(iii) spline velocity: represent the trajectory in terms of velocity (i.e., a relative pose
trajectory), which we still consider to be a weighted sum of a finite number of
known basis functions: ẋ(t) = ∑

i ciφ(t), and solve for the optimal coefficients,
ci [3]

(iv) Gaussian process: represent the robot trajectorynonparametrically as aGaussian
process, x(t) ∼ GP(μ(t),Σ(t, t′)) and solve for the pose at desired times
[27, 29]
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Regardless of the method, we solve for only a finite number of variables, in each case
optimizing the robot trajectory based on the observed feature tracks. Our preferred
approach is to do this online in a sliding-window style estimator where we estimate a
small temporal section of the robot’s trajectory (i.e., several seconds) and then slide
the optimization window along to incorporate the next batch of measurements.

2.5 Celestial Attitude Corrections

While the continuous-time trajectory estimation approach is already quite accurate,
we can also incorporate absolute attitude (i.e., orientation) corrections into our pose
solution, as depicted in Fig. 2. As our motivation has been planetary exploration, we
have primarily investigated celestial observations (with ephemeris, coarse location
on the planet, and time/date) as a source of absolute attitude data.

In the daytime, we can use a dedicated sun sensor/inclinometer to provide attitude
corrections very inexpensively [19]. Alternatively, we have found that it is actually
possible with some laser-based imagers to use intensity/range images as a make-shift
sun sensor [16]; the sun appears as a blob of points with maximum intensity and zero
range (cf., Fig. 9; middle).

At nighttime, a small star tracker/inclinometer (cf., Fig. 9; right) is the preferred
source of absolute attitude information. As star measurements can be provided
frequently and during motion [17], they seem to be a natural pairing for lidar to
support dark navigation.

Regardless of the source of absolute attitude measurements, we typically incor-
porate them into the VO pipeline by introducing additional error terms in Eq. (2).
These celestial attitude sensors can be included at very little additional mass, power,
and computational cost and are very beneficial to the accuracy of the VO solution
over long distances [19].

Fig. 9 Celestial/gravity observations can be used to correct rover orientation in a VO pipeline. In
the daytime, we use the sun and either a dedicated sun sensor (not shown) or lidar intensity images
[16]. For example, a SICK laser (left) was swept 360◦ to produce a panoramic intensity image
(middle); the sun shows up as an artifact (circled in green) with maximum intensity and zero range.
At nighttime, we use a small star tracker (right), which directly outputs full 3DOF orientation while
the robot is motion [17]
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3 Experimental Results

3.1 Setup

We gathered a large-scale lidar intensity image dataset at a sand and gravel pit near
Sudbury, Ontario, Canada [4]. The ROC6 robot was equipped with the Autonosys
lidar and DGPS for groundtruth positioning. The robot travelled the same 1.1km
course 10 times in a diurnal cycle, or approximately every 2.5h for a 25h period.
Figure10 depicts the experimental setup and the path the robot took based on DGPS
groundtruth. The dataset is available for download from our webpage: http://asrl.
utias.utoronto.ca/datasets/abl-sudbury.

Fig. 10 We gathered 11km of lidar-intensity-image data and DGPS groundtruth at the Ethier Sand
and Gravel Pit near Sudbury, Ontario (top). The Autonosys lidar was mounted on the ROC6 field
robot (right) and the same 1.1km circuit (left) was repeated every 2.5h for 25h straight, ensuring
datawas gathered across an entire diurnal cycle (full-light to full-dark). The entire dataset is available
on our webpage: http://asrl.utias.utoronto.ca/datasets/abl-sudbury [4]
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3.2 Visual Odometry

Figure11 shows an example of our motion-compensated visual odometry algorithm
running on one of the full-dark 1.1 km circuits from our Sudbury dataset. It was
a very cloudy night and therefore pitch black during the experiment. It should be
noted that while the robot frequently revisited places it had been before, we are
not detecting and exploiting loop closures in this experiment (i.e., we are not doing
SLAM), merely dead-reckoning from sequential lidar data (in a sliding window).
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Fig. 11 VO results for one of the full-dark 1.1km gravel-pit circuits, comparing all of the various
motion-compensation strategies we have used over the last few years. Roughly speaking, all the
methods are a big improvement compared to not compensating for themotion distortion. The spline-
velocity estimation ofAnderson andBarfoot [3] (purple) and theGPGNmethod of Tong andBarfoot
[27] (green) do the best. Total Euclidean error (right) is much lower for the motion-compensated
methods

The plot compares (i) GPS groundtruth, (ii) no motion compensation (i.e., tra-
ditional discrete-time VO), (iii) linear interpolation, (iv) Gaussian process Gauss-
Newton (GPGN), and (v) spline velocity estimation (integrated after the fact to
produce x(t)). All the algorithms use the same VO pipeline, except for the last step
involving the nonlinear, numerical pose solution. To provide a fair comparison we
used our motion-compensated RANSAC feature tracks for all the algorithms; with
traditional feature tracks the performance would be poor for all algorithms, even the
discrete-time estimator.
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We see some variability in performance across the algorithms, but there are
different tuning parameters in each algorithm, making the comparison rough at
best. At a high level, the total Euclidean error (cf., Fig. 11; right) shows all that
the motion-compensated methods have much lower error than the traditional non-
motion-compensated algorithm. On this particular dataset, the GPGN and spline
velocity methods fared the best, with linear interpolation performing worse.

The motion compensation in the pose solution clearly helps and comes at lit-
tle extra computational cost over the discrete-time estimator; we still do nonlinear,
iterative least-squares with a robust cost function and estimate a similar number of
variables, but the accuracy is higher.
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Fig. 12 We developed a lidar calibration tool inspired by the standard passive camera calibration
approach. We present a number of views of checkboards to the lidar and capture intensity (top-
left) and range images (not shown). We then automatically extract the locations of the checkboard
corners from the intensity images (top-right). We simultaneously solve for the checkerboard poses
and intrinsic parameters of the lidar (bottom-left). Calibration greatly improves the quality of our
VO solution (bottom-right); comparison carried out using the spline-velocity approach
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3.3 Lidar Calibration

As with any imaging sensor, our lidar-intensity-images require calibration to make
the 3D positions of the landmarks accurate (cf., Fig. 12). This procedure is described
by Dong et al. [9], but briefly the calibration uses multiple images of checkerboards
at known locations to solve for intrinsic parameters by calculating the poses of the
checkerboards. We effectively calibrate the azimuth, elevation, and range images
in the lidar image stack of Fig. 3. Figure12 (bottom-right) shows the effect of this
calibration on the quality of our VO solution; we see that the calibration is just as
important as motion compensation to producing an accurate VO solution.
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Fig. 13 Our visual-teach-and-repeat method was used to autonomously repeat the 1.1km gravel-
pit circuit 10 times. The path was taught in full daylight and repeated throughout an entire diurnal
cycle. The method allowed the ROC6 robot to drive autonomously almost directly in its taught
tracks (top) for 99.7% of the distance. To localize relative to the path, the system matched features
to the previous frame (VO) and to the map built during the teach pass; we see good numbers of
features for all ten repeats (left), independent of the time of day. Only when both matching methods
failed simultaneously were we required to exert manual control (right) to move the robot past small
difficult sections (0.3% of distance)

3.4 Visual Teach and Repeat

The second (and perhaps more important) experiment we will discuss is visual teach
and repeat (VT&R). Chronologically, we carried out this experiment before our
work to motion-compensate VO and so when we refer to the VO pipeline in this
section, it is the basic, discrete-time version without motion compensation. In fact,
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the lidar dataset [4] described abovewas actually gathered as by-product of theVT&R
experiment. It turns out for path repeating, the non-motion-compensated solution is
almost good enough, but we decided to work on motion compensation primarily to
improve the robustness of VT&R.

The idea behind VT&R is to pilot a robot manually along a route once to ‘teach’
it, and then to autonomously repeat the route many times. We accomplish this by
running the VO pipeline during the teaching phase to estimate motion, but we save
all of the features used to estimate VO, relative to the camera view from which they
were first observed. During ‘repeat’, we match features from the live camera view to
those stored in the map (as well as to the previous live view; cf., Fig. 2). This allows
the robot to determine its pose relative to the taught path. A feedback controller then
steers the robot to bring the path-tracking errors to zero over time. If the robot cannot
match to the map, then VO is used to propagate the previous path-tracking errors
forward in time. The end result is a robot that can drive directly in its taught tracks,
using only visual feedback (i.e., no GPS).

We originally carried out this work using a stereo camera [14] before switching to
lidar. However, we found that if the lighting changed toomuch between the teach and
repeat phases, the robot would be unable to match its live view to the map reliably.
This was the main reason we decided to explore using lidar intensity images, which
can be matched across a wide variety of lighting conditions.

To demonstrate the lighting-invariant capabilities of our lidar pipeline, we taught
a 1.1km route in daylight (cf., Fig. 13; top) and then repeated it autonomously every
2.5h for the next 25h [24]. Thismeantwewerematching light-to-light, light-to-dusk,
light-to-dark, and light-to-dawn. Figure13 (left) shows how many features we were
on average able to match to the map (red) and previous image (blue) across all ten
repeat runs; both numbers remain fairly constant. By distance, our systemwas 99.7%
successful, with the remaining 0.3% requiring some minor manual interventions.
Figure13 (right) shows the union of the few places requiring manual interventions
across all 10 repeat runs. Our average path-tracking error was about 8cm RMS as
measured by DGPS.

We found that using aVOpipelinewithoutmotion compensation inside ourVT&R
system meant we could not drive very far without matching to the map. We have yet
to put our VOmotion-compensation improvements back into VT&R, but believe this
will further increase robustness by handling more of the cases where it is difficult to
match to the map.

4 Conclusion and Future Work

We have discussed our experiences in building a visual pipeline based on lidar inten-
sity images for both visual odometry and visual teach and repeat. Our major lessons
learned along the way are:
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(i) lidar intensity images offer excellent lighting invariance and can be used suc-
cessfully in a visual pipeline,

(ii) lidar image stacks require careful calibration to achieve high-quality VO results
(i.e., comparable to the stereo-camera pipeline),

(iii) the scanning-while-moving nature of laser-based imagers results in motion
distortion that affects the accuracy of VO if left unchecked,

(iv) visual teach and repeat is possible even without motion compensation but will
be more robust with it,

(v) it is possible to compensate for motion distortion in the RANSAC and pose
solution steps of the VO pipeline,

(vi) it is possible to extract features from the raw intensity images, but this may no
longer work if the motion distortion becomes too high,

(vii) absolute attitude corrections can be used to correct the robot’s orientation and
further improve the accuracy of the pipeline.

We believe our work shows not only that it is possible to build a VO pipeline that
will work in the dark (and any other lighting condition), but that we can successfully
match features across lighting conditions. We used this matching ability to build
a lighting-invariant, visual-teach-and-repeat system, but we see this enabling other
lighting-invariant robotics capabilities as well. For example, our next step is to do
place recognition across lighting conditions. We hope that an affordable version of
the lidar we used in this work becomes available within a few years, as we believe
this could have a big impact in enabling real-world applications.
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Automatic Differentiation on Differentiable
Manifolds as a Tool for Robotics

Hannes Sommer, Cédric Pradalier and Paul Furgale

Abstract Automatic differentiation (AD) is a useful tool for computing Jacobians of
functions needed in estimation and control algorithms.However, formany interesting
problems in robotics, state variables live on a differentiable manifold. The most
commonexample are robot orientations that are elements of theLie groupSO(3). This
causes problems for AD algorithms that only consider differentiation at the scalar
level. Jacobians produced by scalar AD are correct, but scalar-focused methods are
unable to apply simplifications based on the structure of the specific manifold. In this
paper we extend the theory of AD to encompass handling of differentiable manifolds
and provide a C++ library that exploits strong typing and expression templates for
fast, easy-to-use Jacobian evaluation. This method has a number of benefits over
scalar AD. First, it allows the exploitation of algebraic simplifications that make
Jacobian evaluations more efficient than their scalar counterparts. Second, strong
typing reduces the likelihood of programming errors arising from misinterpretation
that are possible when using simple arrays of scalars. To the best of our knowledge,
this is the first work to consider the structure of differentiable manifolds directly
in AD.

1 Introduction

Computation of the Jacobian matrix of a nonlinear function is an essential part of
many estimation and control algorithms and, as such, it is a ubiquitous task within
robotics and computer vision. When faced with the task of implementing Jaco-
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bian computation within a computer program, there are essentially four choices.1

First, one can hand-compute the analytical expression. This is easy for simple func-
tions, careful attention may be paid to the correct handling of singularities in the
operations, and the computations may be hand-optimized for speed. However, it
may become arduous to compute and verify Jacobians every time a small change
is needed. Second, one may approximate the derivatives numerically. This is easy
to implement but the resulting Jacobians may be inaccurate for highly nonlinear
functions and finite differencing schemes can fail completely when the functions
include conditional statements. Third, one may use symbolic differentiation tools to
generate code from the nonlinear functions. The resulting Jacobians are accurate and
highly efficient to evaluate but this method involves a pre-processing step and there
is no guarantee that the automatically generated code correctly handles singulari-
ties. Finally, one may use Automatic Differentiation (AD) to compute the Jacobian
matrices algorithmically. AD algorithms compute derivatives by exploiting the deter-
ministic nature of derivative computation. The derivatives of atomic operations are
implemented by the AD toolkit. The derivatives of more complex functions are con-
structed by applying the chain rule at each operation and bookkeeping the results.
The application of AD is extremely easy using one of the many tools available.2

Jacobians computed by this method are as accurate as their hand-coded counterparts
but they are less efficient to compute and, again, may not handle all singularities.

In terms of accuracy and evaluation speed, hand coding or code generation are
the clear choices. However, they share the common drawback that any change in the
original function requires the Jacobian computation to be updated in lockstep. When
prototyping, AD alleviates this requirement as changes in the nonlinear function are
automatically reflected in the Jacobian computation. In our experience, researchers
live continually in the prototyping phase and so, for problems in robotics focusing
on estimation and control, AD is a tool to accelerate research.

However, for many interesting problems in robotics, state variables live on a Dif-
ferentiable Manifold (DM). In robotics the most important DMs are the proper rota-
tion and Euclidean groups in two- and three-dimensional Euclidean space ({SO(2),
SO(3)} and {SE(2), SE(3)} respectively) for rigid-body kinematics, as well as the
two-dimensional sphere, S2, (e.g. for bearing vectors in sensor models [6]). Unit-
length quaternions (elements of S0(H)) are another popular choice for representing
orientations.

The handling of state variables on DMs within estimation and control has been
the subject of active research for many years in robotics and aerospace [1, 3–5, 12],
but this analysis has not made it into the AD literature. The theory and implemen-
tation of AD is decidedly focused on the derivatives of scalar operations as the
computational atoms [11]. It is possible to coax AD packages to compute the correct

1This paper will focus on the scale of problem generally encountered in estimation and control
algorithms in robotics and not deal with methods used for larger-scale problems such as finding the
Jacobian of a fluid simulation with respect to airfoil parameters (c.f. [7]).
2See http://www.autodiff.org/ for an extensive list of AD tool-kits spanningmany popular program-
ming languages.
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Jacobians for functions that operate on elements of a DM, but this involves lifting the
derivative computations to the the outer space. Working in the outer space precludes
the possibility to utilize the special structure of the manifold to simplify derivative
computation.

In this paper we extend the theory of AD to DMs by considering block operations
as the atoms of computation, and exploiting the specific structure of the manifold to
increase the efficiency of computation. Throughout this paperwewill use expressions
involving unit-length quaternions as our main example but the method is applicable
to any DM. A pictorial representation of our contribution is presented in Fig. 1. This
figure compares scalar AD with our approach by plotting the computation graph for
a simple example in which a unit-length quaternion, q, is used to rotate a point, v.
We see the contributions of this work to be the following:

• We extend the theory of AD to operate on DMs. Because the atoms of computation
become block operations, we call this Block Automatic Differentiation (BAD). To
the best of our knowledge, this is the first work to make this extension.

• We present a prototype C++ implementation of BAD with a number of desirable
properties. First, it is faster thanAD that does not explicitly consider differentiation
with respect to the underlying manifold. Second, rather that simply overloading
operators on scalar or matrix types (a standard method of developing AD), we
develop a type-safe system where every value belongs to a specific mathematical
type with a well-defined tangent space for differentiation. This makes the system
easier to use than standard scalar AD and guards against coding errors possible
from the accidental misinterpretation of arrays of scalar types.

Fig. 1 A simple example in which a unit-length quaternion, q, is used to rotate a point, v. Left
The computational graph associated with the calculation from the point of view of standard scalar-
focused AD algorithms. Right The computational graph from the point of view of our method.
Although the evaluation of these two graphs is the same, computing the Jacobian from the left
graph with a dual-number approach requires 168 multiplication and 156 additions, whereas only
3 multiplications are required by taking advantage of the DM structure on the right (see Sect. 2.3.2
for details)
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• We perform a rigorous comparison of our method against the dual-number
approach to AD implemented in the Google Ceres optimization package [2].

The rest of the paper is organized as follows. Section 2 reviews the background
theory and presents the basis for our BAD algorithm. Section 3 describes our proto-
type implementation of BAD as a C++ library. Our experimental results are presented
in Sect. 4 and we conclude in Sect. 5.

2 Theory

This section reviews the relevant theory on AD and DMs, and then describes our
extension to bring the two concepts together.

2.1 Automatic Differentiation

An excellent introduction to Automatic (or Algorithmic) Differentiation is presented
in [11] and [10]. This section attempts to summarize the content therein to bring the
minimumof context on the topic. The interested reader is referred to these documents
and the references therein for further details.

In the realmof computer science,AD is an ancient field, first developed to compute
derivatives on specialized computers in the late 1960s. Widespread application of
the technique came with the development of numeric tools in Fortran in the last two
decades of the 20th century.

The basic idea of AD is easy to explain by imagining the evaluation of math-
ematical expressions represented by a computation graph. When interpreted by a
compiler, a numeric expression is represented as a computation tree, with constants
or variables as leaves and operators (‘+’,‘−’,...) and functions (cos, sin, exp, ...) as
interior nodes. Because of sub-expressions being reused or compiler optimization,
this tree becomes a computation graph (more precisely, a directed acyclic graph).
Figure 1 depict such computation graph for rotating a 3D point with a quaternion.

The foundation ofAD stems from the fact that the rules of differentiation are deter-
ministic and they can be applied mechanically and recursively to the computation
graph. Rather than deriving a formula for the derivative of an expression, the deriva-
tive is computed algorithmically by traversing the graph and using a combination of
the chain rule and known operator differentiation rules. Traversing the graph from
the leaves to the root is known as ‘forward’ AD and traversing it from the root to the
leaves is known as ‘backward’ AD. BackwardAD ismore complex to implement and
requires more storage but typically requires fewer operations, whereas forward AD
can be implemented in a straightforward manner with operator overloading and/or
dual numbers. In the latter case, the AD system evaluate the expression of inter-
est, initially designed for numeric values, on a specific data structure grouping the
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expression value and its derivative(s) at each node of the graph. A recent example
of such dual-numbers is the Jet class used by Google Ceres [2] to implement its AD
feature.

In traditional languages not supporting operator overloading (e.g. Fortran 77), AD
has been implemented by a pre-processor stage that would parse an expression in the
original language and generate code to compute the expression and its derivative(s),
to be compiled and linked in the final program.

Our contribution lies in the fact that adding knowledge about the underlying DM,
we can dramatically simplify the computational graph (e.g. Fig. 1). By considering
differentiation and the chain rule at the block level, we are able to exploit specific
problem structure and increase computational efficiency. We compare our approach
to the “dual-number” AD [9] implemented in Google Ceres [2].

The basic idea of the dual-number concept to do AD for scalar functions is to
calculate the derivatives value alongside the functions values through the compu-
tation graph from the leaves to the root. This is done by applying all scalar oper-
ations to pairs of value v and derivative’s value d 〈v, d〉. The derivative’s value
starts with 1, while the values start with the value the function is evaluated at. The
scalar operations apply normally on the value parts, but a special corresponding
operation to the derivative. For example 〈v1, d1〉 ∗ 〈v2, d2〉 := 〈v1v2, d1v2 + d2v1〉.
To calculate gradients of functions in multiple scalar variables one simply keeps one
second number for each variable and initializes each variable with the correspond-
ing second number as 1 and the others as zero. For example a ∗ b one would then
calculate the value and gradient at a = 2, b = 3 as follows : 〈2, 1, 0〉 ∗ 〈3, 0, 1〉 =
〈2 ∗ 3, 1 ∗ 3 + 0 ∗ 2, 0 ∗ 3 + 1 ∗ 2〉 = 〈6, 3, 2〉. The gradient can then be extracted
as the row vector of all the resulting second numbers (3, 2).

2.2 Differentiable Manifolds and Jacobians

The concepts of differential geometry have been adopted by the robotics community
as the mathematical underpinnings of kinematics and dynamics. An excellent intro-
duction is available in Murray et al. [8] but we will provide a brief overview of the
concepts necessary to understand the idea of BAD.

For the scope of this paper a m-dimensional DM (with m ∈ N) is a set, M ,
together with an m-atlas, AM , inducing a second-countable Hausdorff topology on
M . To precisely define the notion of an atlas is beyond the scope of this paper,
but informally AM is a collection of charts, where each chart, ϕ : Uϕ → M , is an
invertible mapping defined on an open subsetUϕ ofRm onto a subset ofM . The atlas
provides a differentiable structure to the manifoldM . Using these charts, we can do
differential calculus for functions between DMs, which include all finite dimensional
vector spaces (by assigning DMs that reproduce the usual calculus on vector spaces).
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2.2.1 Defining a Local Jacobian

Consider a mapping f : M → N between the m-dimensional DM M and the n-
dimensional DMN . At a point p ∈ M , for f there exist a notion of differentiability
and a formal local linearization, the differential, denoted with dpf . Its rigorous defin-
ition is also beyond the scope of this paper. Informally it plays the role of a derivative
in a DM context. For algorithmic treatment, one requires a matrix representing this
differential, but the usual Jacobian of nonlinear functions is only defined for map-
pings between vector spaces.

However, after choosing charts ϕM and ϕN around p and f (p) respectively, one
may define f̂ := ϕ−1

N ◦ f ◦ ϕM at p̂ := ϕ−1
M (p), a mapping R

m ⊃ dom(ϕM ) → R
n,

where dom(ϕM ) denotes the domain that ϕM is defined on. We call f differentiable
at p iff f̂ is differentiable at p̂ and define f ’s Jacobian in these charts with,

Jpf := Jp̂f̂ = Jϕ−1
M (p)(ϕ

−1
N ◦ f ◦ ϕM ). (1)

These Jacobians can then play the same role in algorithms dealing with manifolds
as the usual Jacobians do for nonlinear mappings between vector spaces. The algo-
rithmic complexity to calculate them depends not only on f but also on the chosen
charts. The latter feature is one of the underlying principles that BAD tries to exploit.

2.2.2 Defining a Global Jacobian

Usually manifolds are algorithmically represented as embedded sub-manifold of an
outer R-vector space OM := R

OM , with OM > m. This means informally that M
is represented by a subset of OM for which the differentiable structure inherited
from OM makes it a DM diffeomorphic to M . Hence, points of M can easily be
represented as the corresponding elements of OM . A simple example is the Lie
group of unit-length quaternions, a three-dimensional manifold that is often stored
and manipulated as the S3 sub-manifold of R4. In the following, we will assume that
M and N are embedded sub-manifolds of ROM and R

ON respectively.
This situation allows for a special way to acquire a Jacobian for f . One can choose

a mapping f̃ : V → ON defined on an open environment V ⊂ OM of p such that
f |M∩V = f̃ |M∩V and calculate the Jacobian Jp f̃ ∈ R

ON ×OM of f̃ instead. Here, F|A
denotes the restriction of a mapping F on a set A. We will call Jp f̃ a global Jacobian
of f . Note that it does not require a choice of charts but depends on the choice of f̃
instead. For some applications this global Jacobian is already usable but for many
it introduces instabilities and performance loss because it calculates a matrix that is
bigger than necessary (recall that the local Jpf ∈ R

n×m) introducing extra degrees of
freedom. In those cases one can calculate Jpf in a second step after choosing charts
from Jp f̃ by exploiting,
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ϕ−1
N ◦ f ◦ ϕM |U = ϑ ◦ f̃ ◦ ϕM |U (2)

=⇒ Jpf = Jf (p)ϑ · Jp f̃ · Jp̂ϕM , (3)

for an open set U ⊂ dom(ϕM ) ⊂ R
m containing p̂, small enough, and a differenti-

able ϑ : f̃(ϕM (U)) → R
n, such that ϑ |dom(ϕ−1

N )∩dom(ϑ) = ϕ−1
N |dom(ϕ−1

N )∩dom(ϑ).
Even though this introduces an unnecessary step in the algorithm, it is precisely

the path suggested by a scalar-based AD. Because the manifolds are represented
as embedded sub-manifolds and thus the algorithm evaluating f maps, in practice,
elements of OM to elements of ON . Hence, applying a scalar-based AD approach
directly on this evaluating algorithm will calculate a global Jacobian, Jp f̃ , typically
concealing the fact that a choice of f̃ does happen in this step.

The missing two Jacobians in (3) can either be calculated using scalar-based AD
or by manually supplied algorithms. The latter is exactly the concept behind the
current Ceres implementations when one uses its local parametrization, which plays
here the role of the chosen chart ϕM . As Ceres does not currently support manifold-
valued error terms it can only be used in cases where N is a vector space and thus
ϑ can be chosen trivial.

2.3 Block Automatic Differentiation

This section provides an overview of the BAD concept and a simple worked example
showing the magnitude of speedup that is possible.

2.3.1 Overview

The motivation behind the development of BAD is to be able to inject knowledge
from the specific structure of a DMs into the AD process in order to speed up the
calculation of Jacobian matrices. The speedups gained by this approach will be
specific to each manifold.

To enable an AD library to do that, it needs to know which DMs are involved in
a mapping f : M → N that should be differentiated. To achieve that, the primary
idea is to consider a computation graph on a mathematically higher level. Instead of
primitive scalar operations (+, ∗, . . . ) on a single scalar type, we consider a set of
basic operations that operate on points in manifolds. For example, this encompasses
the usual vector andmatrix operations, but also geometric operations like exponential
maps, or special operations like rotation of a 3D point by a unit-length quaternion.

In practice most differentiable functions of interest between DMs can be decon-
structed into a computation graph compounding such basic operations. These are
the computational atoms that we think in when building up mathematical models
and, in robotics, there is a surprisingly small set of such basic operations needed to
implement many fundamental algorithms.

millitsa@ece.neu.edu



512 H. Sommer et al.

Such a high level computation graph can then be grouped by a BAD library into
sub-blocks for which there is optimized (Jacobian) evaluation code. This optimized
code can either be manually written or the output of a code generator of a symbolic
toolkit.

In this way, the BAD concept is a mixture of manual, symbolic, and automatic
differentiation, allowing a series of novel opportunities to optimize the computational
complexity:

• to derive a suitable intermediate value-cache structure for the evaluation of the
compound function and Jacobian evaluation;

• to automatically apply mathematically simplified algorithms for whole compound
functions;

• to choose, based on the expression, the Jacobian evaluation direction or even
mixtures of forward and backward steps; and

• to use highly optimized matrix manipulation libraries to do the final calculations.

However, there is one important obvious drawback when compared to AD: there
are many more combinations of manifolds and basic operations on them than scalar
operations. While it is easily possible to make a scalar AD library complete, a BAD
library will never be. Because of this it is very important for a BAD library to be user
extensible and to grow over time, eventually reverting to scalar AD as a last resort.
To address this, our implementation efforts have been focused on building up a core
framework that tries to make it as easy as possible to add support for manifolds and
operations.

Ultimately, a BAD library will be less optimal than the output of an ideal symbolic
tool optimizing thewhole function f . Nevertheless, current symbolic tools havemany
important drawbacks compared to the BAD concept:

• the work flow from the mathematical model to the running code involves extra
steps (i.e. code generation during the compilation phase) that may take much
more processing time, especially when the expressions get quite complex;

• they are bad in factoring out repeated blocks to functions and thus produce huge
code that is impossible to read and hard to maintain;

• they don’t allow dynamic (at run-time) construction of the function f , which can
be essential for special problems; and

• they usually do not incorporate matrix manipulation libraries and thus neglect a
very important intermediate level of optimization.

2.3.2 Example

Here we provide the simple example of the rotation of a 3 × 1 vector, v, by a
rotation, C, represented by a unit-length quaternion, q, to illustrate the potential

millitsa@ece.neu.edu



Automatic Differentiation on Differentiable Manifolds as a Tool for Robotics 513

of mathematical simplification of the Jacobian evaluation by exploiting knowledge
about the underlying structures. Let v denote the pure imaginary quaternion corre-
sponding to v. The function we will analyze can then be defined as,

r : S0(H) → R
3, q �→ Im(qvq̄), (4)

where multiplication of non-bold quantities is quaternion multiplication, the overbar
denotes the quaternion conjugate operation, and Im(·) extracts the imaginary compo-
nents of the quaternion as a 3 × 1 vector. Here, r(·) is only defined on the unit-length
quaternions.

To be able to write an algorithm that evaluates this function or its Jacobian, we
have to define how to represent the involved quantities. We will represent q with a
4-tuple (q0, q1, q2, q3) identified with q’s coordinates in default ordered basis of H,
(1, i, j, k). v and r(q)’s value will be represented by the usual 3-tuples. To evaluate
(4), the scalar calculations shown in Listing 1 can be executed (taken directly from
the Ceres source code). (see Fig. 1 for the equivalent computation graph).

Listing 1 Algorithm evaluating r(q) defined in Eq. (4)
1 t1=-q3*q3; t2= q0*q1; t3= q0*q2; t4= q0*q3; t5=-q1*q1;
2 t6= q1*q2; t7= q1*q3; t8=-q2*q2; t9= q2*q3;
3 r0=2*(( t8+t1)*v0+(t6 -t4)*v1+(t3+t7)*v2)+v0;
4 r1=2*(( t4+t6)*v0+(t5+t1)*v1+(t9 -t2)*v2)+v1;
5 r2=2*((t7 -t3)*v0+(t2+t9)*v1+(t5+t8)*v2)+v2;

These are 21m + 18a Floating Point Operation (FLOP)s for a single evaluation.3

To calculate the local Jacobian matrix Jqr at an arbitrary q ∈ S0(H) using a dual-
number approach,we follow themethod utilizing the outer vector space encompassed
by (3). To startwe analyze the complexity of thefirst step inwhichonewould calculate
the Jacobian of r̃ : H → R

3, defined by the pseudo code in Listing 1 (corresponding
to f̃ in Sect. 2.2). Using the dual-number approach, it is necessary to propagate
four extra variables through each operation (one partial derivative per component
of (q0, q1, q2, q3)) (see Sect. 2.1). For each extra variable, a multiplication in the
original code requires an extra 2m + 1a and each addition requires an extra 1a.
This results in 21(2m + 1a) + 18a = 42m + 39a FLOPs per variable and 4(42m +
39a) = 168m + 156a for the full 4x3global Jacobianmatrix.Tobuild the local Jqrwe
have to choose a chart around q. We will use the common exponential chart ϕq : U ⊂
R

3 → S0(H), w �→ exp(w)q, where w denotes the pure imaginary quaternion with
vector part w and U is an environment of 0 small enough to make the map injective.

3Here, m represents multiplication operations and a represents addition operations. We ignore
negations.
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Its Jacobian at w = 0 can be calculated from q with negations only. The remaining
step is to multiply these matrices, making the total cost 9(4m + 3a) = 36m + 27a,
assuming a straightforward implementation.

Our approachwould exploit the following simplification of the general directional
derivative in direction w ∈ R

3 to calculate Jqr = J0(r ◦ φq).

J0(r ◦ ϕq) · w = (dqIm(qvq̄))(wq) (5a)

= Im(wqvq̄ + qvwq) (5b)

= Im(wqvq̄ + qvq̄w̄) (5c)

= Im(wqvq̄ − qvq̄w) (5d)

= Im([w, qvq̄]) (5e)

= 2w × Im(qvq̄) (5f)

= 2w × r(q) (5g)

In the above, [·, ·] is the commutator of quaternions and× represents the cross product
of 3 × 1vectors.Note that the equations above just sketch the proof, sometimes taking
advantage of concepts requiring more in-depth knowledge of DM and specifically
of H. For the sake of brevity we will stay at this level of details here.

To calculate the columns of r’s Jacobian matrix, one would evaluate the last
expression forw substitutedwith each default basis vector ofR3. In these evaluations,
the cross product becomes trivial (i.e. only requiring negations), reducing the FLOP
count to 3m needed to scale the components by a factor 2.

The example above shows how we can go from 204m + 183a FLOPs to 3m
FLOPs to calculate the Jacobian by choosing a beneficial local chart and injecting
knowledge about the underlying DM and the outer space at the block level. Any
manifold has the potential to benefit from this method based on its specific structure,
or by choosing advantageous embeddings or tangent space basis vectors. For unit-
length quaternions representing rotations, one would implement multiplication and
inversion, along with the log and exponential map, resulting in a full-featured BAD
system for manipulation of expressions for this specific DM. For any other manifold
of interest, one would follow the same procedure, writing down the operations to be
supported, deriving some efficient analytical expressions for the Jacobians induced
by these operations, and implementing these as operations supported by the library.

3 Implementation

This section describes the usage of our implementation and compares it to the AD
package provided by the Ceres optimizer.

Using the Ceres AutoDiffCostFunction to calculate the local Jacobian of the
expression r(q), one would write the C++ code presented in Listing 2. Please note
the necessary extra step on line 27–29 to convert the Jacobian in global coordinates
(of the embedding space) to the Jacobian in local parametrization.
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Listing 2 Calculating the local Jacobian of the function r(·) with Ceres AutoDiffCostFunction
1 using namespace ceres;
2 struct Cv {
3 const double *v;
4 Cv(const double *v) : v(v) {}
5
6 template <typename T>
7 bool operator ()(const T* const q, T* residuals) const
8 {
9 UnitQuaternionRotatePoint (q, v, residuals);

10 return true;
11 }
12 };
13
14 QuaternionParameterization quaternionParameterization;
15
16 void calcJacobian(const double *q, const double *v,
17 double *result , double *qJ)
18 {
19 const double *parameters [] = {q};
20 double qGlobalJ [3 * 4];
21 double *jacobians [] = {qGlobalJ };
22 double qLocalParamJ [4 * 3];
23
24 AutoDiffCostFunction <Cv ,3,4> r(new Cv(v));
25
26 r.Evaluate(parameters , result , jacobians);
27
28 quaternionParameterization.ComputeJacobian(q,

qLocalParamJ);
29 internal :: MatrixMatrixMultiply <3, 4, 4, 3, 0>(
30 qLocalParamJ , 3, 4, localParamJ , 4, 3, qJ , 0, 0,

3, 3);
31 }

Listing 3 illustrates how our approach could be used to solve the same problem.
In this example, we use the “auto” keyword from C++ 2011 to simplify the code and
let the compiler deduce the type of an expression.4

In line 6, the values pQ is converted into something one can later take a derivative
with respect to (=Diffable). The Ref template only enforces capturing per reference
(as also in line 7 with v an pV).
In line 9, the high-level computation graph converted to a type and becomes (thanks
to auto) the type of r. The data of r will only contain the references to pQ and pV.
In line 11, an intermediate derived-value cache will be created. Its type will depend
on r’s type and essentially include storage to store intermediate values that could be
needed repeatedly in the (Jacobian) evaluation (e.g. the conjugate of q or its rotation
matrix counterpart). The resulting storage is embedded per reference into the cache,
to have a unified storage for all values, without the need to copy the result data back.
In line 13, intermediate values that are needed will be calculated (e.g. always the
final evaluation result—here the rotated vector). In line 14, the Jacobian is computed
directly into the provided storage qJ.

4In fact without “auto” the whole concept would become quite cumbersome to use because the type
names quickly become huge and unreadable. To allow the use of the library without knowing about
these generated types is one of the big implementation challenges.
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Listing 3 Using the BAD to calculate the local Jacobian of the function r(·)
1 using namespace tex; using namespace Eigen;
2 void calcJacobian(const UnitQuaternion & pQ ,
3 const EuclideanPoint <3> & pV,
4 EuclideanPoint <3> & result , Matrix3d & qJ)
5 {
6 Diffable <Ref <UnitQuaternion >, 0> q(pQ);
7 Ref <EuclideanPoint <3>> v(pV);
8
9 auto r = q.rotate(v);

10
11 auto cache = createCache(r, result);
12
13 cache.update(r);
14 evalFullDiffInto(r, q, cache , qJ);
15 }

Because the mathematical types of all variables and operations in the expression
are encoded in their C++ types, it is possible to do the following:

• to derive a suitable intermediate andderivedvalue cache structure for the evaluation
of this expression and especially its Jacobian;

• to automatically apply mathematically simplified algorithms (using template spe-
cialization and overload resolution to look them up) to evaluate the expression and
especially its derivatives using this cache structure;

• to implement the Jacobian evaluationusing (block) forwardor backward evaluation
(or some mixture of the two), whatever is the fastest for this particular fragment
of the computation graph.

4 Experiments

In this section we describe two experiments comparing our BAD prototype imple-
mentation with the dual-number approach implemented by Ceres. In the first experi-
ment, we compare the timing of Jacobian evaluations on increasingly large problems.
In the second experiment, we use our approach on real-world data in a nonlinear
optimization problem whose goal is to estimate the time-varying orientation of an
elephant seal in a wildlife monitoring context.

4.1 Comparison with State-of-the-Art Automatic
Differentiation

In thefirst experiment,we compared theAD implementationofCeres to our prototype
BAD implementation. Tomeasure performance on an increasingly complex problem,
we measured the time required to calculate the value and the Jacobian of expressions
of the form,
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Fig. 2 Performance comparison for evaluating the value and Jacobian of
∏N

i=1 Civ, as a function
of N . The red line (dual n. AD) refers to the dual-number approach implemented by Ceres, the
green line corresponds to BAD and the blue line is a hand-tuned version of the evaluation

C1v
C2C1v
CN . . . C1v,

for N ∈ 1 . . . 20 (6)

where Ci is a rotation (represented in our case by a unit-length quaternion), and v
is a 3 × 1 vector. The time required by Ceres (denoted as dual-number AD) and
by our approach, as a function of the problem size, is shown in Fig. 2. On these
artificial problems, there is an obvious benefit for using the specific structure of
the DM to compute the Jacobian. However, we also compared it with a hand-tuned
implementation of the Jacobian calculation. This results in the lowest curve (blue)
in Fig. 2. Numerically, on this specific example, we find that BAD is 12 times faster
than Ceres, but still 4 time slower than the hand-tuned evaluation, independently of
the problem size.

4.2 Application: Elephant-Seal Attitude Estimation

In this section, we will compare the performance of the different optimization solu-
tions on a specific application: the estimation of the attitude of elephant seals based
on accelerometer and magnetometer recording collected over weeks or months with
sensors attached to the animals while they are at sea. Although the data-set is pecu-
liar and might seem far outside the field of robotics, the problem of batch attitude or
position estimation from initial measurement unit is a common issue for underwater
and flying robots.

The sensors attached to the animals record the following data at 1Hz: depth, accel-
eration, magnetic field. A sound-based system estimates the animal linear velocity
but due to energy saving considerations, this is switched on only for 3h every 12h.
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At the surface, global positioning is retrieved from theARGOS satellites. To illustrate
the point of this paper, we will focus on using the accelerometer and the magnetome-
ter to retrieve the animal attitude. In a later stage, this could be used in combination
with the velocity measurement to estimate a 3D trajectory, or in combination with
GPS data to estimate sea currents. In a real situation, it is also necessary to use the
batch estimation process to estimate some sensor calibration parameters. All these
extensions will be kept out of scope for this paper.

4.2.1 Problem Statement

Formally, the state we are estimating is the seal attitude as a rotation matrix Ct at
time t and the propulsion force Pt it applies along the x axis in its body frame. To
this end, we have the measurements of two constant vectors in the world frame: the
acceleration G = [0, 0, 9.81]T and the magnetic field B = [Bx, By, Bz]T . The exact
value of the magnetic field can be found using the IGRF5 magnetic field model,
which depends on the time, the latitude and the longitude. For sake of simplicity,
we will assume here that the reference magnetic field is constant between two GPS
fix. We will denote bt the magnetic field reported by the sensor in the body frame,
and at the accelerometer output. Note that the measured acceleration results from
the combination of gravity and the propulsion force Pt · x applied by the seal, where
x is the longitudinal axis of the animal.

With these variables we can build the following error terms for the accelerometer
and magnetometer:

Facc(t) = Ct · [at − Pt · x] − G and Fmag(t) = Ct · bt − B (7)

In addition, we can make some continuity hypothesis on the attitude and the propul-
sion and express them as the following error terms:

Fp(t) = Pt − Pt−1 and FC(t) = Ct · Ct−1 (8)

The initial values used for the optimizer is propulsion at zero andEuler angles (roll,
pitch and yaw) estimated independently from the accelerometer and magnetometer.

4.2.2 Comparison of Optimization Performance

Figure 3a, b shows the time, t, required to calculate the Jacobians necessary to
solve the simplified seals optimization problem using single-threaded execution on
a benchmark PC after loading the first N input lines of the measured data. In Fig. 3a,
we measure the time (using the x86 RDTSC instruction) in total spent in the Jaco-
bian calculation function per error term. In Fig. 3b, we show the time measured

5http://www.mathworks.fr/matlabcentral/fileexchange/28874-igrf-magnetic-field.
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(a) (b)

Fig. 3 Time required to compute the Jacobian as a function of the number of error terms for the
simplified seal problem. On the left, only Jacobian computation time is included, on the right, the
time for the creation of the full sparse Jacobian matrix is also included. See text for details

by the Ceres optimizer for the whole Jacobian evaluation step (with the clock used
in Fig. 3a disabled). The solid line represents our implementation of BAD and the
dashed one shows Ceres implementation of the dual-number approach. Both show
the performance improvement by BAD. In Fig. 3a, BAD is approximately 2.5-times
faster, in Fig. 3b it is only about 13.5%. The explanation for this example is that
Ceres spends a relatively large amount of time constructing the overall Jacobian for
the complete optimization problem from the Jacobians of the individual error term,
which are rather simple error terms. Ceres includes the full sparse Jacobian matrix
construction in what it reports as the Jacobian calculation time.

To be complete, we must state here that the comparison here is slightly unfair in
favor of Ceres for two reasons. Ceres expects global Jacobians (the natural output
of a scalar AD) instead of the local Jacobians that they later calculate from these
global ones by multiplying by the Jacobian of the local parametrization (see (3)). To
fit with this requirement, we calculate n × 4 matrices from our n × 3 Jacobian and
Ceres then calculates the n × 3 back (n is the dimension of the error term). Each of
these conversions requires a matrix multiplication (first 3 × 4 then 4 × 3). The first
multiplication delays our implementation in Fig. 3. It would be fairer to skip these
artificial steps but it would require changes in the Ceres code, which would further
improve the performance of BAD in Fig. 3b. In addition, Ceres uses non-aligned
Eigen::Vectors, while our implementation needs aligned ones, which requires us to
copy the data into aligned vectors. The time spent copying these vectors is also
counted in the data depicted in Fig. 3.
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5 Conclusions

In this paper we have brought together the concepts of AD and DM to develop a
block AD approach that we call BAD. This approach has the potential to be much
more computationally efficient than traditional scalar AD by exploiting the specific
structure of the DM. We presented a worked example of a unit-length quaternion
rotating a 3 × 1 vector and showed how it can greatly reduce the number of instruc-
tions needed for Jacobian computation. Finally, we presented experimental results
on simulated and real data that show that our prototype implementation of BAD is
indeed faster than a state-of-the-art AD approach.

Our next step will be to finalize the interface and implement a full-featured BAD
library in C++ encompassing the most common DMs and operations needed in
robotics.
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Minimal Solutions for Pose Estimation
of a Multi-Camera System

Gim Hee Lee, Bo Li, Marc Pollefeys and Friedrich Fraundorfer

Abstract In this paper, we propose a novel formulation to solve the pose estimation
problem of a calibrated multi-camera system. The non-central rays that pass through
the 3D world points and multi-camera system are elegantly represented as Plücker
lines. This allows us to solve for the depth of the points along the Plücker lines with
a minimal set of 3-point correspondences. We show that the minimal solution for the
depth of the points along the Plücker lines is an 8 degree polynomial that gives up to
8 real solutions. The coordinates of the 3D world points in the multi-camera frame
are computed from the known depths. Consequently, the pose of the multi-camera
system, i.e. the rigid transformation between the world and multi-camera frames can
be obtained from absolute orientation.We also derive a closed-formminimal solution
for the absolute orientation. This removes the need for the computationally expen-
sive Singular Value Decompositions (SVD) during the evaluations of the possible
solutions for the depths. We identify the correct solution and do robust estimation
with RANSAC. Finally, the solution is further refined by including all the inlier cor-
respondences in a non-linear refinement step. We verify our approach by showing
comparisons with other existing approaches and results from large-scale real-world
datasets.
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1 Introduction

The pose estimation problem of a multi-camera system refers to the problem of
determining the rigid transformation between the world frame and multi-camera
frame, given a set of 3D points defined in the world frame and its corresponding 2D
image points. In contrast with a single camera that has a single center of projection,
the multi-camera system is an imaging sensor where light rays passing through
the 3D world points and camera are non-central, i.e. the light rays do not meet at
a single center of projection. An advantage of the multi-camera system is that it
provides the flexibility to be set in a configuration which gives a maximum coverage
of the environment. The solution to the pose estimation problem of a multi-camera
system has important applications in robotics such as finding the initial camera pose
estimates in structure-from-motion (SfM) / visual Simultaneous Localization and
Mapping (SLAM), geometric verification and place recognition for loop-closures,
and visual localization of a robot with respect to a given map that contains visual
descriptors. Figure1 shows our robotic car platform and the images from the multi-
camera system mounted on it.

The fact that the light rays from a multi-camera system do not meet at a single
center of projection means that all the classical approaches [6, 13, 17] for solving
the perspective pose problem cannot be used. An alternative approach has to be
proposed to handle the non-central nature of the multi-camera system. In addition, it
is important that the proposed approach is a minimal solution and requires minimal
correspondences that makes it efficient to be used within robust estimators such as
RANSAC [5] (see Sect. 5 for more detail).

In this paper, we proposed a novel formulation to solve the pose estimation prob-
lem of a multi-camera system. In particular, we adopt the representation of non-
central light rays from a multi-camera system with the Plücker line coordinates from

Fig. 1 a Our robotic car platform with a multi-camera system made up of 4 separate fish-eye
cameras looking front, rear, left and right (cameras are embedded in the car logos and side mirrors).
b Sample images from the 4 cameras
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existingworks [10–12, 16] for relativemotion estimation of themulti-camera system.
We show that this allows us do a two-step approach for solving the pose estimation
problem—(a) solve for the unknown depth of the points along the Plücker lines and
(b) compute the multi-camera pose from the known depths with absolute orientation
[6, 8]. We show that with a minimal number of 3-point correspondences, it leads
to an 8 degree polynomial minimal solution that yields up to a maximum of 8 real
solutions for the unknown depths. Each of these possible solutions of the depth is
used to compute the coordinates of the 3D world points in the multi-camera frame.
The known 3D points in the multi-camera frame are used to compute the pose of the
multi-camera system using absolute orientation.

The standard approach for solving the absolute orientation requires an expensive
step of SVD and it is inefficient to perform the SVD multiple times to evaluate all
the possible solutions of the depths. We circumvent this problem by deriving an
efficient minimal solution for the absolute orientation, which allows us to compute
the rigid transformation between the world and multi-camera frames from 3-point
correspondences in closed-form without the need for SVD. Once we have obtained
all the possible solutions for the rigid transformation, we compute the depths of all the
other 3D world points. This allows us to choose the correct solution within a robust
estimator such as RANSAC. Finally, the solution is further refined by including
all the inlier correspondences in a non-linear refinement step that minimizes the
reprojection errors (see Sect. 6 for more detail). We verify our approach by showing
comparisons with other existing approaches and results from large-scale real-world
datasets.

2 Related Works

The method proposed by Chen et al. [2] is most related to our method. In this work,
they proposed a 3-point minimal solution and N-point solution to the multi-camera
pose estimation problem. Similar to our method, their proposed solution is also a
two-step approach. First, the coordinates of the 3D points in the multi-camera frame
are determined. The 3D points in the multi-camera frame are determined by solving
three distance parameters defined on the rays that passes through the 3D points.
Next, the rigid transformation between the 3D points in the world and multi-camera
frames is solved by absolute orientation. The formulation in the first step resulted in
two 8 degree polynomials where a total of up to 16 real solutions are computed by
root finding. In comparison, our method resulted in only one 8 degree polynomial
that gives up to 8 real solutions, which has the advantage of less computational
time needed to identify the correct solution. Another drawback of [2] is that the
representations of the rays used to define the distance parameters breaks down when
the three rays are respectively lying on parallel planes and in the case of linear
pushbroom cameras [7] (see Sect. 4.3 for more detail). As a result, an alternative
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representation has to be made. In contrast, our representation of the rays as the
Plücker lines is holistic and does not require any alternative formulation in any case.
In addition, we also derive an efficient closed-form minimal solution for absolute
orientation.

In [14], Nister proposed a formulation that directly solves for the rotation and
translation parameters. His formulation gives an 8 degree polynomial minimal solu-
tion. This method is of special interest as the coefficients for the equation system can
be computed with a low number of computations making it a fast method. He also
proposed the use of Sturm sequencing for root finding and stated that the execution
times is in the order of microseconds. The method is evaluated with simulations and
compared to the single camera case. Similar to Nister’smethod, ourmethod also ends
up with an 8 degree polynomial minimal solution, which can also be solved with the
Sturm sequencing to achieve the same execution time. Despite the computational
efficiency, as also noted in [9], the derivation of Nister’s method is not intuitive and
requires laborious geometry and algebraic reasonings.

Kneip et al. presented that most recent work on pose estimation using a multi-
camera system in [9]. In this work, the authors presented a 3-point minimal solution
and N-point solution. They first solved for the rotations and point depths with a
Gröbner Basis [3] solver followed by solving for the translation. They showed sim-
ulation experiments, comparisons to single camera perspective pose methods and a
real-world visual odometry experiment using a two-camera setup. The exact process
of solving the pose estimation problem with the Gröbner Basis approach is a black-
box process which is not described in detail in [9]. Hence, Kneip’s method cannot
be reproduced easily. In comparison, our method is based on several algebraic equa-
tions which are intuitive and easy to implement. They mentioned that the generated
solution from the Gröbner Basis solver has a length of 8000 lines of code and the
execution time in the order of milliseconds. This makes it slower than Chen’s, Nis-
ter’s and our methods which solve an 8 degree polynomial that can be done in the
order of microseconds as noted in Nister’s paper [14].

In contrast to the minimal solvers for the pose estimation problem of the multi-
camera system, there also exist linear [4] and iterative N-point [18, 19] solutions.
The linear solution needs 6 or more point correspondences and thus less efficient in
RANSAC [5] compared to our minimal solution which requires only 3 point corre-
spondences. Since the iterativeN-point solutions involves computationally expensive
iterations, they are usually used to refine the pose estimation after all the inlier point
correspondences have been found by RANSAC coupled with a minimal solution.

We adopt the Plücker lines representation for amulti-camera system from existing
works on motion estimation [10–12, 16]. However, it is important to note that we
adopt the Plücker lines representation to solve the multi-camera pose estimation
problem, which is a completely different problem from the multi-camera motion
estimation problem in [10–12, 16]. The objective of multi-camera motion estimation
is to compute the relative transformation between two multi-camera frames given
the 2D-2D image point correspondences, while the multi-camera pose estimation
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problem ask for the rigid transformation between a given world frame and the multi-
camera frame given the 2D image point to 3D world point correspondences. To the
best of our knowledge, no other work has adopted the Plücker lines representation
to solve the multi-camera pose estimation problem.

3 Problem Definition

Figure2 shows an illustration of the pose estimation problem of the multi-camera
system. It is made up of multiple cameras denoted by (C1, C2, C3) that are rigidly
fixed onto a single body. Note that we show only 3 cameras in Fig. 2 but our proposed
method works for any multi-camera system that has any number of cameras. Our
method also works even if there was only 1 single camera (see perspective case in
Sect. 4.3). We denote the reference frame of the multi-camera system and the world
frame as FG and FW . The intrinsics and extrinsics of the respective cameras are
assumed to be known from calibration and are denoted by Ki and TCi = [RCi tCi ; 0 1]
with respect to the multi-camera frame FG , where i = 1, 2, 3. The pose estimation
problem of a multi-camera system is defined as follows:

Definition 1 Given a set of three 3D points defined in FW denoted by (X1, X2, X3)

that are seen by arbitrary cameras on themulti-camera systemand their corresponding
2D image coordinates denoted by (x1, x2, x3), find the rigid transformation R and t
that brings the multi-camera frame FG into the world frame FW .

Fig. 2 Illustration of the pose estimation problem for a multi-camera system
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4 Multi-Camera Pose Estimation

Figure3 shows an illustration of our formulation for pose estimation of the multi-
camera system. We first express the rays that join the respective three 2D-3D corre-
spondences as Plücker line coordinates with respect to the multi-camera frame FG

(see Sect. 4.1 for more detail). Next, we solve for the unknown depths associated
with each of the Plücker line using our minimal solution that leads to an 8 degree
polynomial giving up to 8 real solutions (see Sect. 4.2 for more detail). Lastly, we
compute the coordinates of the 3D points in the multi-camera frame FG with the
known depths and solve for the rigid transformation R and t between the world and
multi-camera frames using our efficient minimal solution of absolute orientation in
closed-form (see Sect. 4.4 for more detail).

4.1 Plücker Line Representation

We saw in Sect. 1 that the main problem with a multi-camera system is the absence
of a single projection center for the camera. Following [16], we remove the need
for a single projection center by representing the rays that pass through the 3D
world points and the multi-camera system as Plücker line coordinates expressed in
the multi-camera frame FG . The Plücker line is a 6-vector li = [qT

i q ′T
i ]T where

i = 1, 2, 3 as shown in Fig. 2. qi = RCi x̂i is the unit direction of the ray expressed in
the multi-camera frame FG where x̂i = K −1

i xi is the normalized image coordinate of
the point xi . The closest point from the Plücker line to FG is given by qi ×q ′

i as shown
in Fig. 2 and it is the point that forms a perpendicular intersection on the Plücker line
from the multi-camera frame FG . q ′

i is defined as the cross product q ′
i = tCi × qi .

Any point X G
i that is expressed in the multi-camera frame FG is given by

X G
i = qi × q ′

i + λi qi (1)

where λi is the depth of the point X G
i along the Plücker line, i.e. the signed distance

from qi × q ′
i to X G

i . Note that λ always has to be positive for the 3D point to appear
in front of the camera.

Fig. 3 Our formulation for the pose estimation of the multi-camera system
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4.2 Minimal Solution for Depths

The distances di j where (i, j) ∈ {(1, 2), (1, 3), (2, 3)} between the 3D points Xi in
the world frame FW shown in Fig. 2 have to be the same as the distances between
the 3D points X G

i in the multi-camera frame FG , i.e.

||Xi − X j ||2 = ||X G
i − X G

j ||2 (2)

where (i, j) ∈ {(1, 2), (1, 3), (2, 3)}. By making use of the preservation of the 3D
point distances given by Eq.2 and the Plücker line equation from Eq.1, we get three
constraints

||Xi − X j ||2 = ||(qi × q ′
i + λi qi ) − (q j × q ′

j + λ j q j )||2 (3)

where (i, j) ∈ {(1, 2), (1, 3), (2, 3)} with three unknown depths λ1, λ2 and λ3 from
the Plücker lines. Expanding and rearranging the unknowns in Eq.3, we get

k11λ
2
1 + (k12λ2 + k13)λ1 + (k14λ

2
2 + k15λ2 + k16) = 0 (4a)

k21λ
2
1 + (k22λ3 + k23)λ1 + (k24λ

2
3 + k25λ3 + k26) = 0 (4b)

k31λ
2
2 + (k32λ3 + k33)λ2 + (k34λ

2
3 + k35λ3 + k36) = 0 (4c)

where k are the coefficients made up from the known Plücker line coordinates qi

and q ′
i , and 3D world points Xi . We drop the full expressions of the coefficients

for brevity. Using the Sylvester Resultant [3] to eliminate λ1 from Eqs. 4a and 4b,
we get a polynomial f (λ2, λ3) = 0 which is a function of only λ2 and λ3. We do
another Sylvester Resultant on f (λ2, λ3) = 0 and Eq.4c to eliminate λ2, we get an
univariate 8 degree polynomial dependent on only λ3.

Aλ8
3 + Bλ7

3 + Cλ6
3 + Dλ5

3 + Eλ4
3 + Fλ3

3 + Gλ2
3 + Hλ3 + I = 0 (5)

where A, B, C, D, E, F, G, H and I are coefficients made up from k from Eq.4.
The roots of Eq.5 can be obtained from the eigen-values of the Companion matrix
[3] made up of the coefficients. A maximum of up to 8 real roots can be obtained for
λ3. As suggested in [14], a more efficient way to solve for the roots of the 8 degree
polynomial is by using the Sturm sequences.

λ2 can be found by back-substituting λ3 in Eq.4c. After completing the square on
Eq.4c and making λ2 the subject, we get

λ2 = 1

2a
(−b ±

√
b2 − 4ac) (6)
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where a = k31, b = k32λ3 + k33, c = k34λ2
3 + k35λ3 + k36. Similarly, λ1 can be

found by back-substituting λ2 into Eq.4a which takes similar form as Eq.6 after
completing the square and making λ1 the subject. A total of up to 32 (i.e. 8× 2× 2)
solution triplets of λ1, λ2 and λ3 can be obtained. A solution triplet is discarded if any
one of the λs is an imaginary or negative value. A further step to disambiguate the
solutions is by doing a redundancy check on λ1 using Eq.4b. The solution pairs of
λ2 and λ3 should produce consistent λ1 from both Eqs. 4a and 4b. Any solution pair
of λ2 and λ3 which produces λ1 with discrepancy from Eqs. 4a and 4b is discarded.
In our simulations, we observed that these disambiguation checks are capable of
reducing the maximum number of solutions to two for most of the time. All the other
existing 2D-3D point correspondences are used to identify the correct solutionwithin
RANSAC, i.e. the correct solution yields the highest number of inliers in RANSAC.

4.3 Special Cases

In this section, we look at five special cases for the multi-camera pose estimation
problem mentioned in [2]. In particular, we compare the similarities and differences
between the existing methods and our method under these five different cases.

Case 1: Partially Parallel. Two out of the three light rays are parallel in this case
as illustrated in Fig. 4. This means that two of the unit directions must be equal, i.e.
q1 = q2 �= q3. From Fig. 4, we can see that λ2 = λ1 + c12, where c12 is a known
value from the Plücker line coordinates and distance between the 3D points (X1,
X2). Applying the Sylvester Resultant for variable elimination together with Eqs. 4b
and 4c, we get a 4 degree polynomial minimal solution that can be solved in closed-
form. Similar 4 degree polynomial minimal solution was obtained for Chen’s and
Nister’s methods.

Fig. 4 Illustration of the partially parallel case
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Case 2: Perspective. The three light rays pass through a common center of pro-
jection in the perspective case, i.e. all the 2D-3D correspondences are from one
single camera in the multi-camera system. Let us choose the camera reference
frame to be the center of projection. This implies that the camera extrinsics become
tC1 = tC2 = tC3 = 0 and RC1 = RC2 = RC3 = I . Substituting these values into
Eq.3 and applying the Sylvester Resultant for variable elimination, we get a 4 degree
polynomial minimal solution that can be solved in closed-form. This result is similar
to Chen’s and Nister’s method, and the P3P solution for a perspective camera [6].
Note that a 4 degree polynomial is obtained even if the reference frame was not
chosen as the center of projection of the camera.

Case 3: Parallel Plane. This is the case where the three light rays lie on three
different planes that are parallel to each other. It is important to note that these light
rays however do not have the same unit direction, i.e. q1 �= q2 �= q3 from the Plücker
lines. It can be observed that the constraints from our method in Eq.3 does not break
down. In contrast, the representations of the rays used by Chen et al. [2] to define the
distance parameters cannot be used in the case where all the three rays respectively
lie on parallel planes. As a result, an alternative representation has to be made.

Case 4: Linear Pushbroom. There is only one camera in the case of linear push-
broom [7]. Here, the camera moves through a straight line of motion with a known
speed and takes images at regular intervals. Hence, the transformations between any
three camera locations (similar to the extrinsics of a multi-camera system) are known
and the rays that observed unique 3D world points from these locations lie on par-
allel planes. This implies that the linear pushbroom case is the same as the parallel
plane case where our method does not break down. In comparison, an alternative
representation has to be made for Chen’s method.

Case 5: Orthographic. For orthographic projection, all the light rays are parallel.
Hence, all the unit directions of the Plücker lines are equal, i.e. q1 = q2 = q3. Similar
to the partially parallel case, we have the following 3 constraints λ2 = λ1 + c12,
λ3 = λ1 + c13 and λ3 = λ2 + c23, where infinite solutions exist for λ1, λ2 and λ3.
Intuitively, we can move the multi-camera system anywhere along the direction of
the parallel light rays and the constraints are still fulfilled, hence infinite solutions.
This degeneracy is independent of the formulation and holds for all works [2, 4, 9,
14, 18, 19] on pose estimation for the multi-camera system.

4.4 Minimal Solution for Absolute Orientation

Absolute Orientation can be solved using the methods from [6, 8]. However, these
methods require a computationally inefficient step of SVD which becomes an over-
head when it is used numerous times within RANSAC to compute all the hypothesis
solutions. We present a minimal solution which allows us to compute the absolute
orientation in closed-formwithout the need for SVD.The proposedmethod computes
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the transformation R and t to align the two point sets P and Q consisting of three
correspondence 3D points as shown in Eq.7.

Pi = RQi + t, i= 1,2,3 (7)

First, two local frames FM and FN are defined on the point sets P and Q respec-
tively. The origins of the local frames are defined on the first points, i.e. P1 and Q1.
We can now write the transformed points in the newly defined local frames FM and
FN as Mi = Pi − P1 and Ni = Qi − Q1. Next, we define the x-axis of each local
frame to pass through the second point respectively, i.e. M2 and N2. The x-axis of
FM and FN can be aligned by applying the following transformations

M2 =
⎡

⎣
M2x

M2y

M2z

⎤

⎦ = RM

⎡

⎣
‖M2‖
0
0

⎤

⎦ , N2 =
⎡

⎣
N2x

N2y

N2z

⎤

⎦ = RN

⎡

⎣
‖N2‖
0
0

⎤

⎦ (8)

where RM and RN are unknown rotation matrices that align the two x-axis. Here, we
only describe the steps to solve for RM since RN can be computed in an analogous
fashion. Since the alignment of the x-axis only involves two rotations around the y-
and z-axis, RM can be written as

RM = RMz RMy =
⎡

⎣
ce − f de
c f e d f
−d 0 c

⎤

⎦ (9)

where c and d are sine and cosine of the rotation angle around the y-axis, and e and
f are sine and cosine of the rotation angle around the z-axis. Putting Eq.9 into Eq.8,
we get the following three constraints

‖M2‖ce − M2x = 0 (10a)

‖M2‖c f − M2y = 0 (10b)

− M2z − ‖M2‖d = 0 (10c)

where d can be calculated directly from Eq.10c and c can then be computed with the
Pythagoras identity. e and f can be solved by substituting c into Eqs. 10a and 10b.
The full expressions for solving a, b, c and d are given as follows

d = −M2z

‖M2‖ , c = √
1 − d2, e = M2x

‖M2‖c , f = M2y

‖M2‖c (11)

Finally, we apply RM and RN to align the x-axis of both point sets. The new sets of
transformed points are given by

Ui = RT
M Mi , Vi = RT

N Ni , i = 1, 2, 3 (12)
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The last step is to find the remaining rotation RV around the x-axis which would
complete the alignment of the two local frames FM and FN . This gives the constraint
in Eq.13 which can be expanded into three independent constraints in Eqs. 14a–14c.

U3 = RV V3 =
⎡

⎣
1 0 0
0 a −b
0 b a

⎤

⎦ V3 (13)

V3x − U3x = 0 (14a)

V3ya − U3y − V3zb = 0 (14b)

V3za − U3z − V3yb = 0 (14c)

where a and b are sine and cosine of the rotation angle. U3 = [U3x U3y U3z]T and
V3 = [V3x V3y V3z]T . We do variable elimination on Eqs. 14b and 14c to solve for a
which can be back-substituted to solve for b. The full expressions for a and b are

a = U3y V3y+U3z V3z

V 2
3y+V 2

3z
, b = −U3y+V3y a

V3z
(15)

Finally, the full transformation R and t is given by

R = RT
N RV RM , t = −R P1 + Q1 (16)

5 Robust Estimation

Outlier 2D-3D point correspondences are rejected from our proposed method using
RANSAC [5]. We compute the reprojection errors of all the 2D-3D point corre-
spondences based on the hypotheses generated from random sets of unique 3-point
correspondences. The hypothesis that yields the highest inlier count, i.e. highest num-
ber of 2D-3D point correspondences with the respective reprojection error lower than
a given threshold, is chosen as the correct solution. As defined in [5], the number
of RANSAC iterations needed is given by η = ln (1−p)

ln (1−wn)
, where p is the probability

that all selected correspondences are inliers, w is the probability that any selected
correspondence is an inlier and n is the number of correspondences needed for the
hypothesis. Assuming that p = 0.99 and w = 0.5, a total of 35 iterations are needed
for our 3-point algorithm, i.e. n = 3. In contrast, the linear 6-point algorithm [4]
where n = 6 would require 293 iterations. The efficiency in having less iterations
within RANSAC highlights the importance of using the minimal number of point
correspondences.

Each hypothesis generated by RANSAC often give rise to more than one real
solution fromsolving thepolynomial equation inSect. 4.2.Wedoadditional iterations
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within RANSAC to check the inlier count for each of these solutions from each
hypothesis, where the correct solution gives the highest inlier count. It is therefore
desirable to have the minimal solution to keep the number of additional RANSAC
iterations low. The number of additional RANSAC iterations for ourmethod is halved
compared to Chen’s method [2] since our method has a minimal solution up to 8 real
solutions while Chen’s method yields up to 16 real solutions.

6 Non-Linear Refinement

We further refine the estimated pose R and t by minimizing the total reprojection
errors from all the inlier point correspondences found from RANSAC. The cost
function is given by

argmin
R,t

∑

i

∑

j

||π(Pi , X j ) − xi j ||2 (17)

where xi j is the 2D image point with X j as its 3D point correspondence and seen
by the i th camera Ci that makes up the multi-camera system. π(.) is the camera
projection function that projects a 3D point onto the 2D image. Pi is the camera
projection matrix given by

Pi = Ki [RT
Ci

RT − RT
Ci

(RT t + tCi )] (18)

where Ki is the camera intrinsics, RCi and tCi are the camera intrinsics as defined in
Sect. 3. The minimization of Eq.17 is done with the Google Ceres solver1 using the
Levenberg-Marquardt algorithm.

7 Results

We evaluate our proposed multi-camera pose estimation algorithm with both simu-
lations and large-scale real-world datasets.

7.1 Simulations

We compare the accuracy and stability of our algorithm with Nister’s [14], Chen’s
[2] and Kneip’s [9] algorithms based on the simulation setup suggested in [17].
The simulated multi-camera system is made up of 4 separate cameras looking front,

1http://code.google.com/p/ceres-solver/.
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right, left and right with no overlapping field-of-views. Note that the chosen camera
configuration and simulated rays are free from the parallel ray degeneracymentioned
in Sect. 4.3. The absolute orientation used in Chen’s method is from [6] while the
minimal solution proposed in Sect. 4.4 is used in our method.

We randomly generate a ground truth camera posewithin a given range of [−11]m
for (x, y, z) and [−0.1 0.1] rad for all angles, i.e. roll, pitch and yaw.We also randomly
generate three 3D world points within a given range of [−10 10] m for (x, y, z). The
image coordinates are found by reprojecting the 3D points into the respective camera
where it is visible.We corrupt the image coordinates with noise ranging from 0.1 to 1
pixel with a 0.1 pixel interval. The pose of the camera in the world frame is computed
based on the corrupted image coordinates using the four algorithms. Following [17],
we compute the relative translational error as 2||test − tgt ||/(||test || + ||tgt ||) where
test and tgt are the estimated and ground truth translations. The relative rotational
error is computed as the norm of the Euler angles from Rest RT

gt where Rest and Rgt

are the estimated and ground truth rotation matrices.
Figure5a, b shows the plots of the average relative translational and rotational

errors from 500 random trials per image coordinate noise level. It can be seen that
Chen’s and our algorithms produced very similar errors for all noise levels. The errors
from both Chen’s and our algorithms are also significantly lower than Nister’s and
Kneip’s algorithms. The results imply that the two-step approaches, i.e. Chen’s and
our algorithms, that solves for the depths and absolute orientation are less susceptible
to the influences of noise compared to Nister’s direct approach and Kneip’s Gröbner
basis method.
Time Efficiency of Minimal Solution for Absolute Orientation: We compare the
time efficiency of our minimal solution for absolute orientation proposed in Sect. 4.4
with the standard approach that requires SVD [6, 8]. We randomly generate 500
camera poses in the world frame. For each of these poses, we randomly generate 3
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Fig. 5 Average (a) translational and (b) rotational errors from 500 random trials at different pixel
noise levels using Nister’s [14], Chen’s [2], Kneip’s [9] and our algorithms. Note that a large part
of the translational error for Nister’s method (green line) is hidden behind the translational error for
Kneip’s method (cyan line)
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points in the world frame and compute the coordinates of these points in the camera
frame. The rigid transformation between the camera and world frames is computed
with both approaches. Note that the poses estimated from both methods are always
the same as the groundtruth and there is no need for RANSAC in this comparison
since the points are noise-free. We obtain the time needed for each trial with the
respective method and compute the efficiency of our minimal solution for absolute
orientation method over the SVD method as the ratio of the mean time taken by
our method to the mean time taken by the SVD method for all the 500 trials. The
efficiency ratio is found to be 1.23 and this means that on the average our proposed
method is 1.23 times faster than the standard SVD approach.

7.2 Real Datasets

Figure1 shows our car platform with 4 fish-eye cameras looking front, rear, left and
right with minimal overlapping field-of-views used to collect the datasets for testing
our algorithm. The GPS/INS system is also available for ground truth. Figure1b
shows 4 sample images from the respective cameras. Figures6a and 7a shows two
areas for testing our algorithm. TestArea01 and TestArea02 are car parks besides an
office building and a supermarket, and covers an area of approximately 140×280m
and 160×150m respectively. We collect two datasets separately from each of the
test area, i.e. 2×2 datasets—one for building a map and the other for testing our pose
estimation algorithm on the map in each test area. To build the maps, we extract the
SURF [1] features, and triangulate the 3D points based on the GPS/INS readings.We
apply bundle adjustment (implemented with Google Ceres solver) on the GPS/INS
poses and triangulated 3D points to get the final maps. The maps also contains all
the 2D-3D correspondences of the SURF and 3D points. The blue dots on Figs. 6a
and 7a are the 3D points from the maps after bundle adjustment.

The green trajectories on Figs. 6a and 7a are the GPS/INS ground truth readings
from the second datasets for testing our pose estimation algorithm on both areas. A
total of 2500 and 2100 frames are used for testing. We first create a vocabulary-tree
[15] with all the SURF features from the map. For every frame from the test dataset,
we extract the SURF features, and query for the frame from the map with the highest
similarity score with the vocabulary-tree. We obtain the 2D-3D correspondences of
the test and map frames by matching the SURF features. Finally, we compute the
pose of the test frame in the map with our multi-camera pose estimation algorithm.
Note that a frame refers to a set of 4 images from all the cameras. The red dots
on Figs. 6a and 7a are the estimated poses with our algorithm with at least 20 2D-
3D correspondences. It can be seen that the poses estimated from our algorithm
follows the GPS/INS ground truth closely. Figures6b and 7b show the distributions
of the translational and rotational errors. We can see that the error distributions are
sufficiently low. The translational error is computed as ||test − tgt || where test and
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Fig. 6 a Localization results for TestArea01. Results from frames with <20 correspondences are
discarded. b Plots showing the distribution of the translational and rotational errors against GPS/INS
ground truths

tgt are the translations from the pose estimation and GPS/INS ground truth. The
rotational error is computed as the norm of the Euler angles from Rest RT

gt where
Rest and Rgt are the rotation matrices from the pose estimation and GPS/INS ground
truth.
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Fig. 7 a Localization results for TestArea02. Results from frames with <20 correspondences are
discarded. b Plots showing the distribution of the translational and rotational errors against GPS/INS
ground truths
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8 Conclusion

Weshowed a new formulation to solve the pose estimation problemof amulti-camera
system. Our formulation is intuitive and easy to implement. It is based on the Plücker
line coordinates which solves the pose estimation problem in two steps—(a) solve
for the depth and (b) solve for the rigid transformation with absolute orientation.
We showed that the depths can be solved with a minimal number of 3-point cor-
respondences and leads to an 8 degree polynomial minimal solution. We identified
a degenerated case for our method in the case of orthographic projection. We also
derived an efficient analytical closed-formminimal solution for the absolute orienta-
tion. Ourmethod is verified with both simulations and large-scale real-world datasets
from a robotic car platform.
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Recursive Inference for Prediction
of Objects in Urban Environments

Cesar Cadena and Jana Košecká

Abstract Future advancements in robotic navigation and mapping rest to a large
extent on robust, efficient and more advanced semantic understanding of the sur-
rounding environment. The existing semantic mapping approaches typically consider
small number of semantic categories, require complex inference or large number of
training examples to achieve desirable performance. In the proposed work we present
an efficient approach for predicting locations of generic objects in urban environ-
ments by means of semantic segmentation of a video into object and non-object
categories. We exploit widely available exemplars of non-object categories (such
as road, buildings, vegetation) and use geometric cues which are indicative of the
presence of object boundaries to gather the evidence about objects regardless of their
category. We formulate the object/non-object semantic segmentation problem in the
Conditional Random Field framework, where the structure of the graph is induced
by a minimum spanning tree computed over a 3D point cloud, yielding an efficient
algorithm for an exact inference. The chosen 3D representation naturally lends itself
for on-line recursive belief updates with a simple soft data association mechanism.
We carry out extensive experiments on videos of urban environments acquired by a
moving vehicle and show quantitatively and qualitatively the benefits of our proposal.

1 Introduction

In recent years the research trends in robotic mapping, navigation and localization
focused on developing methods for better understanding of the surrounding environ-
ment in order to facilitate more reliable lifelong navigation and mapping. The goal of
this work is to endow the models of urban environments with semantic information,
which would enable reasoning about presence of different semantic classes (objects)
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in an on-line setting. We propose to tackle this problem by means of an on-line recur-
sive semantic segmentation of a video stream into object and non-object (ground,
vegetation, buildings) categories.

The most common techniques for semantic segmentation of urban environments
focus on a small number of commonly encountered semantic classes (e.g. road, sky,
buildings, trees, cars). While the state of the art of the semantic parsing approaches
in outdoors settings achieve relatively high average accuracy of 85–90 % on some
datasets [28], it is largely due to the fact that majority of 2D or 3D regions belong
to non-object semantic categories. These categories such as buildings, roads, veg-
etation and sky often exhibit lower intra class variability, have strong location pri-
ors and ample of training data available. With more detailed scrutiny, the existing
approaches consider either very small number of object categories (e.g. cars, trees) or
exhibit poorer performance when number of object categories grows and the training
examples are sparse [18]. The performance has been notably improved by using a
specialized sliding window based object detectors [24] or explicit models of higher
order dependencies between individual regions captured by higher order potentials
in MRF (CRF) framework [7, 14]. These approaches however are not suitable for an
on-line setting and typically require a large amount of training examples and/or an
expensive training and inference procedure.

In our approach instead of modeling complex spatial and label dependencies or
requiring large number of training examples for object categories, we propose an
intermediate semantic representation of urban scenes into a single generic object
category and non-object categories of ground, building and vegetation. In order to
effectively gather evidence about generic objects regardless of their category, we use
informative 3D features indicative of occlusion boundaries and depth ordering cues,
which were found previously useful in research on perceptual grouping.

Contribution

The main contribution of the proposed work is the development of novel repre-
sentation, features and associated efficient inference algorithm for the problem of
semantic labeling of outdoors urban environments into object and multiple non-
object categories. Similarly to the existing approaches we formulate the semantic
labeling problem in the Conditional Random Field (CRF) framework, where the
dependencies between random variables are represented by a graph, induced by dif-
ferent partitions of an image or a 3D point cloud. The distinguishing features of our
approach are: (a) the use of a tree graph structure in the CRF setting which is induced
by the 3D scene structure and allows exact and efficient inference amenable for real-
time implementation; (b) the use of simple and efficient features and geometric cues,
providing evidence about discontinuities and depth ordering; (c) an explicit model
of temporal coherency enabling an on-line inference; (d) a flexible model structure
easily adoptable to a single or multi-frame settings, without a need for extra training.
The semantic output of our method produces detections and associated confidences
about the presence of isolated generic objects and semantic labels of non-object cat-
egories. The output can be used effectively for priming specific object detectors and
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as a starting point of additional reasoning about various object/scene attributes (e.g.
static/dynamic, movable, undergoing seasonal change etc.).

In the next section, we provide an overview of the related work. In Sect. 3 we
describe the details of our approach. Section 4 describes the experiments on street
scene sequences and compares our approach with the state of the art methods. Finally,
in Sect. 5 we present discussion and conclusions of the presented work and discuss
possible future directions.

2 Related Work

The presented work on semantic segmentation of images and 3D point clouds into
object and non-object categories is motivated by several previous approaches devel-
oped both in Computer Vision and Robotics communities. The existing approaches
vary in the number and types of semantic classes they consider, the sensing modality,
features and inference algorithms.

The approaches developed in the context of robotics applications rely mostly on
3D measurements from laser range finder or dense depth reconstruction and have
been also explored in the context of analysis of urban scenes acquired by a moving
vehicle. In these methods the graph structure is typically induced by a partitioning of
3D point clouds. Authors in [5] consider 2D semantic mapping of street scenes with
laser and image data providing computationally expensive solution with a graph
induced by Delaunay triangulation. Both laser and image measurements are used
in [20], where efficient solution is provided considering only vehicle object class.
Dense stereo reconstruction was used on CamVid urban sequences by [29] further
improving the performance with seven specific object classes.

In computer vision community the problem of simultaneous segmentation and
categorization of image regions was typically considered in a single view setting.
Non-parametric approaches of [6, 23] treated the representations of both object and
no-object categories in the same manner and used both the SIFT Flow dataset with
33 semantic labels and Label Me with 253 labels to evaluate the performance of their
approaches.

In addition to a single view setting several approaches explicitly modeled temporal
relationships between the frames in the inference problem or exploited 3D structure
obtained from visual reconstruction [28]. These strategies further improved the label-
ing performance while still considering a small number of object categories, with
objects being trees, cars, persons and recycle bins. Recently, Sengupta et al. [22]
have obtained 3D semantic models in urban scenes where the labeling of every sin-
gle image was transferred to the 3D reconstruction by voting. However, neither the
3D information nor the sequential nature was used for the inference itself. Floros and
Leibe [7] segment urban scenes using images and 3D in a CRFs setting using high
order potentials between 3D points with their reprojection in several images in the
sequence. Their system is only applicable to static environments and is not amenable
for real-time implementation. In our case we directly formulate the inference on a
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graph induced by 3D structure of the scene, which enables us to use the odometry to
guide a soft data association between consecutive frames. Our formulation hence nat-
urally fits the standard probabilistic recursive filtering approach suitable for variety
of perceptual tasks.

Additional ideas related to the problem of generic object detection can be found
in works which exploit different models of saliency, various perceptual grouping
cues and unsupervised object discovery. Alexe et al. in [2] propose an approach
for generic object detection motivated by a notion of saliency; objects are salient
regions surrounded by background and delimited from it by strong contour edges.
This approach only exploits the appearance cues, is applicable to a single view setting
and more suitable in the context of image based retrieval applications, where images
of scenes are well composed, containing little clutter. Our approach is motivated
by work of [3], which explicitly reasons about evidence of occlusions boundaries
extracted from optical flow and relative depth ordering cues. Also related to our work
are several attempts to discover objects in urban scenes. In [25] authors propose a
completely unsupervised approach to semantic parsing of outdoors scenes based on
the idea of online clustering, demonstrating a capability of discovering categories
of car, vegetation, building and ground place in the absence of any labelled data.
While this approach is very effective for large objects, generalization to a large
number of categories and possibly small objects is be more difficult. Alternative
approach for parsing the environments into static parts and moving objects has been
recently proposed in [27]. The authors demonstrated successful detection of cars,
pedestrians and bicyclists in 3D laser scenes, using the independent motion cue.
We view our approach as complementary to the previously proposed techniques.
The proposed semantic segmentation of video into object and non-object categories
yields a representation that can be used effectively as priors for detection of more
broader class of categories (e.g. mailboxes, traffic/road signs, fire hydrants, moving
objects).

3 The Approach

3.1 Method

We formulate the semantic parsing in the framework of Conditional Random Fields
(CRFs) with a tree graph structure encoding the pairwise relationships. We assume
that an image and a 3D point cloud of the scene are available. Our approach starts
by over-segmenting the image using the efficient simple linear iterative clustering
(SLIC) algorithm [1]. Every superpixel in the image is interpreted as a cluster in the
3D point cloud for further computations. The 3D centroid of each cluster is used to
compute a minimum spanning tree over Euclidean distances, defining the edges for
the graphical model. The data and pairwise terms are determined using simple yet
discriminative appearance and geometric cues for the classes that we are interested
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in. The learning and the final inference process is carried out over the graph in the
CRFs framework. In the remainder of this section we detail the components of our
approach and explain the intuition behind them.

3.2 Framework: Conditional Random Fields

CRFs directly model the conditional distribution over the hidden variables given
observations p(x|z). The nodes in a CRF are denoted x = 〈x1, x2, · · · , xn〉, and the
observations are denoted z. In our framework the hidden states correspond to the
m possible classes: xi = {ground, objects, . . .}. A CRF factorizes the conditional
probability distribution over hidden states into a product of potentials, as:

p(x|z) = 1

Z(z)

∏

i∈N
φ(xi , z, )

∏

i, j∈E
ψ(xi , x j , z) (1)

where Z(z) is the normalizing partition function, and 〈N ,E 〉 are the set of nodes and
edges on the graph. The unary, or data-term, and pairwise potentials are represented
by φ(xi , z) and ψ(xi , x j , z), respectively, as their domains span over one and two
random variables or nodes in the graphical model. Potentials are described by log-
linear combinations of feature functions, f and g, i.e., the conditional distribution in
Eq. 1 can be rewritten as:

p(x|z) = 1

Z(z)
exp

⎛

⎝w1

∑

i∈N
f(xi , z) + w2

∑

i, j∈E
gc(xi, j , z) + w3

∑

i, j∈E
gm(xi, j , z)

⎞

⎠

(2)

where w = [w1, w2, w3] is a weight vector, which represents the importance of each
term. CRFs learn these weights discriminatively by maximizing the conditional like-
lihood of labeled training data. We will describe every term of Eq. 2 in detail in
Sect. 3.4. With this formulation we can obtain either the marginal distribution over
the class of each variable xi by solving Eq. 2, or the most likely classification of all
the hidden variables x. The latter can be formulated as the maximum a posteriori
(MAP) problem, seeking the assignment of x for which p(x|z) is maximal.

3.3 Minimum Spanning Tree over 3D Distances

Instead of computing the graph at the pixel level, we over segment the image into
superpixels. The CRF graph structure is typically determined by the neighbourhood
relations between superpixels, often connecting unrelated semantic classes (e.g. a
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person’s head with the sky in the background). We define the graph structure for the
CRF as a minimum spanning tree (MST) over the Euclidean distances between 3D
superpixel’s centroids in a scene. By definition, the minimum spanning tree connects
points that are close in the measurement space, highlighting intrinsic localities in the
scene, see Fig. 1b. Given that our graph structure is a tree we use the belief propagation
(BP) algorithm [12] to infer the probability class of each node.

3.4 Feature Functions Description

Now we define the feature functions f(x, z) and g(x, z) in Eq. 2. Starting by the
data-term for each superpixel s that is computed as:

f(xs, z) = − log Ps(xs |z) (3)

where the local prior Ps(xs |z) is the output of a k-nearest neighbours (k-NN) classifier
from a set of observations z. We compute Ps(xs |z) as proposed by [23] in Eq. 4.

Ps(xs = l j |z) = 1
∑m

j=1

(
f (l j )

f (l j )

F(l j )

F(l j )

) f (l j )

f (l j )

F(l j )

F(l j )
(4)

where f (l j ) (resp. f (l j )) is the number of neighbours to s with label l j (resp. not
l j ) in the kd-tree. And F(l j ) (resp. F(l j )) is the counting of all the observations
in the training data with label l j (resp. not l j ). The observations z computed for
every superpixel s capturing the appearance cues obtained from the image (Image
Features) and the depth cues (3D Features) are summarized in Table 1 and described
next.
Image Features: From the appearance of the superpixel we only use color cues and
its vertical location, as follows: the mean and standard deviation of each channel in

Table 1 Local observations

Source Default Observation Dim. Comments

Image LAB color 6 Mean and standard deviation

RGB color 6 Mean and standard deviation

vs 1 Vertical pixel location

3D p̃s 3 [xs , abs(ys), zs ]
0 (μΔds , σΔds ) 2 if ds < 1

‖N‖
∑

j∈N (d j ) ,
Δds = ‖ds − d j∈N ‖

0 1 − mean(‖nsnN ‖) 1 Neighbouring planarity

0 3σ3
σ1+σ2+σ3

1 Superpixel planarity

0 ‖ns · k̂‖ 1 Superpixel vertical orientation
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the LAB and RGB color spaces for the superpixel, and the vertical pixel coordinate
for the superpixel’s centroid.
3D Features: For the 3D point cloud we use cues from the position and planarity,
for the superpixel itself and for the superpixel with respect to its neighbourhood.
The cues are: the modified 3D coordinate p̃ for the superpixel’s centroid with the
absolute value in its lateral coordinate (ys), then we have depth (xs), height (zs) and
positive lateral distance; the mean and standard deviation of the absolute difference
between the depth ds and the neighbourhood’s depths: ‖ds − d j∈N ‖, but these are
only computed if ds < 1

‖N‖
∑

j∈N (d j ), with this condition we encode the in-front-
of property; the superpixel planarity encoded by the curvature of a superpixels’
point cloud [11] using the SVD and sort the singular values such that σ1 > σ2 > σ3;
the neighbourhood planarity computed as one minus the mean of the dot product
between the normal to the plane against the neighbourhood normals [29], where
the normal corresponds to the singular vector associated to σ3; and, the superpixel
vertical orientation as an absolute value of its normal’s vertical component.

The superpixel neighbourhood N refers to all the superpixels in contact with
superpixel s in the image. In Table 1 we also show the default values and the dimen-
sionality of these observations. As a result we compute for each superpixel a very
simple 21 dimensional feature vector with 13 elements from Image features and 8
from 3D features.

Pairwise Potentials

We define two pairwise potentials, one capturing the color proximity gc(xi , x j , z)
and the other the metric proximity gm(xi , x j , z) of two superpixels. The potentials
are:

gc(xi , x j , z) =
{

1 − exp
(−‖ci − c j‖2

) → li = l j

exp
(−‖ci − c j‖2

) → li �= l j
(5)

gm(xi , x j , z) =
{

1 − exp
(−‖pi − p j‖2

) → li = l j

exp
(−‖pi − p j‖2

) → li �= l j
(6)

where ‖ci − c j‖2 and ‖pi − p j‖2 are the L2-Norm of the difference between the
mean colors in the LAB-color space, and centroid’s 3D positions, respectively, of
two superpixels and l is the class label.

3.5 Recursive Inference

So far we have described all the components to carry out the inference in a single
frame composed by an image and a 3D point cloud. But in a normal operation of
a robot, this information comes streamed. We would like to take an advantage of
the sequential nature of the data to carry out the inference without losing the single
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frame if needed, while keeping the robustness against, for instance, lost frames or
odometry failures.

Let Ck be the coordinate frame of reference in time k and kpk−1 the 3D coordinates
of the nodes x in frame k − 1 in Ck . Let k

k−1T be the transformation from Ck−1

to Ck given by the robot odometry. In the first frame k = 0, we infer the state of
each node in the graph as described before for a single frame. For k = 1 we follow
the procedure as in single frame case, computing the superpixels, the features and
the data-term. Then we transform the 3D coordinates of nodes at k = 0 to C1 by
computing 1p0 = 1

0T × 0p0. With the set [1p0,1 p1] a new MST is computed. These
steps are described in Fig. 1. Now, we can proceed to compute the pairwise potentials
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Fig. 1 Toy example for the sequence semantic segmentation process. a Suppose that the robot
gathers the image and point cloud at time k = 0, the image is over-segmented and the nodes are
placed in the clusters’s centroids. b The Euclidean MST provide the graph structure for our CRF,
where the inference takes place. c The same as (a) in the next time step. d We transform the centroids
from the previous time step to the current one, the state of the corresponding nodes is now known
(blue filled circles). e A new MST is computed between all the nodes, known and unknown. The
new graphical model is a forest as the edges between known nodes (red lines) are not used in the
inference process
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over the edges in this new graph and carry out the inference, estimating the state of
1x1 conditioned over the states of 0x0. This process is repeated for the next time k,
conditioning only over the state in k − 1. The nodes in k − 2 are no more taken into
account as we assume a filtering approach for the inference, Eq. 7.

p(xk |xk−1, xk−2, . . . , x0, zk, zk−1, . . . , z0) = p(xk |xk−1, zk) (7)

Note that we have omitted the left superscript in Eq. 7 to denote the coordinate
frame of reference as this choice does not affect the inference as long as all the nodes
are expressed in a common reference frame.

Given the observed nodes the graph structure becomes a forest, see Fig. 1e. We can
find two extreme cases when we carry out the inference to compute p(xk |xk−1, zk).
The first one is when the robot and the scene are static, in this case the spatial
locations of xk are expected to be very close to xk−1. Since the xk−1 is now treated as
evidence, we would obtain at most a forest with nk (number of nodes in time k) trees
of size 2 connecting the corresponding nodes between k − 1 and k. The inference for
each node xk

i is just a weighted average between the state from the local evidence zk

through the data term and the already inferred state xk−1
i through the pairwise terms.

The second case is when the motion between consecutive frames exceeds the range
of the sensor, in which case would be only one edge connecting xk and xk−1. In this
case p(xk |xk−1, zk) approaches a single frame case p(xk |zk) as the distance between
frames increases.

Our MST connecting point clouds from two different timestamps gives us a robust
way to avoid common errors from data association algorithms in dynamic environ-
ments. Even more, this MST graph structure is only telling us that there is a relation
between the connected nodes and that it is likely, up to their 3D distance, they belong
to the same category; but not, whether they are the same physical entity or a landmark.

4 Experiments

For our experiments we use the KITTI dataset [9], which contains images
(1240 × 380) and 3D laser data taken for a vehicle in different scenarios. We demon-
strate the performance of our approach on data from urban residential and city scenes.
There are 70 manually labelled non-sequential images as ground truth made avail-
able by [22], 45 for training and 25 for testing. The original classes released by [22]
are: road, building, vehicle, pedestrian, pavement, vegetation, sky, signal, post/pole
and fence. We have mapped those to the four classes: ground (road and pavement),
building, vegetation, and objects (vehicle, pedestrian, signal, pole and fence). The
sky class is omitted as we carry out the inference only in the portion of the image
where we have 3D data. For our system the effective manually labeled region in the
image is reduced as the laser measurements span up to 3.2 m above the ground and
the maximum range that we consider is 30m. As such we use only that ground truth
image region for training and for the quantitative evaluations in testing, see Fig. 2.
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Fig. 2 Original ground truth as released by [22] (left) and the effective ground truth with 3D
information used in this paper (right)

Ground

Objects

Buildings

Vegetation

Fig. 3 First row: Original image (left) with the reprojected 3D point cloud (right). Other rows:
Ground truth labeling (left) and MAP result from our approach (right)

We obtain the superpixel segmentation using SLIC implementation from the
VLFeat library of [26], followed by the computation of the features described in
Table 1. With the computed features in the training set we build a kd-tree using the
implementation of [4] with the default parameters. We obtain the per-class data terms
with k-NN classification using Eq. 4 with the k = 10 nearest neighbours.

Now, using the MST graph, the output of the local classifier in Eq. 3 and the pair-
wise potentials, Eq. 5, we learn the parameters in the CRF setting. For the learning,
inference and decoding with CRFs we use the Matlab code for undirected graphical
models (UGM).1

At the testing time, to obtain the most likely label assignment for the superpixels
we solve the MAP problem for the model. This problem does not require any threshold
selection and all the parameters are learned from the data. The inference results give
us the labeling assignments over superpixels, we transfer those to every pixel in the
superpixel to compute the pixel-wise recall accuracy of semantic labeling. In Fig. 3
we show several examples of the output of our approach in the single frame setting.

1Code made available by Mark Schmidt at http://www.di.ens.fr/~mschmidt/Software/UGM.html.
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Table 2 Semantic segmentation for single view in pixel-wise percentage recall accuracy

Ground Objects Building Vegetation Average Global

Data-term: k-NN (Eq. 3) 96.8 75.9 80.7 77.6 82.8 83.5

CRF_MST_k-NN

only Image Features 96.8 49.2 64.6 95.5 76.5 76.8

only 3D Features 95.9 84.2 80.5 46.7 76.8 78.8

Im. and 3D Features 97.3 82.9 82.8 86.9 87.5 88.4

Table 3 Results and timing for single view vs recursive segmentation

Ground Objects Building Vegetation Time
MST

Time BP

Single view Recall 0.973 0.829 0.828 0.869 21 ms 164 ms

Precision 0.981 0.881 0.916 0.759

F1 0.977 0.854 0.870 0.811

Recursive
Inference

Recall 0.975 0.836 0.832 0.855 57 ms 69 ms

Precision 0.980 0.871 0.931 0.767

F1 0.977 0.853 0.879 0.809

In Table 2 we show the pixel-wise recall accuracy along with the average and
global accuracy for our approach: CRF_MST_k-NN which uses image and 3D fea-
tures. To study the importance of image features vs 3D features, we remove one set
at a time keeping the rest of the system intact. The rows only Image Features and
3D Features show the corresponding performance when using one kind of features.
The main contribution of the images features is placed in the vegetation class, while
the 3D features improve the objects and building classes. Our full system, with both
sets of features obtains the best trade off between all performance measures.

The row data-term in Table 2 shows the result of the k-NN classification using the
image and 3D information. It is clear that the MST and the CRF framework improve
the general performance.

Given that the manually labeled testing frames belong to the same KITTI sequence
(000015), we run our approach over the full sequence and compute the impact on
the accuracy by our recursive inference processing. To that end we compute the
odometry using the open-source libviso2 [10], using the default parameters provided
with the library. Table 3 shows the results and the timing for the stages that change
with respect to single view segmentation. We can see that there is no significant
difference in the performance and even when the cost of computing the MST with
greater number of nodes has increased, the belief propagation is now even more
efficient. Our approach is able to reach simultaneously high recall and precision for
all the classes, with F0.5 of 0.96 for ground, 0.87 for objects, 0.90 for buildings, and
0.78 for vegetation, compared for example with a F0.5 of 0.62 and 0.52 for grass
and bush, 0.91 and 0.67 for tarmac and dirt path, and 0.78 and 0.71 for textured and
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Fig. 4 Results in KITTI sequence 000015 in a residential environment after optimize the trajectory
with the detected loop closures. In every image is shown the segmented points belonging to ground,
objects, building and vegetation (left to right and up to down). On the right we show a zoom up
along with a image of the corresponding region and the segmented results

smooth walls, reported by [20] with a labeling system using spatio-temporal context
and spending 4 s per frame.

Although our approach is not directly comparable to [22] given the differences
in the classes, sensor modalities and the effective region used as ground truth we
can see similar performance in the average and global accuracies, 81.7 and 88.4 %
reported by [22] compared to 87.5 and 88.4 % for us.

The results over the full sequence 000015 of 1900 frames is shown in Fig. 4. The
3D laser returns are reprojected over the odometry. For clarity we split the point cloud
in four views corresponding to each class. This trajectory corresponds to a loop in
a residential part of the city. To detect the loop closures we use the DLoopDetector
library [8], with the default vocabulary and parameters for BRIEF and geometrical
checking with the epipolar constraint. To find the transformation between candidates
to loop closures we use ICP over the two point clouds excluding those assigned as
objects. This choice is because this class contains the entities that could be dynamic
(cars, people, bikes), hence seems reasonable enough aligning two point clouds by
their more stable components during one day: ground, buildings, vegetation. The
result after optimize the pose graph with g2o [13] is shown in Fig. 4 left.

To test how our system performs facing new environments, we carry out the same
semantic recursive inference over a sequence taken in the downtown with high density
of dynamic objects, see Fig. 5. In Fig. 5a two images are shown, at the beginning and
at the middle of the sequence. The probability of belonging to the objects class is
shown in the second row. We can see how the pedestrians, cars, poles, chairs are all
included in this class even when we do not have some of these specific instances
in the training data. In the third row of Fig. 5a we show the final reprojected point
cloud with texture of objects class from locations close to images in the first row, the
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Fig. 5 Segmentation by our recursive inference process in a high dynamic street in downtown. a A
couple of frames with the highlighted objects class. b Reprojected point cloud for the ground and
building class, on the top we show also the objects class

ground is also shown in grey only for reference. In the second column we can see
the trajectories of the pedestrians. In Fig. 5b below, we show the reprojected point
cloud over the odometry trajectory for classes ground and building. A zoom up in
the second location of Fig. 5a is shown on the top and middle. In the first row the
objects is included to highlight the importance of recognizing this class to allow a
better and reliable 3D mapping.

LEUVEN Dataset:

We have also tested our system on the LEUVEN dataset [16], where a set of 70
labeled images and disparity maps were released by [15]. The images were gathered
in a residential neighbourhood at 316 × 216 pixels in resolution. We map the original
eight classes to three as follows: ground (road and sidewalk), building, and objects
(car, person and bike). The sky again was omitted and the vegetation class was not
present in the labeling data. We show some of our results in Fig. 6.

We obtain a pixel-wise recall of 97.6 % (ground), 79.3 % (objects) and 98.4 %
(buildings). Our average and global accuracies are 91.8 % and 95.9 %, [7] report
82.4 % and 95.4 %, and [15] report 84.9 % and 95.8 %, respectively. Note the dif-
ference for each system, [7] and [15] included the sky but omitted the person class.
Floros and Leibe [7] use at least 5 frames for the 3D reconstruction and manually
tune the parameters for the CRF. While Ladický et al. [15] solve a more complicated
problem inferring the disparity map jointly with the segmentation.

4.1 Pedestrian Detection

We can combine our segmentation with different object detectors. As an example
of this idea we present the results of combination of the efficient approximation of
HOG based pedestrian detection with sliding windows (IKSVM) of [17], with our
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Fig. 6 LEUVEN dataset. From the left, original image, disparity map, ground truth labeling, MAP
result from our proposal
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Fig. 7 Pedestrian detection on a high dynamic sequence. a Bounding box for ground truth (white),
IKSVM [17] (blue and cyan) and weighted IKSVM with the evidence for the objects class inside
the box (blue). The objects class is highlighted in red. b The precision-recall curve for this sequence
with the IKSVM alone and weighted IKSVM by our objectness evidence

evidence of objects for the downtown sequence in Fig. 5. We compute the proportion
of pixels inside the bounding box belonging to the objects class to measure the
“objectness” of the box. By weighting the score from the pedestrian detector with
this objectness measure the precision is improved, see Fig. 7b. We can see in Fig. 7a
how detections in walls or vegetation are rejected (cyan) by the weighted IKSVM.
Note in the second image the bounding box in the center is too large for the actual
size of the corresponding pedestrian resulting in rejection because a low objectness.
We are currently working to integrate the outcome of our segmentation to guide the
pedestrian (and other objects) detection, to improve the efficiency and performance
of the sliding window approach.
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(a) Matlab Implementation (b) C/C++ Implementation

Fig. 8 Computational timing performance for a sequence in downtown with our recursive inference
approach, see Fig. 5. We show the corresponding cost for image features (FI m ), 3D features (F3D),
MST, unary term (K-NN), pairwise term (Pairwise), and MAP assignment. a Matlab Implementa-
tion. b C/C++ Implementation

4.2 Timing

We compute the timing on the sequence of Fig. 5. The computational cost in Matlab
is detailed in Fig. 8a, excluding the superpixel over-segmentation and the odome-
try computation. The on-line system runs at 1 fps in a single-thread of a 3.4 GHz
IntelCore i7-2600 CPU M350 and 7.8GB of RAM. For the whole system, the aver-
age and the maximum times are 778ms and 960ms, respectively. In this case, the
cost to obtain the SLIC superpixels is a bottleneck with almost 1.5 seconds. With a
C/C++ implementation and using the GPU SLIC version (gSLIC) of Ren and Reid
[21] the full system takes only 142ms per frame, Fig. 8b. The libviso2 library spends
50ms per frame to compute the odometry. Solving the MAP problem has the same
computational cost than obtaining the marginals with the BP algorithm.

5 Discussion

We have presented a computationally efficient approach for semantic labeling of
urban street view sequences into structural, natural and object categories. The pro-
posed approach uses effectively 3D cues to generate evidence about the presence
of objects.

We have shown that our graph structure induced by the MST over 3D does not
sacrifice the labeling accuracy, and keeps the intra-class components coherently con-
nected. Furthermore, this choice enables an exact and efficient inference. The compu-
tational cost is constant with respect to the length of the trajectory. The computational
complexity for the inference is O(nm2), where n is the number of nodes in the graph,
and m the number of classes.

Our recursive inference process consistently propagates the semantic segmenta-
tion over time in a efficient way, keeping a robust performance with no necessity of
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expensive data association techniques. The alignment transformation between two
consecutive frames is not needed to be perfect as we can assume with the current
state of the art in (visual, laser, IMU) odometry systems a reasonable accuracy. Still,
three possible failures could affect the recursive processing: frames are lost during
the data acquisition, the odometry system fails but it is detectable, and finally the
odometry fails resulting in a different motion model than the actual. In the two first
scenarios, the next acquired frame or during the detected failure our approach can
handle it as a single frame inference problem. In the last case, the data term is not
affected by this failure but the propagation of evidence through the graph and hence
the state estimation would be affected. An analysis of this influence is part of our
future research. So far we have shown a basic research implementation for a very
efficient recursive inference process and as expected a C/C++ implementation offers
us real time capabilities (5fps).
We demonstrated that our method can work in real scenarios, with dynamic objects,
in a different kind of streets from the training and with objects never seen before.

We see our proposal as the first stage of a scalable semantic understanding system
for mobile robots. The subsequent stages can use the obtained representation for
finding objects or use it for isolating the stationary part from the dynamic part of the
environment. This can further improve other tasks such long-term place recognition
or dynamic objects detection/estimation. The presented model can be extended in a
hierarchical manner to incorporate additional information about specific objects of
interest if those become available. Our method can be used in conjunction with [19]
to estimate the motion model of generic objects even if they are static in the scene.
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A New Approach to Model-Free Tracking
with 2D Lidar

Dominic Zeng Wang, Ingmar Posner and Paul Newman

Abstract This paper presents a unified and model-free framework for the detection
and tracking of dynamic objects with 2D laser range finders in an autonomous driving
scenario. A novel state formulation is proposed that captures joint estimates of the
sensor pose, a local static background and dynamic states of moving objects. In
addition, we contribute a new hierarchical data association algorithm to associate
raw laser measurements to observable states, and within which, a new variant of the
Joint Compatibility Branch and Bound (JCBB) algorithm is introduced for problems
with large numbers of measurements. The system is calibrated systematically on
7.5K labeled object examples and evaluated on 6K test cases, and is shown to greatly
outperform an existing industry standard targeted at the same problem domain.

1 Introduction

In this paper, we describe a unified framework for the detection and tracking of
moving objects from a 2D laser range finder for autonomous driving applications.
The aim of this work is to formulate a light-weight standalone system that takes
a minimal number of sensory inputs to produce reliable motion estimates for only
objects that are dynamic at the time of observation.Moreover and central to thiswork,
we place no requirement on the shape or parametric form of the tracked objects.

Recent years have seen a succession of triumphs of autonomous navigation sys-
tems on the road. Both the successes of the DARPA Grand [11] and Urban [14]
Challenges and recent demonstrations across the world heighten our community’s
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belief that self-driving vehicles are truly within our reach. Safe navigation of such
systems is a challenging but yet arguably the most critical task that requires sensible
interactions with complex dynamic environments. To be able to perceive the dynamic
aspects of the environment and predict future movements of themanoeuvring objects
is thus essential to every successful autonomous vehicle on the road.

It has been observed by many authors [8, 16] that the problems of sensor pose
estimation, map-building and detection and tracking of dynamic objects are closely
related to each other. Removal of dynamic objects from the map-building process
enhances the quality of the map, while knowledge about the static structure of the
environment helps significantly in the successful detection of dynamic objects. Both
are in turn tightly coupled with sensor pose estimation because all observations are
made relative to the sensor. To this end, our proposed system also estimates jointly
the sensor pose, a local static background that maps the static structure around the
sensor and the dynamic states of the tracked moving objects, but with an emphasis
on the task of dynamic object detection.

Figure1 shows a typical output of the proposed system. As can be noted, detection
and tracking of dynamic objects is particularly challenging in the urban driving
scenario due to the presence of a significant amount of background clutter, further
complicated by the fact that the sensor itself is also attached to a moving vehicle.
Despite of the difficulties, our system is able to successfully identify and trackmoving
objects without any restriction to their type.

In what follows, Sect. 2 reviews existing approaches to detection and tracking
of dynamic objects. Section3 states our main contributions in the paper. Section4
presents the details of our proposed system. We then quantitatively evaluate the
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Fig. 1 A typical system output. Detections are highlighted with bounding boxes. Frame axes
attached to each detection show objects’ local reference frames, and coloured points indicate esti-
mated locations of object boundary points (cf. Sect. 4.1). Uncertainty ellipses are shown for each
object’s estimated position, and numbers next to each detection denote unique tracking ID’s. Three
manoeuvring cars and one walking pedestrian are detected, of which two cars’ motions are being
predicted in the absence of direct observation. Note the scene clutter and it is far from easy to say
what is a car and what is not. Note also that the vehicle itself is moving from frame to frame
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performance of the proposed system with real-world data, and show that it outper-
forms an industry standard solution that was designed for the same problem domain
of object tracking from a moving sensor in Sect. 5. Finally we conclude the paper
in Sect. 6.

2 Related Works

The problem of detection and tracking of multiple manoeuvring targets has been
under active research for decades. Early efforts have been focused on the tracking of
disjoint point-like targets, and it was soon realised that the challenge lies in obtaining
the correct association between noisy measurements and object tracks [2].

In the autonomous driving application domain, however, further complications
arise when moving targets are usually buried deep within significant background
clutter and they exhibit more complex motions than single point targets. The fact
that all observations are made relative to a moving sensor adds additional difficulty
because static obstacles may also appear dynamic due to occlusion and noise. Most
existing practical dynamic tracking systems, for example, systems deployed in the
UrbanGrand Challenge [6, 7], function by first segmentingmeasurements frommul-
tiple laser range finders, and then extracting geometric features from the segments,
which are used to compile a list of object hypotheses. Then, the dynamic objects are
extracted as objects having a significant manoeuvring speed.

Most related to our work is a body of work that jointly estimates a static map of the
environment along side detecting and tracking of moving objects. Examples include
Toyota’s tracking system [8] and Wang’s system [16] that combines SLAM with
dynamic object tracking. Both approaches take an occupancy grid representation
of the environment, and use knowledge of occupancy probabilities from the map
to propose likely moving object detections.Yang and Wang [18] propose a system
that jointly estimates the vehicle pose and moving object detections using a variant
of RANSAC, and track merging and splits are handled via a decision tree based
on spatiotemporal consistency tests. Works by Tipaldi et al. [12, 15] focus on the
detection part of the problem, and formulate it under a joint Conditional Random
Field (CRF) framework for solving both the data association and moving object
detection problems.

We also mention another body of work that is targeted at detection and tracking
of particular object classes of interest. For example, Arras et al. [1] and Topp and
Christensen [13] focus on the detection and tracking of people from a laser range
finder by first detecting legs from a segmented laser scan and group them into person
tracks. Our proposed system is different in that moving objects of any class and shape
may be modelled.
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3 Contributions

Our main contribution in this paper is the formulation of a unified framework that
jointly estimates the pose of the sensor, a continuously updated local static back-
ground, and themotion states of dynamic objects, with the focus on reliable detection
of moving objects. All three aspects are tightly coupled through a novel joint state
representation that allows for objects of arbitrary shapes and sizes to be modelled
and tracked.

In addition, we propose a hierarchical data association algorithm to assign raw
laser measurements to potential state updates, and present a greedy variant of the
Joint Compatibility Branch and Bound (JCBB) algorithm [9] that is suitable for
associating a large number of measurements.

4 Model-Free Tracking of Moving Objects

The system we propose is run within a recursive Bayesian framework (implemented
as an Extended Kalman Filter). In this section, we describe in detail the system
formulation in terms of state representation, prediction and measurement models as
well as how data association is handled within the same framework.

4.1 An Unusual State Representation

The motions of dynamic objects can be arbitrary and independent of each other. The
sensor, however, does not observe their motions directly but ranges and bearings of
points on the surface of the objects. Thus once conditioned on the measurements,
motions between different objects become correlated, due to the fact that these obser-
vations are taken from a moving sensor.

In order to correctly account for this correlation, the states of the objects and that
of the sensor have to be estimated in a single joint distribution. A local static back-
ground is also simultaneously estimated as part of the joint state which is essential
to distinguishing measurements belonging to dynamic objects from those from sta-
tic objects. The state therefore consists of three parts: the sensor pose, the dynamic
objects, and the static map.

Sensor Pose Representation and Related The sensor pose xS = [α, β,ψ]T is rep-
resented by a 2D transform from the sensor’s frame of reference to a stationary world
frame of reference as depicted in Fig. 2a, which is updated by vehicle odometry mea-
surements at the prediction stage, and by laser measurements as part of the update
stage as will be described in Sect. 4.2.
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Fig. 2 Illustrations of frame conventions and variable definitions. a Transform from the sensor
frame to the world frame. b Transform from a track frame to the world frame, with boundary points
represented locally to the track frame

Since the holonomic constraints apply to the vehicle but not to the sensor directly,
and odometry measurements are naturally referenced to the vehicle’s frame of refer-
ence, the transformbetween the sensor and vehicle’s frames of reference are required.
To account for uncertainties in this estimated transform, we include it as part of the
state as xC = [δα, δβ, δψ]T . This is the 2D transform that transforms points from
the sensor frame into the vehicle frame.

Model-Free Object Representation For convenience of description, in what fol-
lows, we will also refer to dynamic objects as “tracks”, since their motion state is
continuously being tracked. Each dynamic object i has its own set of axes Ti , thus
its motion state is represented by the 6-vector xi

T = [γi , δi , φi , γ̇i , δ̇i , φ̇i ]T as shown
in Fig. 2b (the subscript i is dropped to avoid clutter). What is unusual about our
representation is however, that none of these states are directly observed accord-
ing to the observation model. Instead, each object has additional state parameters
attached, named the “boundary point” coordinates, that are 2D cartesian coordinates
represented locally to the object’s frame of reference as illustrated in Fig. 2b. It is
these boundary points that are directly observed according to our observation model.

To understand the intuition behind boundary points, consider the case of a moving
object being illuminated by the lidar for the first time. The set of raw range and bearing
measurements Z is used to initialise a new trackwith its 6-vector states plus boundary
points at the locations of the rawmeasurements in Z but transformed into the object’s
frame of reference (hence the name “boundary points” because the lidar impinges
on the boundary of the object). All subsequent measurements (lidar illuminations)
will be taken to be noisy observations of these boundary points on the object.

This model-free representation raises an interesting and central data association
question. We must decide whether or not to extend the object’s boundary by initialis-
ing additional boundary points with new raw lidar measurements or simply associate
the laser returns to the existing boundary points as it stands. Furthermore, which of
the laser returns belong to the static background and hence have nothing to do with
dynamic objects whatsoever? Our approach to data association lies at the heart of
this work and is detailed in Sect. 4.3.2.
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We make the assumption that dynamic objects observed in the 2D scanning plane
of the sensor behave as rigid bodies. This assumption, though does not hold strictly
true due to deformable bodies such as a walking pedestrian, is a close approximation
when observations are constrained to the 2D plane. Under this assumption, boundary
points stay fixed relative to the object’s frame of reference and hence their states are
unaltered at forward-prediction.

With the introduction of boundary points, each object is thus parameterised with
a partial outline of its perimeter allowing objects of arbitrary shapes and dimensions
to be modelled under the same representation.

Static Background Representation The representation for the static part of the
state is simply a collection of boundary points as in the case of a dynamic object,
except boundary points on the static background are represented with their global
2D cartesian coordinates in the world’s reference frame.

The Complete State Structure The complete state x consists of all parts described
above, and is arranged as follows:

x = [xT
S , xT

T , xT
b , xT

p , xT
C ]T , (1)

where xS is the sensor pose, xT the collection of all 6-vector motion states of dynamic
objects, xb the collection of boundary points on the static background, xp the collec-
tion of all boundary points of all dynamic objects arranged sequentially, and finally,
xC , the extrinsic calibration parameters of the sensor.

4.2 Top Level Algorithm Description

In this section, we give a top level description of the algorithm. Each time a new
measurement arrives, the mean x̂ and covariance P of the joint state are updated
differently according to the type of the measurement (odometry or laser).

Odometry Measurement Processing In general, odometry measurements arrive at
a much higher frequency than laser measurements, they need to be processed very
efficiently, and therefore only forward-prediction of the sensor pose state taking the
odometry measurement as a noisy control input is carried out in this case.

Laser Measurement Processing When a new laser scan frame arrives, the current
state is first tested against out-of-date dynamic tracks and boundary points on the
static background that have fallen out of the sensor’s field of view. These are removed
from the joint state. It also determines parts of the static background that have changed
due to a static object transitioning into a dynamic state, hence must be removed to
allow a new dynamic track to be initiated. Next, the motion part of all dynamic
tracks is forward-predicted according to an appropriate motion model as will be
described in Sect. 4.3.1, and followed by data association and measurement updates
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(Sect. 4.3.2). Finally, any tracks appear to be static are merged with the map, and
adjacent tracks following the same rigid body motion are merged into a single track.
The latter is to account for the situation that occasionally a large object is tracked as
different “pieces”, and this allows for the pieces to be put back into a single object.
This merging procedure is described in Sect. 4.3.3.

4.3 Detailed Algorithm Description

4.3.1 Dynamic Object Motion Prediction

At the prediction step after conducting a laser measurement, all dynamic tracks are
predicted forward according to a generic motion model before being updated with
the measurements. To capture a wide range of dynamic objects, it is desirable to use
a general motion model. In this work, all dynamic tracks are assumed to follow the
constant velocity model [2, Chap. 6].

4.3.2 Hierarchical Data Association

Not all state variables in the joint state (Sect. 4.1) are directly observable, for the ones
that are, namely boundary points on either the static background or any dynamic
object, it is ambiguous which is being observed, which is not, and indeed, whether
a new boundary point needs to be initialised. Thus when new laser measurements
arrive, it has to be determined for each measurement that

1. It is an observation on a static object.

a. It is an observation of an existing boundary point.
b. It is an observation of a new boundary point.

2. It is an observation on an existing dynamic object.

a. It is an observation of an existing boundary point on the object.
b. It is an observation of a new boundary point on the object.

3. It is an observation on a new dynamic object.

In addition, in case 2, it has also to be determined to which of the existing dynamic
objects the measurement belongs to, and in case 3, how many new tracks need to be
initialised.

This data association problemnaturally breaks down into two levels. The first level
operates at the coarse scale, in which measurements are first divided into clusters,
and each cluster is assigned to either the static background, or a dynamic object, or
used to initialise a new dynamic track. At the fine level, for each object (or the static
background), measurements from the associated clusters are further associated with
its existing boundary points or used to initialise new boundary points.
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Coarse Level Data Association The measurements in a given laser scan are first
divided into a set of clusters C = {C1, C2, . . . , C|C |}. The clusters are then assigned
to the static background and dynamic objects recursively with the ICP [3] algorithm
as follows. First, boundary points on the static background are aligned to the set of
measurements Z with ICP, and clusters in C which contains measurements matched
to any boundary points on the static background in this way are associated to the
static background, and used to update or initialise new boundary points at the fine
level for the static background. Then the associated clusters are removed from C
and a similar procedure follows recursively for each dynamic track. The clusters that
remain in C at the end of this process are thus not associated with any existing track
(or the static background), and each cluster will initialise a new tentative dynamic
track as will be detailed in Sect. 4.3.3.

Fine Level Data Association Given a set of clusters associated with a certain track
(or the static background), the fine level data association must find a matching sat-
isfying certain desirable criteria that assigns measurements contained in the clusters
to boundary points on the track. Correct assignment is critical to successful tracking,
and, the stability of the system as a whole, due to the fact that correlation is intro-
duced between all pairs of variables in the joint state. In particular, all state variables
we would like to infer: the sensor pose, the dynamic states of the tracked objects, are
not directly observed.

Joint Compatibility Branch and Bound (JCBB) [9] is a well-known data asso-
ciation algorithm that takes into account the correlations between observations.
Explained in our nomenclature, an association between the set of measurements
and the set of boundary points is called a feasible association if:

1. Each measurement is associated to at most one boundary point, and no two mea-
surements are associated to the same boundary point (one-one association).

2. Each matching of a measurement to a boundary point is individually compatible
as described below (individual compatibility).

3. The overall data association is jointly compatible as described below (joint com-
patibility).

To clarify the concepts of individual and joint compatibilities, consider a boundary
point whose observationmodel has the standard form z j = h j (x) + w j . Here x is the
joint state defined in Sect. 4.1, and w j is the additive zero-mean measurement noise.
Thus its innovation covariance matrix is S j = H j PHT

j + R. Here H j is the Jacobian
of the function h j evaluated at the current statemean, andR is themeasurement noise
covariance matrix (we assume all measurements have the same noise covariance
matrix).

Individual Compatibility Individual compatibility requires the assignedmeasurement
ẑi must fall within a certain confidence region of boundary point j’s validation gate,
i.e. an assignment of ẑi to z j is individually compatible if:

(ẑi − h j (x̂))T S−1
j (ẑi − h j (x̂)) ≤ χ2

d,α , (2)
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where χ2
d,α is the χ2 validation gate threshold of degree of freedom d and confidence

level α. Here, d is the measurement dimension, hence d = 2, because each measure-
ment contains a range and a bearing ẑ = [r̂ , θ̂ ]T .

Joint Compatibility Under the assumption of independent observations, the joint
observation model of a complete association σ is given by

hσ (x) = [hT
σ(1)(x), hT

σ(2)(x), . . .]T , (3)

with the innovation covariance

Sσ =
⎡

⎢⎣
Hσ(1)PHσ(1)

T + R Hσ(1)PHσ(2)
T . . .

Hσ(2)PHσ(1)
T Hσ(2)PHσ(2)

T + R
...

. . .

⎤

⎥⎦ , (4)

where σ(1) denotes the index of the boundary point associated to the first assigned
measurement and soon.Thus the jointmeasurement has dimension Nad if the number
of assigned measurements is Na . An association σ is jointly compatible if

(ẑσ − hσ (x̂))T S−1
σ (ẑσ − hσ (x̂)) ≤ χ2

Nad,α . (5)

Here ẑσ is the collection of the measurements that are assigned to some boundary
point according to association σ .

The JCBB algorithm then finds the feasible association that has the largest number
of assigned measurements N ∗

a . Since there are in general many feasible associations
with Na = N ∗

a , the algorithm finds the association σ ∗ that gives the lowest joint
Normalised Innovation Squared (jNIS, defined to be the expression to the left of the
inequality in Eq.5).

The JCBB-Refine Algorithm Unfortunately, the JCBB algorithm is an exponential
algorithm in the number of measurements to be assigned. This means it is not directly
applicable to our application domain, since in our case observations are raw laser
measurements.

We introduce the JCBB-Refine algorithm, which instead of aiming to find the
optimum assignment σ ∗, we only find a good association σ̃ that is feasible. Of
course, there are many feasible associations, a good association must be measured
relative to some gauge. The JCBB-Refine algorithm we propose here takes an initial
association σ0 as a starting point, and finds a feasible association that has as many
assigned measurements and as low a jNIS as possible in a greedy manner while
respecting the initial association σ0. The initial association σ0 can be arbitrary, i.e.
it does not have to be feasible. In fact, none of the feasibility conditions has to be
satisfied.

Given σ0, the algorithm first removes assignments that do not comply with indi-
vidual compatibility (i.e. noncompliantmeasurements become unassociatedwith any
boundary point), and then removes duplicate assignments with a single pass through

millitsa@ece.neu.edu



566 D.Z. Wang et al.

the measurements. After these, the resulting association satisfies feasibility condi-
tions 1 and 2. The algorithm then proceeds to iteratively removing the assignment
that leads to the most jNIS reduction until condition 3 is satisfied. Starting from this
minimal set of assignments that is now feasible, the unassociated measurements are
then tried in turn, and assigned to the boundary point (among the boundary points
that are individually compatible and yet unassigned) that gives the lowest jNIS if
the assignment does not violate joint compatibility. The resulting association is thus
guaranteed to remain feasible.

The JCBB-Refine algorithm can be initialised with any sensible starting assign-
ment σ0. In our particular application, the assignment as a result of the ICP matching
at the coarse level association is a natural starting point. The association after the
refinement is then used to update the joint statewith the associatedmeasurements, and
all unassociated measurements initialise new boundary points to extend the object
boundary. Explicit forms of our observation models for different types of boundary
points are stated in an appendix.

Recursive Updates in Triangular Form It is shown [9] that the innovation covari-
ance matrix S, its inverse, and the jNIS can be computed recursively as hypotheses
are being tested. However in its direct form, the recursion suffers from numerical
stability issues when the number of measurements becomes large because both S and
S−1 have to be maintained to be positive definite. We show the same computation
can be achieved in the triangular form, which is a numerically stable representation
for positive definite matrices.

To begin with, at step k, assume a decomposition for Sk is given such that
Sk = UT

k Uk for some upper triangular matrix Uk , for example through Cholesky
decomposition, so that S−1

k = GkGT
k , Gk = U−1

k (note Gk is also upper triangular).
And the next iteration selects a new boundary point to be assigned to a measurement
such that

Sk+1 =
[

Sk WT
k

Wk Nk

]
. (6)

Then it can be shown that

Uk+1 =
[

Uk RT
k

0 Fk

]
, (7)

where Rk = WkGk , Fk = chol(Nk − RkRT
k ), and

Gk+1 =
[

Gk −GkRT
k Mk

0 Mk

]
, (8)

where Mk = F−1
k . In addition, we keep track of a vector ξ k = GT

k νk . Its update
equation is given by ξ k+1 = [ξ T

k ,μT
k ]T where μk = MT

k (ν̃k − Rkξ k). Here, ν̃k is
the innovation vector of the newly assigned measurement. And the jNIS can be
updated simply as jNISk+1 = jNISk + μT

k μk . Given Uk , Gk and ξ k at any stage of
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the computation, the innovation covariance Sk , its inverse and the innovation vector
νk can be easily retrieved if needed.

We note this form has the same computational complexity as the recursion intro-
duced in [9], but is more numerically stable.

4.3.3 Track Initialisation and Merging

The initialisation of new dynamic tracks is non-trivial because we have to ensure
that only new dynamic objects are initialised into new tracks and static objects are
merged with the static background. To this purpose, we apply the technique of con-
strained initialisation [17], where each new track’s motion status is deferred until it
has accumulated enough evidence to make the correct decision. Specifically, a new
track is first marked as “tentative” when initialised, and becomes “mature” only if
it is continuously being observed for more than a fixed number of frames (other-
wise it is dropped). Then it is tested against the static background, and each existing
dynamic track in turn for merging. The test and merging are all handled consistently
within the same Bayesian filtering framework. If all merging tests fail, it is declared
“established” and added to the set of existing dynamic tracks.

In the case of testing against merging with the static background, a fictitious
noiseless measurement of values all zero on the absolute velocity (including the
angular velocity) of the tentative track is considered. If this measurement passes the
validation gate, the tentative track is considered to be a static object, therefore should
be merged into the static background. The fictitious measurement is hence used to
update the joint state x as if it was an actual sensor measurement. After the update, all
available information from the track will have been transferred to the rest of the joint
states, and it can be safely marginalised out after copying over its boundary points to
the static background to complete the merge. A similar procedure applies to merging
tests with an existing dynamic track. In this case, the fictitious measurement applies
to the relative motion of the tentative track to the existing track under consideration.

The samemerging procedure is also conducted at the end of each processing cycle
for testing each existing track against merging with the static background and other
existing tracks as mentioned in Sect. 4.2.

5 System Evaluation

In this section, we quantitatively evaluate the proposed system, and compare its
performance against an industrial standard solution for benchmarking.We note there
exists a large body of work on similar application domains (For example, [7, 8, 16]),
however it is often difficult to obtain a fair quantitative comparison to the methods
due to either a lack of quantitative results or difficulty of a direct comparison using
a common dataset.
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Table 1 Details of the training and test datasets

Dataset No. laser frames Duration (min) Drive length (km) No. objects

Training 3508 4.68 1.04 7517

Test 2151 2.87 0.82 5928

Here each count of an “object” is a single observation of an object instance in a single laser scan
frame

5.1 Experiment Setup

Our experiment platform is a modified Nissan Leaf that is equipped with a SICK
LDMRS laser scanner, which is a scanner targeted at object tracking applications
on mobile platforms. It scans the environment in four vertically separated scanning
planes at 12.5Hz and produces native object tracking information at the same time.
Odometry information is provided internally as part of the vehicle state at 100Hz.

We collected data of busy traffic at the centre of Oxford containing a variety of
dynamic objects including pedestrians, cars, bicyclists, buses, trucks, motorcycles
and so on, and extracted two busy sections of the log right at the centre of the city
for evaluation. One dataset is used to find the best-performing parameter set, and is
hence named the training set, and the other, the test set, is used to obtain unbiased test
results running under the trained parameter set for fair comparison. Table1 lists the
details of the two datasets respectively. Ground truth detections of dynamic objects
are obtained from both datasets by manual labelling.

5.2 Evaluation Metric and System Training

We evaluate the system’s ability to detect dynamic objects against the ground truth
using the standard Precision and Recall metrics. Specifically, Precision and Recall
are computed over the detected object boxes against the hand-labeled ground truth
object boxes using the overlapping criterion as is commonly used in the computer
vision community [4]. An object box is marked as a true detection if it overlaps
with a ground truth object box by more than a fixed percentage threshold. In all our
results, we use 0.5 as the percentage overlap threshold. And a detection is matched
to at most one ground truth object, and multiple detections of the same ground truth
object are treated as false positives.

To train the system for best performing parameter sets, we follow an approach
similar to that described in [5] as follows: both Precision P andRecall R are functions
of system parameters, thus if the number of system parameters exceeds one, the set
of all feasible (R, P) pairs will in general occupy a continuous 2D space in the
R-P plane. The best parameters are then the parameters that give rise to the (R, P)

pairs at the frontier of the feasible region (conceptually corresponds to the top-right
boundary of the feasible region, see Fig. 3a for an example).
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Fig. 3 a Scatter plot of the obtained 1803 sample parameter settings using [10] with the estimated
frontier overlaid. b Precision-Recall tuning curves for the proposed system and the SICK LDMRS
native tracking system

Formally, the 2D feasible regionparameterised by the set of all possible parameters
P is given by F = {(R(p), P(p)): p ∈ P}, the frontier parameter set of F is
given by F = {q ∈ P: ∀p ∈ P, R(p) ≤ R(q) or P(p) ≤ P(q)}. In other words, a
parameter set is in F if and only if it is not possible to achieve both a higher Precision
and a higher Recall.

Tofind this frontier parameter set,we apply aBayesian parameter tuning algorithm
developed by Snoek et al. [10] to bias the search in the high-dimensional parameter
space to look for satisfactory parameter settings, and obtain an approximation to the
frontier parameter set by finding the upper part of the convex hull of the obtained
(R, P) scatter plot. Figure3a shows the obtained 1803 sample parameter settings
with the algorithm, and the blue curve shows the extracted frontier.

Since the SICK LDMRS native tracking system clusters each incoming scan
and keeps track of every cluster, it makes no distinction between static and dynamic
objects. To compare the systems under the same setting,we take trackswith estimated
speeds higher than a given threshold to be the detected dynamic objects. It would
be desirable to be able to fine-tune the parameters of the LDMRS’s native tracking
system. However, the most critical parameters are fixed internally to the sensor, and
modifications are unfortunately not feasible.

Figure3b presents the Precision-Recall curves for the proposed, and LDMRS’s
native tracking systems. The curve of the LDMRS’s native system is generated by
varying the speed threshold as described above. As can be seen, the proposed system
outperforms the LDMRS’s native system by a significant margin. This is somewhat
expected, since the LDMRS’s native system tracks only the cluster centroids, which
are not stable reference points on the objects to track due to occlusions and depen-
dency on the sensor viewpoint. On the other hand, the proposed system enforces each
track’s frame of reference to be attached rigidly to the object, and dynamic objects
are explicitly handled differently to static ones.
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5.3 Test Case Performance

Given a range of operating points along the Precision-Recall curve, we choose
empirically a single parameter setting that achieves the best balanced performance
from Fig. 3 for each system. Specifically we choose the parameter setting that gives
R = 0.53and P = 0.57 for the proposed systemand the speed threshold that achieves
R = 0.69 and P = 0.05 for the LDMRS’s native system. All experiments that follow
report metrics evaluated on the test dataset using these chosen operating points.

Figure4a, b showperformancemetrics for the two systems on the test dataset as the
detection range is varied. Both show a decreasing trend on both Precision and Recall
as the detection radius increases. Figure4c places the systems under common axes
for comparison. From the figure, although the close-range performances are similar
(with the proposed system slightly outperforming), the difference is significant from
20m onwards.

Figure4d compares the instantaneous performance at each frame of the two sys-
tems. F1-measures are evaluated at each frame based on detections of the past 100
frames for each system, and results are plotted against the frame number. While
the proposed system outperforms the LDMRS at most frames, there are occa-
sional performance drops. Closer inspection into the dataset reveals that around
Frame 400 there exists a period of driving with very few number of dynamic objects
present, hence the apparent low performance from both systems. However, near to
Frame 1300, manywalking pedestrians close to background clutter are present which
are missed out by the proposed system due to segmentation failure. The LDMRS
performs better in this scenario but in sacrifice of Precision.

Our current prototype implementation of the proposed system in MATLAB runs
in real-time at 2Hz on a MacBook Pro equipped with a duo-core 2.4GHz Intel i5
CPU and 4GB of RAM.
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Fig. 4 a Precision and Recall versus operating radius for the proposed system. b Precision and
Recall versus operating radius for the SICKLDMRS’s native system. c F1-measure versus operating
radius for both systems. d F1-measure over past 100 frames versus frame number for both systems
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6 Conclusions

Wepresented a unified framework for jointly estimating the sensor pose, a local static
background and dynamic states of moving objects, focused mainly on accurate mov-
ing object detection. Observations in our formulation are raw sensor measurements
and object states are inferred as hidden variables under a rigid body constraint.

Within the same unified framework, we proposed a novel two-level data asso-
ciation algorithm that takes benefits of both the density of observations and strong
correlations between them. A new variant of the JCBB [9] algorithm was suggested
to tackle with large numbers of measurements, and a solution to numerical stability
issues under such scenarios was also presented.

The proposed system was tuned systematically, and demonstrated to outperform
an existing industry standard.
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Appendix

In this appendix, we state the exact forms of the observation models applied to
boundary points on the static background and dynamic objects respectively. All
variables involved in what follows are defined in Sect. 4.1, and the function u maps
a pair of 2D cartesian coordinates into polar coordinates.

Each boundary point j on the static background may potentially generate a laser
measurement z = [r, θ ]T , and hence its measurement model is the boundary point’s
location in polar coordinates in the sensor’s frame of reference:

h j (x) = u(g(xS, b j )), g(xS, b j ) = RT (ψ)

([
x j

y j

]
−

[
α

β

])
. (9)

Each boundary point j on any dynamic track i may also give rise to a laser
measurement, and the measurement model in this case is the 2D polar coordinates
of the boundary point in the sensor frame, and is given by:

h j (x) = u(g(xS, xi
T , pi

j )), g(xS, xi
T , pi

j ) = RT (ψ)

(
R(φi )

[
xi

j
yi

j

]
+

[
γi
δi

]
−

[
α

β

])
.

(10)
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Task-Oriented Grasp Planning Based
on Disturbance Distribution

Yun Lin and Yu Sun

Abstract One difficulty of task-oriented grasp planning is task modeling. In this
paper, a manipulation task was modeled by building a non-parametric statistical dis-
tribution model from disturbance data captured during demonstrations. This paper
proposes a task-oriented grasp quality criterion based on distribution of task distur-
bance and uses the criterion to search for a grasp that covers the most significant part
of the disturbance distribution. To reduce the computational complexity of the search
in a high-dimensional robotic hand configuration space, as well as to avoid a corre-
spondence problem, the candidate grasps are computed from a reduced configuration
space that is confined by a set of given thumb placements and thumb directions. The
proposed approach has been validated with a Barrett hand and a Shadow hand on
several objects in simulation. The resulting grasps in the evaluation generated by our
approach increase the coverage of frequently-occurring disturbance rather than the
coverage of a large area with a scattered distribution.

1 Introduction

Manipulation and grasp have been active research topics in robotics. One of the
primary goals of the research is the choice of an appropriate grasp, in terms of task
requirement and stability properties, given an object associated with a manipulation
task to be performed [1]. Such a problem is referred to as the grasp synthesis problem.
To solve this problem, different approaches and algorithms have been developed for
the robotic hand to execute a stable manipulation task.

One solution to grasp synthesis problem is grasp planning. Grasp planning uses
optimization mathematics to search for the optimal contact placement on an object,
which gives rise to difficulty in choosing a quality criterion for the optimization
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procedure. One widely-used quality criterion is the force-closure property, which
measures the capability of a grasp to apply appropriate forces on an object to resist
disturbances in any direction, defined as the radius of the largest six-dimensional
wrench space sphere centered at the origin and enclosed with the unit grasp wrench
space [2]. Related research was developed in [3–6], etc. Nevertheless, they are task-
independent, in which an evenly distributed disturbance in all directions is assumed.

In many manipulation tasks, however, such as drinking, writing and handling a
screwdriver, a task-related grasp criterion has to be applied for the choice of appro-
priate grasp configurations for different task requirements. A typical task-oriented
grasp method is to choose a suitable task wrench space (TWS) and then measure
how good a task wrench space can be fitted into a grasp wrench space [4, 7–10]. Few
works have considered the task information in grasp planning due to the difficulty of
modeling a task [7, 9, 11]. To obtain the task wrench space in reality, necessary sen-
sors are required to measure the contact regions and contact normals, which remains
a challenge. This is the main reason why most works empirically approximate the
task wrench space rather than actually measure it. Instead of a wrench space ball used
in force-closure quality measure, Li and Sastry [7] developed a quality criterion to
measure the ability of a grasp to perform a task wrench space using a six-dimensional
wrench space ellipsoid to better approximate a task. The research in [10] approxi-
mated the task wrench space as a task polytope and focused on the computation of
task-oriented quality measures.

Pollard [4] proposed the object wrench space (OWS) that takes the complete
object geometry into consideration. The OWS integrates all disturbance wrenches
that can be exerted anywhere on the object. Borst et al. [9] presented an algorithm to
approximate the OWS by an ellipsoid and to measure how good the OWS ellipsoid
can be fitted into a Grasp Wrench Space (GWS). The idea of OWS takes all possible
disturbances into account, which is good for unknown tasks but is not task-specific;
for a specific task, a grasp does not need to perform the whole OWS but to perform
the required subset TWS of the task wrench space.

Another difficulty of task-oriented grasp planning is the computational complex-
ity of the searching in the high-dimensional hand configuration space. It is, therefore,
natural to introduce human experience relative to a task [12–17]. Aleotti and Caselli
[18] used data gloves to map human-hand to robotic-hand workspace and captured
the task wrench space in virtual reality. They also considered a database of candidate
grasps, and grasps were evaluated by a task-related quality measure. However, the
correspondence problem has been a crucial issue to map between different config-
uration spaces of the human hand and the robotic hand. Research in [19] searched
for candidate grasps by a shape-matching algorithm and evaluated the grasps by a
task-oriented criterion. However, the same modeling problem of the TWS still exists
and the work also relies on empirical modeling.

This paper proposes a grasp quality criterion, called the task coverage grasp quality
metric, to compute the proportion of task disturbance that a grasp covers. Instead of
assuming an evenly-distributed task wrench space, this approach takes into account
the task disturbance distribution measured from human demonstration, since it is
possible that disturbance wrenches in some directions occur more frequently than
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in other areas, even if they may be smaller than wrenches that occur less frequently.
In two tool manipulations, for example, a knife and a fork have similar shapes but
have disturbance wrench distribution along different directions, hence favoring dif-
ferent grasps. Therefore, a targeted grasp is prone to increasing the coverage of most
frequent disturbances, rather than a grasp with the same coverage of the area with
scattered distributed disturbance. To reduce the computational complexity of the
search in high-dimensional robotic hand configuration space, as well as to avoid a
correspondence problem, the candidate grasp is computed from a set of given thumb
placements rather than contact points [20–24] on an object surface. One advantage
of thumb placement is that it is independent of the physical constraints of a given
hand, which has the problem of solving the inverse kinematics that satisfies the con-
straints imposed by contact points [25]. Every thumb placement is associated with
the direction thumb should point to, which further reduce the search space of wrist
positions and orientations.

2 Grasp Analysis

2.1 Grasp Preliminaries

Considering a multi-fingered robotic hand grasping an object, a grasp comprises
multiple contact points. Assuming a hard finger model of the grasp [26], i.e., point
contact with friction (PCWF), themost common frictionmodel is Coulomb’s friction
model; at each local contact, the tangential force is bounded by the normal force, f t ≤
μf n, where f t is the tangential force component, f n is the normal force component,
and μ is the coefficient of friction. Thus, all feasible contact forces are constrained
to the friction cone. The friction has a vertex at the contact point, and the axis is
along the contact normal, with an opening angle of 2tan−1μ. For the convenience
of computation, the circular friction cone is usually approximated with an m-sided
pyramid. Then, any contact force fi at the ith contact that is within the constraint of
friction cone can be represented as a convex combination of the m force vectors on
the boundary of the cone:

fi ≈
m∑

j=1

αjfij (1)

where coefficient αj ≥ 0, and
∑m

j=1 αj = 1.
The 3-d force vector fi and torque vector τi can be written as a wrench wi. Each

contact can be described with a six-dimensional vector of wrench wi:

wi =
[

fi
τi = λ(di × fi)

]
(2)
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Fig. 1 The wrench space of
a grasp

where di is the vector from global origin of the object to the contact point and λ is
the scale factor of torque to force conversion. λ can be set to be the inverse of the
maximum radius from the torque origin so that torque is independent of the object
scale [4].

Given n contact points of a grasp, the unit GWS, written as W(G), can be defined
as the linear combination of the unit wrench space at each contact:

W(G) =
{

w|w =
mn∑

i=1

αiwi, αi ≥ 0,
mn∑

i=1

αi = 1, |wi| = 1

}
(3)

In other words, UGWS is the set of all possible resultant wrenches that can be
applied to the object by all the contacts if applying unit magnitude of contact force,
i.e., the convex hull of the contact wrenches (Fig. 1).

A typical way of evaluating grasp quality is to compute force-closure, i.e., the
ability of a grasp to equilibrate external force and moment in any directions by
applying appropriate forces. It implies that if the origin of the wrench space is in the
convex hull, then the grasp is force closure. Similar to the grasp wrench space, a task
can also be described as the space of disturbance wrenches that must be applied to the
object. Ferrari and Canny [3] quantified the force-closure property by the magnitude
of the contact wrenches that can compensate the disturbance wrench in the worst
case. If no task-oriented information is provided to form a subset of the whole space
of wrenches, a typical task wrench space is a 6D ball Tball centered at the wrench
space origin, where external disturbance is uniformly weighted (Left of Fig. 2). The
grasp quality is the reciprocal of the scale to enlarge the grasp wrench space so that
it contains the whole task wrench space:

Q(G) = 1

km
(4)

km(G) = min(k)|Tball ∈ k · W(G), (5)

In other words, the km(G) is the minimum magnitude of contact force in order
to be capable of resisting all task wrenches. The larger km is, the greater effort is
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Fig. 2 Grasp quality
measures for (left figure) task
ball represented by the
dashed circle, and (right
figure) task ellipsoid
represented by the dashed
ellipse

needed for a grasp to encounter the task wrench along the weakest direction. The
grasp planning is to find the maximum Q(G), the reciprocal of km(G).

2.2 Measure of Task Wrench

Thequalitymeasure inEq.4 can also beused for different task requirements insteadof
using a uniform ball. Related research has been conducted in [4, 7–10]. Li and Sastry
[7] developed a quality criterion to measure the ability of a grasp to perform a task
wrench space using a six-dimensional wrench space ellipsoid to better approximate
a task (Right of Fig. 2). Although this measure takes task requirement into account,
they stated that the data acquisition is difficult, so it is challenging to model the
task. As reviewed in the Introduction, while most researchers focus on the problems
of defining the task wrench space quality and the measurements of how good a
grasp can be fitted into a task wrench space, quite few address this practical problem
of how to measure the demonstrated task wrench space. Perhaps the only work
that measures task wrench space from demonstration was the one conducted by
Aleotti and Caselli [18]. In their work, the demonstrated task wrench space was
estimated in simulation by mapping the captured hand posture to virtual reality,
where a correspondence problem still exists due to two mappings from reality to
virtual reality and demonstrated task wrench space from human demonstration to
the robot.

Most of the works [7, 10, 19] relied on much experience to estimate the task
wrench space by predicting the contact disturbance. Taking tool manipulations such
as pen, screwdriver, scoop, fork, toothbrush, etc. for example, the contact disturbance
is expected to be applied on the tip of those tools. Then the empirical task-oriented
disturbance wrench space is a friction cone applied to the tip. The wrench space is
assumed to be uniformly distributed in the space. However, even if the disturbance
is applied to the same location of different tools, the disturbance wrench can dis-
tribute unevenly over the whole task wrench space. Comparing a writing task and
manipulation of a screwdriver, for instance, although both require the grasp to resist
disturbance force applied to the tip, they have different disturbance distribution.
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Fig. 3 Disturbance
distribution of two tasks. Left
figure shows a writing task
with a pen; right figure
shows a screwing task with a
screwdriver

As illustrated in Fig. 3 the comparison between a pen and a screwdriver, the distur-
bance distributions of them are different. For the writing task, the main disturbance
wrench of a writing task is the force pointed to the upper-left direction, and the
torque generated along with the force. Hence, the grasp wrench space should be able
to apply the opposite force to resist the disturbance, which is distributed primarily in
the right area of the friction cone shown in the figure; whereas the main disturbance
wrench of the screwdriver is the normal force to the surface and the rotational friction
around the principle axis of the screwdriver. Also, the expected disturbance force of
the screwdriver is larger than that of the pen. Therefore, different distributions of
wrenches in a task wrench space would result in different preferred grasps.

To measure the distribution of the disturbance wrench space, we provided a user
interface consisting of a haptic device Phantom Omni, and a virtual reality environ-
ment. For each task, a user is asked to manipulate a tool using the haptic device (see
Fig. 4 for example). The haptic device provides the user with a haptic feedback of the
interaction force with the virtual environment. The virtual reality environment was
developed based on Chai3D [27], an open source C++ library for computer haptics,
visualization, and interactive real-time simulation. It integrates C++ library of Open
Dynamic Engine (ODE) for collision detection and OpenGL library for graphical
visualization. We integrated the QHull library to calculate the convex Hull [28]. The

Fig. 4 A user interface for
demonstration. Left figure A
haptic device, Phantom
OMNI, to manipulate a
virtual object. Right figure
the virtual environment
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collision force of the tool is captured in the environment after each iteration. The
task wrench space (TWS) is a set of all wrenches measured over time t.

TWS = {w(t)|w(t) = wc(t) + wn(t)} (6)

where w(t) is a wrench at time t; wc(t) is the contact wrench of the tool with the
environment; wn(t) is non-contact wrench. The non-contact wrench wn(t) is an offset
wrench that includes forces not acting on the surface of the object, such as gravity and
other force generated by acceleration. Here, we consider only gravity becausemotion
of the tool is assumed to be pseudo-static. Gravity is considered as the force acting
on the center of mass of the object. If the center of mass is set as the torque origin,
the wrench compensated by the gravity is a wrench with zero torque. If no contact
occurs during the manipulation, only gravity is required to be compensated, e.g.,
when lifting up a book on an open palm, where the task wrench stabilizes the effect
of gravity along a single direction. Note that the direction of the gravity disturbance
relative to the object coordinate frame is changing with the motion of the object,
e.g., when rotating a book by a hand, where the task wrench stabilizes the effect of
gravity along multiple directions.

Since the probability distribution model of disturbance is unknown, for each task,
we can build a non-parametric statistical distribution of the disturbance from the
dataset of TWS measured by demonstration. Then, to reduce the computational
complexity, a smaller set of data points can be randomly sampled based on the non-
parametric statistical distribution.

2.3 Quality Measure Based on Distribution of Task
Disturbance

The quality metric km in Eq.4 measures how much effort a grasp needs to cover the
whole required task wrench space, which quantifies a constraint in the worst case
that the robot should not drop the object. However, the worst case constraint is not
always a real guarantee, given that we aremodeling the task wrench space from noisy
data. Thus, a different quality metric is to be developed that is insensitive to noise.

Furthermore, km does not take into account the distribution of a task wrench space.
Without considering distribution of a task, it cannot distinguish quality between two
task wrenches of the same volume but with different distributions. Consider the
scenario of two different GWS for the same TWS shown in Fig. 5. It can be observed
that the TWS has a higher distribution in the left area. GWS 1 andGWS 2 in Fig. 5a, b
have the same volume and the same km. However, GWS 1 has a higher ability than
GWS 1 to apply forces that frequently occur in the task, shown in Fig. 5c.

Based on the above two reasons, we propose a new task-oriented grasp quality
metric that considers both TWS modeled from noisy data, as well as the distribution
of TWS.When developing a grasp qualitymeasurement for task-wrench distribution,
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(a) (b) (c)

(d) (e)

Fig. 5 Comparison of quality measure Q in different scenarios. a, b two grasp wrenches for the
same task wrench space; c comparison of quality measures Q versus scale k between grasps in a and
b. Q1(k0) > Q2(k0), and km1 = km2; Figures d and e show the other two cases of Q as a function
of scale k: case in d, Q1(k0) > Q2(k0), and km1 < km2; case in e Q1(k0) > Q2(k0), and km1 > km2

we must consider the different capabilities along different directions to apply forces.
It is preferred that less effort is required of a grasp to apply forces along directions
where the disturbance force frequently happens, considering the efficiency of power
consumption. The GWS is not necessary to cover the whole TWS, because less
capability is required to apply forces for some force directionswhere forcemagnitude
is large but rarely occurs. Then some noisy outliers may be excluded from the GWS.
Intuitively, the grasp quality can be defined as the ratio of TWS that can be covered
by the scaled GWS W(G), given a scale k. The set of task wrenches that is in the
scaled GWS is represented as:

W = {w(t)|w(t) ∈ TWS ∩ w(t) ∈ k · W(G)} (7)

The grasp quality can be represented as:

Q(G) = |W |
|TWS| (8)

where |W | is the size of the task wrenches covered by the scaled GWS, and |TWS|
is the size of total task wrenches; 0 ≤ Q(G) ≤ 1. The larger Q(G) is, the more
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disturbance wrenches can be resisted by the grasp G. Therefore, the grasp planning
is to find the optimal grasp that maximizes Q(G).

It is noted that as k increases,Q is not linearly increasingwith k, and the increasing
rate of Q is not the same for different grasps (Fig. 5c–e). Therefore, the choice of k
affects the result of the optimal grasp. Figure5c compares quality Q1 and Q2 of the
two grasps G1 and G2 shown in Fig. 5a, b as a function of k. It can be seen that Q1

increases faster at the beginning. As k becomes larger, the increasing of Q1 is slowed
down. For all k < km, Q1 > Q2, when k ≥ km, Q1 = Q2 = 1. It is also possible that
different Q can intersect at some k < km, as illustrated in Fig. 5e. Also, if choosing
a very large value of k, Q of different G is equal to 1. Therefore, it is important to
choose a reasonable k that results in a desired Q.

Scale k stands for the amount of force the robotic hand is expected to apply.
We suggested a scale k0 by considering both the capability of the robotic hand, as
well as task requirement. Suppose a unit vector ŵ stands for a fixed direction for
the disturbance wrench w(t). Let a(t) = ‖w(t)‖, the magnitude of w(t), so that the
disturbance wrench can be written as w(t) = a(t) ˆw(t). For a given task wrench set,
k0 is determined by the smaller value between the maximum magnitude a(t) of all
wrenches in the task, and the maximum forces that can be applied by the robotic
hand—typically the capability ωmax of robot motors, written as:

k0 = min(max(a(t)), ωmax) (9)

for all t = 1, . . . , T , where T is the number of data samples. In this paper, we used
a Barrett hand for the experiment. The maximum finger force of the Barrett hand is
20N , so we set ωmax = 20 in order to bound k0. k0 can also be set to other empirical
value, e.g., the amount of force that humans usually apply in a manipulation.

2.4 Incorporation of Thumb Placement Constraint
into Grasp Planning

Since a number of anthropomorphic hands have a high number of degrees of freedom
(DOF) in order to be as dexterous as human hand, introducing complexity to the
search in the optimization, much work has focused on providing constraints to the
search space in order to reduce the computational complexity of the search in high
dimensional robotic hand configuration space, for example, imposing appropriate
contact points on the object (e.g., [20–24]). The constraint on contact points, however,
is assumed to be independent of physical constraints of a given hand. It raises the
problem of solving the inverse kinematics that satisfies the constraints imposed by
contact points [25]. In this paper, therefore, to avoid the problem given rise by the
constraints of contact points, the candidate grasp is computed from a set of given
thumb placement on the object surface, as well as the direction thumb should point
to. Thumb positions offer a general reference of the body part to be gripped; thumb
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z

y

x

Fig. 6 Illustration of searching procedure constrained by the thumbplace and direction. The colored
area in the first figure is the area where the thumb is allowed to be placed. Thumb placement in
red-colored area can only be pointed to axis x, while thumb placement in green-colored area can
only be pointed to axis y

direction provides a constraint on wrist positions and orientations. The constraint of
thumb placement can be labeled manually on the object, or generated automatically
from examples.

The upper-left of Fig. 6 shows an example of labeled area. The thumb can be
placed only on the colored area, with different colors specifying different thumb
directions. Thumb placement in the red-colored area can be pointed only to axis x,
while thumb placement in green-colored area can be pointed only to axis y. Thumb
pose together provide partial constraints to wrist positions/orientations; hence, they
reduce the search space during the optimization procedure. Moreover, since the
thumb position of the robot is directly translated from the thumb position of the
human demonstrator, no mapping between the two very different kinematic systems
is required, which avoids the complicated correspondence problem. The user can
also specify a grasp type, such as power grasp and precision grasp [29], to better
satisfy the task requirement. Figure6 shows snapshots of a searching procedure of a
power grasp throughout the constraint area of thumb placement.

3 Results

In the experiment, we tested our approach for several tasks with different objects.
Non-expert subjects were asked to manipulate an object in the user interface via
Phantom OMNI. The interaction force between the object and the environment was
captured during the demonstration with a sample rate of 100Hz. The data set of the
disturbance, compensated by object gravity, was recorded. Then, from the data set,
a non-parametric statistical distribution of the disturbance was built. To reduce the
computational complexity, a smaller set of data points was randomly sampled based
on the non-parametric statistical distribution.
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ABarrett handmodel and a Shadow handmodel were tested during the simulation
for task-oriented grasp planning. The desired grasp type and the constraint area of
the thumb location and direction were input into the simulator as well, which highly
reduce the search space of the robotic hand configuration. In the simulation, we set
the friction coefficientμ to be 1. The friction cone is approximated by an eight-sided
pyramid. For each hand configuration, the grasp wrench space can be computed
from the contact points and contact normals can be obtained by the open dynamics
library. Grasp quality Q was calculated based on the grasp wrench space and the
distribution of disturbance. The grasp planning searches the best grasp configuration
that maximizes Q.

Figures7, 8 and9 show three examples of objectmanipulation. In thefirst example,
the user was asked to perform a writing motion with a pencil, where the pencil
interacts with the environment at the tip. The chosen grasp should be excellent for
balancing the pressure and friction at the tip. As shown in Fig. 7a–c the distribution of
task wrenches, task wrenches are biased to the positive directions of Fy and Fz, other
than the full space of the friction cone. The resulting grasp is, therefore, close to the
tip. For the hand configuration shown in Fig. 7d, Q = 0.8459 at k = 2.6, meaning
it covers 84.59% of task wrenches, which is much larger than that of Fig. 7e where
Q = 0.1968 at the same k, because it is better to apply force along the Fy and Fz

(a) (b) (c)

(d) (e) (f)

Fig. 7 Planning results for a writing task with a pencil. The center of mass is set to be the origin
of the coordinate frame, where axes x, y and z are marked by red, green and blue colors (shown in
Fig.d). a–c Distribution of task wrench projected to Fx-Fy, Fx-Fz, Ty-Tz subspace, respectively,
where the task wrench is distributed mainly along −Fx, Fy and Fz directions; torque Tz is small so
it is not reported here. d–e Two different hand configurations; f grasp quality Q versus scale k for
the two hand configurations (Q1 and Q2 are quality measures for hand configuration in d and e)
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Fig. 8 Planning results for a cutting task and a butter spreading task with a knife. a–b Cutting task
distribution of task wrenches projected to Fx-Fy-Fz and Tx-Ty-Tz subspaces respectively, where the
task wrenches are distributedmainly in−Fz and Fx; c–d the corresponding task wrench distribution
for butter spreading task, where the task wrenches are distributed primarily in +Fy, −Fy, +Fz,
+Tz, −Tz; e–g three different hand configurations. Q1 is quality measure for the first task, and Q2
is the quality measure for the second task. Scale k is set to be 8.04 and 3.25 of the two tasks for a
precision grasp planning

directions than that in Fig. 7e. The quality measures Q1 and Q2 changing with scale
k for the two grasps are compared in Fig. 7f.

In the second experiment, grasps for two tasks were compared for a knife.
The user was asked to perform two tasks: a cutting motion along one direction
(+x marked by red color in Fig. 8); and a butter spreading motion using both sides of
the blade. The disturbance distributions for the two tasks are reported in Fig. 8a–d.
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Fig. 9 Planning results for a hammer, where a power grasp is searched because a large power is
needed. a, b Distribution of task wrenches projected to Fx-Fy-Fz and Tx-Ty-Tz subspace, respec-
tively, where the task wrenches are distributed mainly in Fz and Ty; c–g five different hand con-
figurations of the Barrett hand model; h–k four different hand configurations of the Barrett hand
model. Scale k is set to be 20

As shown the cutting task in Fig. 8a, a grasp should be able to generate pressure along
−z direction and friction mainly along +x direction to the blade. Torque generated
along with the force is shown in Fig. 8b. While for the butter spreading task shown in
Fig. 8c, d, the task wrenches cover partial area of two opposite friction cone, i.e., the
grasp should be able to apply pressure along both +y and −y, and friction along +z.
The thumb placement is constraint to the handle. Figure8e–g contains evaluations
of three grasps for the two tasks respectively (Q1 for cutting task and Q2 butter
spreading task). For cutting task, where scale k is set to be 8.04, larger than k = 3.25
for butter spreading task. It can be seen that for cutting task, the hand configuration
in Fig. 8e is better to apply force in −Fz, along with −Ty. The hand configuration in
Fig. 8g has the worst quality measure of the three due to its deficient ability to apply
force along z directions; Whereas for the butter spreading task, hand configuration
in Fig. 8g is the best, and Fig. 8e is the worst.
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In the third task, the user was asked to strike a plane with a hammer, and the
grasp planning was performed to compare results of the Barrett hand model and the
Shadow hand model. It can be imagined that the chosen grasp should be excellent for
balancing the large pressure on the head of the hammer. As shown in Fig. 9a, b, the
distribution covers almost the whole space of the friction cone, whose axis is along
+z direction, and the pressure between the hammer and the environment along +z
direction is as large as 20N . The designated grasp type during grasp planning is a
power grasp in order to perform powerful manipulation; the scale k of grasp wrench
space is set to be 20 for the computation of quality measure. Figure9 show the results
of searching through the feasible area of thumb placement for the Barrett handmodel
(Fig. 9c–g), and for the Shadow hand model (Fig. 9h–k). It can be seen that the grasp
closer to the head is better to counterbalance the forces that occur at the head. Note
that the result of a hammer grasp is different from the intuitive grasping style of
humans, who prefer to hold the handle on the other side away from the head, because
humans desire to reach a large swing motion with a relatively small arm motion but
to generate a large impact force. The grasp optimization considers only the ability to
apply force other than the arm and wrist motions. It can be observed from the figure
that similar results were obtained for the two hand models, because task distribution
and thumb constraint are independent of hand mechanical structures.

Concluded from the experiments, the resulting grasp with a higher grasp quality
criterion tends to bemore efficient to apply frequently-occurring force, using the same
magnitude of resultant force as the low quality grasp, thus improving the efficiency
of power consumption.

4 Conclusion

For task-oriented grasp planning, manipulation tasks are known to be difficult to
model. In this paper, a manipulation task was modeled by building non-parametric
statistical distribution of disturbance from demonstration data. Instead of an evenly-
distributed task wrench space, it is possible that disturbance wrenches in some
directions occur more frequently than the other areas, even if they may be smaller
than wrenches that occur less frequently. In favor of grasps that are able to apply
frequently-occurring forces, this paper proposes a task-oriented grasp quality cri-
terion based on the distribution of the task disturbance by computing the ratio of
disturbance a grasp covers.

To reduce the computational complexity of the search in high-dimensional robotic
hand configuration space, aswell as to avoid a correspondence problem, the candidate
grasp is computed from a set of given thumb placement and thumb direction. The
experiment has been validated in simulation with a Barrett hand and a Shadow hand.
Both the task model and the demonstration are independent of hand models, so they
can be used for other robotic hands.

The hammer example in simulation implies that the resulting robotic grasps may
be different from intuitive grasps of the humans, who consider a combination of hand
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and arm motion as well as force required by a task. Therefore, including arm and
hand motion factors in a grasp planning can be a direction of future work.

Another potential improvement is to measure task wrenches on the real object.
Then demonstration can be performed on real objects rather than in simulation, so
that the user can have more straightforward haptic feeling from the environment. In
addition, the TWS can also be updated during the robot execution, which iteratively
improves the grasp planning.

Although the current evaluation was conducted in simulation, where a simplified
hard contact friction model was defined, the proposed task-oriented grasp quality
metric can be extended to other frictionmodels. In the futurework, further evaluations
will be carried out on real objects and robot platforms.
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Towards Planning in Generalized
Belief Space

Vadim Indelman, Luca Carlone and Frank Dellaert

Abstract We investigate the problem of planning under uncertainty, which is of
interest in several robotic applications, ranging from autonomous navigation to
manipulation. Recent effort from the research community has been devoted to design
planning approaches working in a continuous domain, relaxing the assumption that
the controls belong to a finite set. In this case robot policy is computed from the
current robot belief (planning in belief space), while the environment in which the
robot moves is usually assumed to be known or partially known. We contribute to
this branch of the literature by relaxing the assumption of known environment; for
this purpose we introduce the concept of generalized belief space (GBS), in which
the robot maintains a joint belief over its state and the state of the environment. We
use GBS within a Model Predictive Control (MPC) scheme; our formulation is valid
for general cost functions and incorporates a dual-layer optimization: the outer layer
computes the best control action, while the inner layer computes the generalized
belief given the action. The resulting approach does not require prior knowledge of
the environment and does not assume maximum likelihood observations. We also
present an application to a specific family of cost functions and we elucidate on the
theoretical derivation with numerical examples.

1 Introduction

Planning is an important component of robot navigation and manipulation, and it is
crucial in application endeavours in which the robot operates in full or partial auton-
omy, e.g., multi-robot exploration, autonomous surveillance, and robotic surgery.
The planning problem consists in establishing a map between the state space and the
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control space, such that the robot can autonomously determine a suitable action (e.g.,
a motion command), depending on its current state (e.g., current robot pose). The
complexity of the problem stems from the fact that robot dynamics are stochastic;
in most practical applications, the state of the robot is not directly observable, and
can only be inferred from observations. Therefore, the robot maintains a probability
distribution, the belief, over possible states, and computes a control policy using the
current belief. The corresponding problem falls in the general framework ofPartially
Observable Markov Decision Process (POMDP).

The literature on planning under uncertainty can be sectioned in three main cate-
gories: simulation-based approaches, infinite-horizon strategies, and receding hori-
zon strategies. Simulation-based approaches generate a few potential plans and select
the best policy according to a given metric (e.g., information gain). They are referred
to as simulation-based approaches, since they simulate the evolution of the belief for
each potential plan, in order to quantify its quality. Examples of this approach are the
work of Stachniss et al. [21, 22], Blanco et al. [3], and Du et al. [6], in which particle
filters are used as inference engine. Martinez-Cantin et al. [15, 16] and Bryson and
Sukkarieh [4] investigate simulation-based approaches in conjunction with the use of
EKF as inference engine. Carrillo et al. [5] provide an analysis of the uncertaintymet-
rics used in EKF-based planning. Other examples of simulation-based approaches
are [12, 23, 24] in which the belief is assumed to be a Gaussian over current and past
poses of the robot. These works assume maximum likelihood observations: since
future observations are not given at planning time, the robot assumes that it will
acquire the measurements that are most likely given the simulated belief. We notice
that, while all the previous examples are applied tomobile robot navigation problems
(the corresponding problem is usually referred to as active Simultaneous Localiza-
tion and Mapping), similar strategies can be found with application to manipulation
and computer vision (e.g., next best view problem [18]).

In the second category, infinite-horizon strategies, the search space is usually
discretized (e.g., robot can only move between nodes of a uniformly spaced grid)
and the plan may be subject to given budget constraints. The corresponding problem
is also referred to as informative path planning. These problems are characterized by
a combinatorial complexity [7], which increases with the available budget. A greedy
strategy for informative path planning is proposed by Singh et al. [20] while a branch
and bound approach is proposed by Binney et al. in [2]. More recently, Hollinger
et. al [7] propose more efficient algorithms, based on rapidly-exploring random tree
and probabilistic roadmap. The approaches falling in these second category usually
assumes that the robotmoves in a known environment; a remarkable property of these
techniques is that they approach optimality when increasing the runtime (which is
exponential in the size of the problem). A recent example of infinite-horizon planning
is the work [1], in which Bai et al. apply aMonte Carlo sampling technique to update
an initial policy, assuming maximum likelihood observations.

Finally, receding horizon strategies compute a policy over the next L control
actions,whereL is a givenhorizon.Huang et al. [8] propose amodel predictive control
(MPC) strategy, associated with EKF-SLAM. Leung et al. [14] propose an approach
in which the MPC strategy is associated with a heuristic based on global attractors.
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Sim and Roy [19] propose A-optimal strategies for solving the active SLAM prob-
lem. While these approaches are based on a discretization of the state space [19],
or of the space of possible controls [14], recent efforts of the research community
are pushing towards the use of continuous-domain models in which controls belong
to a continuous set. Continuous models appear as more natural representations for
real problems, in which robot states (e.g., poses) and controls (e.g., steering angles)
are not constrained to few discrete values. These approaches are usually referred to
as planning in the belief space (BS). Platt et al. [17] assume maximum likelihood
observations and apply linear quadratic regulation (LQR) to compute locally opti-
mal policies. Kontitsis et al. [13] recently propose a sampling based approach for
solving a constrained optimization problem in which the constraints correspond to
state dynamics, while the objective function to optimize includes uncertainty and
robot goal. A hierarchical goal regression for mobile manipulation is proposed by
Kaelbling et al. in [9–11]. While this branch of the literature has already produced
excellent results in real problem instances, it still relies on two basic assumptions:
(i) future observations are assumed to reflect current robot belief (maximum likeli-
hood observations), and (ii) the environment in which the robot moves is partially or
completely known. Van den Berg et al. [25] deal with the former issue and propose
a general planning strategy in which maximum likelihood assumption is relaxed:
future observations are treated as random variables and the future (predicted) belief
preserves the dependence on these random variables. In the present work, instead,
we deal with the second issue, as we assume no prior knowledge of the environment.

Our contribution belongs to the last category, as we use a receding horizon strat-
egy. We introduce the concept of generalized belief space (GBS): the robot keeps a
joint belief over both the state of the robot and the state of the surrounding environ-
ment. This allows relaxing the assumption that the environment is known or partially
known, and enables applications in completely unknown and unstructured scenarios.
Planning in GBS, similarly to planning in BS, is done in a continuous domain and
avoids themaximum likelihood assumption that characterize earlier works. Our plan-
ning strategy, described in Sect. 2, comprises two layers: an inner layer that performs
inference in the GBS, and an outer layer that computes a locally-optimal control
action. In Sect. 3, we also present an application to a specific family of cost functions
and we elucidate on the theoretical derivation with a numerical example in which
a robot has to reach a goal while satisfying a soft bound on the admissible position
estimation uncertainty. Conclusions are drawn in Sect. 4.

2 Planning in Generalized Belief Space (GBS)

2.1 Notation and Probabilistic Formulation

Let xi and Wi denote the robot state and the world state at time ti. For instance, in
mobile robots navigation, xi may describe robot pose at time ti andWi may describe
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the positions of landmarks in the environment observed by the robot by time ti. In a
manipulation problem, instead, xi may represent the pose of the end effector of the
manipulator, and Wi may describe the pose of an object to be grasped. The world
state Wi is time-dependent in general (e.g., to account for possible variations in the
environment, or to model the fact that the robot may only have observed a subset of
the environment by time ti) and for this reason we keep the index i inWi. Let zi denote
the available observations at time ti and ui the control action applied at time ti. We
define the joint state at time tk as Xk

.= {x0, . . . , xk,Wk}, and we write the probability
distribution function (pdf) over the joint state as:

p (Xk|Zk,Uk−1) , (1)

whereZk
.= {z0, . . . , zk} represent all the available observations until time tk , and

Uk−1
.= {u0, . . . , uk−1} denotes all past controls. The probabilistic motion model

given the control ui and the state robot xi is

p (xi+1|xi, ui) . (2)

We consider a general observation model that involves at time ti a subset of joint
states Xo

i ⊆ Xi:
p
(
zi|Xo

i

)
. (3)

The basic observationmodel, commonly used inmotion planning, e.g., [25], involves
only the current robot state xi at each time ti and is a particular case of the above
general model (3).

The joint pdf (1) at the current time tk can be written according to the motion and
observation models (2) and (3) as

p (Xk|Zk,Uk−1) = priors ·
k∏

i=1

p (xi|xi−1, ui−1) p
(
zi|Xo

i

)
. (4)

The priors term includes p (x0) and any other available prior information.

2.2 Approach Overview

The aim of this paper is to present a general strategy that allows a robot (autonomous
vehicle, UAV, etc.) to plan a suitable control strategy to accomplish a given task.
Task accomplishment is modelled through an objective function to be optimized;
for instance the objective can penalize the distance to a goal position (path plan-
ning), the uncertainty in the state estimate (active sensing), or can model the neces-
sity to visit new areas (exploration). We adopt a standard model predictive control
(MPC) strategy in which the robot has to plan an optimal sequence of controls
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x1 xk+Lx0 xk xk+1 xk+l... ...
u0 u1 uk−1 uk uk+1 uk+l−1 uk+L−1uk+l

z1 zk zk+1 zk+Lzk+l

W

...

Planning time

Fig. 1 Illustration of the L look-ahead steps planning problem. Past observationsZk = {z0, . . . , zk}
and past controls Uk−1 = {u0, . . . , uk−1} are known at the planning time tk . Future observations
zk+1:k+L are instead unknown and treated as randomvariables. The objective is to compute a suitable
control strategy uk:k+L−1 = {uk, . . . , uk+L−1} for L look-ahead steps. The figure only illustrates the
temporal evolution of the system and we note that each observation may involve generic subset of
the states (robot states and world state W ) according to the observation model (3)

uk:k+L−1 = {uk, . . . , uk+L−1} for L look-ahead steps, so that a given objective func-
tion is minimized over the time horizon (see Fig. 1). The presentation of this section
is general and does not assume a specific cost function, while in Sect. 3 we discuss
practical choices of the cost function.

At planning time tk, the optimal control minimizes an objective function Jk

(uk:k+L−1) for L look-ahead steps. The objective function involves L immediate costs,
one for each look-ahead step. We consider a general immediate cost ck+l that may
involve any subset of states Xc

k+l ⊆ Xk+l, where l ∈ {0, . . . , L − 1} is the lth look-
ahead step. The immediate cost ck+l can be therefore written as

ck+l
(
p
(
Xc

k+l|Zk,Uk−1, zk+1:k+l, uk:k+l−1
)
, uk+l

)
, (5)

where the notation ai:j
.= {

ai, . . . , aj
}
is used. As seen in Eq. (5), the immedi-

ate cost function ck+l directly involves a distribution over the subset of states
Xc

k+l. This distribution is conditioned on past measurements and controls Zk,Uk−1

(that are known at planning time), as well as on future controls and observations
zk+1:k+l, uk:k+l−1 while the actual observations zk+1:k+l are not given at planning
time, the corresponding observation model is known (Eq. (3)) and involves addi-
tional subsets of states Xo

k+j with j = [0, . . . , l]. Therefore, calculating the pdf

p
(
Xc

k+l|Zk,Uk−1, zk+1:k+l, uk:k+l−1
)
involves an extended subset of the joint state

Xk+l. For clarity of presentation, however, we will proceed with the entire joint state
Xk+l which contains Xc

k+l.
1

We thus define the generalized belief space (GBS) at the lth planning step as

gb (Xk+l)
.= p (Xk+l|Zk,Uk−1, zk+1:k+l, uk:k+l−1) . (6)

1In principle, for planning it is only necessary to maintain a distribution over the states Xc
k+l while

marginalizing out the remaining states. This would avoid performing computation over a large state
space, hence resulting in a computational advantage. We leave the investigation of this aspect as an
avenue for future research.
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The objective function Jk (uk:k+l−1) can now be defined as

Jk (uk:k+L−1)
.= E

zk+1:k+L

{
L−1∑

l=0

cl (gb (Xk+l) , uk+l) + cL (gb (Xk+L))

}
(7)

where the expectation is taken to account for all the possible observations during the
planning lag, since these are not given at planning time and are stochastic in nature.
Since the expectation is a linear operator we rewrite the objective function (7) as:

Jk (uk:k+L−1)
.=

L−1∑

l=0

E
zk+1:k+l

[
cl (gb (Xk+l) , uk+l)

]+ E
zk+1:k+L

[
cL (gb (Xk+L))

]
. (8)

The optimal control u∗
k:k+L−1

.= {
u∗

k , . . . , u∗
k+L−1

}
is the control policy π :

u∗
k:k+L−1 = π (gb (Xk)) = argmin

uk:k+L−1

Jk (uk:k+L−1) . (9)

Calculating the optimal control policy (9) involves the optimization of the objective
function Jk (uk:k+L−1). According to (8), the objective depends on the (known) GBS
at planning time tk , on the predicted GBS at time tk+1, . . . , tk+L, and on the future
controls uk:k+L−1. Since in general the immediate costs cl (gb (Xk+l) , uk+l) are non-

linear functions, E
zk+1:k+l

[
cl (gb (Xk+l) , uk+l)

] �= cl

(
E

zk+1:k+l

[
gb (Xk+l)

]
, uk+l

)
, and we

have to preserve the dependence of the belief gb (Xk+l) on the observations zk+1:k+l.
The latter are treated as random variables. Therefore, the belief at the lth look-ahead
step depends on uk:k+l−1 (which is our optimization variable) and zk+1:k+l (which is
a random variable).

In order to optimize the objective function (8)we resort to an iterative optimization
approach, starting from a known initial guess on the controls. The overall approach
can be described as a dual-layer inference: the inner layer performs inference to
calculate the GBS at each of the look-ahead steps, for a given uk:k+L−1. The outer
layer performs inference over the control uk:k+L−1, minimizing the objective function
(8). A schematic representation of the approach is provided in Fig. 2, while in the
next sections we describe in detail each of these two inference processes, starting
from the outer layer: inference over the control.

2.3 Outer Layer: Inference over the Control

Finding a locally-optimal control policy u∗
k:k+L−1 corresponds to minimizing the

general objective function (8). The outer layer is an iterative optimization over the
non-linear function Jk (uk:k+L−1). In each iteration of this layer we are looking for
the delta vector Δuk:k+L−1 that is used to update the current values of the controls:
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gb(Xk)

gb(Xk+1)

gb(Xk+l)

gb(Xk+L) E
zk+1:k+L

[ck+L (gb(Xk+L))]

E
zk+1:k+l

[ck+l (gb(Xk+l), uk+l)]

E
zk+1

[ck+1 (gb(Xk+1), uk+1)]
...

...

ck (gb(Xk), uk)

+ J(uk:k+L−1)

uk:k+L−1

...

...

u∗
k:k+L−1

Fig. 2 Illustration of the dual-layer inference planning approach. The algorithm takes as an input the
GBS at the current time tk , gb (Xk), and produces as output a locally-optimal control u∗

k:k+L−1. The
outer layer performs inferenceover the controluk:k+L−1,while the inner layer evaluates theGBS for a
given value of uk:k+L−1.Note that theGBSat the lth look-ahead step is a function of controlsuk:k+l−1
as well as of the random observations zk+1:k+l: gb (Xk+l) = p (Xk+l|Zk,Uk−1, zk+1:k+l, uk:k+l−1)

u(i+1)
k:k+L−1 ← u(i)

k:k+L−1 + Δuk:k+L−1, (10)

where i denotes the iteration number. Calculating Δuk:k+L−1 involves computing
the GBS of all the L look-ahead steps based on the current value of the controls
u(i)

k:k+L−1. This process of calculating the GBS is by itself a non-linear optimization
and represents the inner layer inference in our approach. We describe this inference
in Sect. 2.4. The GBS gb (Xk+l), given the current values of the controls uk:k+L−1, is
represented by the mean X̂∗

k+l (zk+1:k+l) and the information matrix Ik+l. The mean is
a linear function in the unknown observations zk+1:k+l. The immediate cost function,
in the general case, may involve both the mean and the information matrix, and
is therefore also a function of zk+1:k+l. Taking the expectation over these random
variables produces the expected cost that is only a function of uk:k+L−1 and captures
the effect of the current controls on the lth look-ahead step.

We conclude this section by noting that the control update (10) is performed in a
continuous domain and can be realized using different optimization techniques (e.g.,
dynamic programming, gradient descent, Gauss–Newton).

2.4 Inner Layer: Inference in GBS

In this section we focus on calculating the GBS at the lth look-ahead step gb (Xk+l) ≡
p (Xk+l|Zk,Uk−1, zk+1:k+l, uk:k+l−1), with l ∈ [1, L]. As this inference is performed
as part of the higher-level optimization over the control (see Sect. 2.2), the current
values for uk:k+l−1 are given in the inner inference layer.
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The GBS gb (Xk+l) can be expressed in terms of the joint pdf at the planning time
tk and the individual motion and observation models applied since then:

gb (Xk+l) = p (Xk|Zk,Uk−1)

l∏

j=1

p
(
xk+j|xk+j−1, uk+j−1

)
p
(
zk+j|Xo

k+j

)
. (11)

We consider the case ofmotion and observationmodels with additiveGaussian noise:

xi+1 = f (xi, ui) + wi , wi ∼ N (0,Ωw) (12)

zi = h
(
Xo

i

)+ vi , vi ∼ N (0,Ωv) , (13)

where for notational convenience, we use ε ∼ N(μ,Ω) to denote a Gaussian random
variable ε with meanμ and information matrixΩ (inverse of the covariance matrix).
Then the distribution p (Xk+l|Zk,Uk−1, zk+1:k+l, uk:k+l−1) can also be modeled as a
Gaussian and can be expressed as

p (Xk+l|Zk,Uk−1, zk+1:k+l, uk:k+l−1) ∼ N
(

X̂∗
k+l, Ik+l

)
. (14)

Our goal is then to calculate themean X̂∗
k+l and the informationmatrix Ik+l describing

the GBS at the lth look ahead step, bearing in mind that the observations zk+1:k+l are
unknown at planning time tk .

At this point, it is convenient to assume that the joint pdf at planning time tk can
be parametrized by a Gaussian distribution

p (Xk|Zk,Uk−1) ∼ N
(

X̂k, Ik

)
, (15)

with known X̂k, Ik . Taking the negative log of p (Xk+l|Zk,Uk−1, zk+1:k+l, uk:k+l−1)
from Eq. (11) results in

− log p
(
Xk+l|Zk,Uk−1, zk+1:k+l, uk:k+l−1

)

=
∥∥∥Xk − X̂k

∥∥∥
2

Ik
+

l∑

i=1

[∥∥xk+i − f
(
xk+i−1, uk+i−1

)∥∥2
Ωw

+
∥∥∥zk+i − h

(
Xo

k+i

)∥∥∥
2

Ωv

]
,

(16)

where we use the standard notation ‖y − μ‖2Ω = (y − μ)T Ω (y − μ) for the Maha-
lanobis norm. The maximum a posteriori (MAP) estimate of Xk+l is then given by

X̂∗
k+l = argmin

Xk+l

− log p (Xk+l|Zk,Uk−1, zk+1:k+l, uk:k+l−1) . (17)

This optimization problem lies at the core of the inner inference layer of our plan-
ning approach. In principle, solving (17) involves iterative nonlinear optimization.
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A standard way to solve the minimization problem is the Gauss–Newton method,
where a single iteration involves linearizing the above equation about the cur-
rent estimate X̄l+l, calculating the delta vector ΔXk+l and updating the estimate
X̄l+l ← X̄l+l + ΔXk+l. This process should be repeated until convergence. While
this is standard practice in information fusion, what makes it interesting in the con-
text of planning is that the observations zk+1:k+l are unknown and considered instead
as random variables.

In order to perform a Gauss–Newton iteration on (17), we linearize the motion
and observation models in Eq. (16) about the linearization point X̄k+l (uk:k+l−1). The
linearization point for the existing states at planning time is set to X̂k , while the future
states are predicted via the motion model (12) using the current values of the controls
uk:k+l−1:

X̄k+l (uk:k+l−1) ≡

⎛

⎜⎜⎜⎜⎜⎝

X̄k

x̄k+1

x̄k+2
...

x̄k+l

⎞

⎟⎟⎟⎟⎟⎠

.=

⎛

⎜⎜⎜⎜⎜⎝

X̂k

f
(
x̂k|k, uk

)

f (x̄k+1, uk+1)
...

f (x̄k+l−1, uk+l−1)

⎞

⎟⎟⎟⎟⎟⎠
. (18)

Using this linearization point, Eq. (16) turns into:

− log p (Xk+l|Zk,Uk−1, zk+1:k+l, uk:k+l−1)

= ‖ΔXk‖2Ik
+

l∑

i=1

[∥∥∥Δxk+i − FiΔxk+i−1 − bf
i

∥∥∥
2

Ωw

+ ∥∥HiΔXo
k+i − bh

i

∥∥2
Ωv

]
,

(19)

where the Jacobian matrices Fi
.= ∇xf and Hi

.= ∇xh are evaluated about X̄k+l

(uk:k+l−1). The right hand side vectors bf
i and bh

i are defined as

bf
i

.= f (x̄k+i−1, uk+i−1) − x̄k+i, bh
i (zk+i)

.= zk+i − h
(
X̄o

k+i

)
(20)

Note that bh
i is a function of the random variable zk+i. Also note that under the

maximum-likelihood assumption this terms would be nullified: assuming maximum
likelihood measurements essentially means assuming zero innovation, and bh

i is
exactly the innovation for measurement zk+i. We instead keep, for now, the observa-
tion zk+i as a variable and we will compute the expectation over this random variable
only when evaluating the objective function (8). In order to calculate the update
vectors ΔXk and Δxk+1, . . . , Δxk+l, it is convenient to write Eq. (19) in a matrix
formulation, which can be compactly represented as:

∥∥∥Ak+l (uk:k+l−1) ΔXk+l − b̆k+l (uk:k+l−1, zk+1:k+l)

∥∥∥
2
, (21)
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wherewe used the relation ‖a‖2Ω ≡ ∥∥Ω1/2a
∥∥2, andAk+l and b̆k+l are of the following

form:

Ak+l
.=
⎡

⎢⎣

[
I1/2k 0

]

Fk+l

Hk+l

⎤

⎥⎦ , b̆k+l =
⎛

⎝
0

Ω
1/2
w b̆f

k+l

Ω
1/2
v b̆h

k+l

⎞

⎠ . (22)

Here,Fk+l andHk+l include all the Jacobian-related entriesΩ
1/2
w Fi andΩ

1/2
v Hi (for

all i ∈ [1, l]), respectively, and zeros in appropriate locations. Likewise, the vectors

b̆f
k+l and b̆h

k+l respectively collect the terms bf
i and bh

i (zk+i). The term
[

I1/2k 0
]

includes a matrix of zeros of appropriate size for padding.
The information matrix Ik+l can now be calculated from Eq. (21) as

Ik+l (uk:k+l−1)
.= A T

k+lAk+l, (23)

and the update vector ΔXk+l, that minimizes (21), is given by

ΔXk+l (uk:k+l−1, zk+1:k+l)
.= (

A T
k+lAk+l

)−1
A T

k+l b̆k+l = I−1
k+lA

T
k+l b̆k+l. (24)

Noting that the right hand side vectors bf
i are zero for the linearization point (18),

the only non-zero entries in the vector b̆k+l are the right hand side vectors bh
i , which

depend linearly on zk+1, . . . , zk+L. Using the definitions (22), Eq. (24) can hence be
written as ΔXk+l (uk:k+l−1, zk+1:k+l) = I−1

k+lH
T

k+lΩ̆vb̆h
k+l, where Ω̆v is an appropriate

block diagonal matrix with Ωv elements. The updated estimate is then calculated as

X̂k+l (uk:k+l−1, zk+1:k+l) = X̄k+l + ΔXk+l = X̄k+l + I−1
k+lH

T
k+lΩ̆vb̆h

k+l. (25)

The estimate X̂k+l (uk:k+l−1, zk+1:k+l) is the outcome of a single iteration of the non-
linear optimization (17).We remark that for a single iteration, the information matrix
Ik+l (uk:k+l−1) does not depend on zk+1:k+l and the mean depends on zk+1:k+l linearly.
This fact greatly helps when taking the expectation over zk+1:k+l of the immedi-
ate cost function (8). Considering more iterations would better capture the depen-
dence of the estimate on the measurements; however, more iterations would make
X̂k+l (uk:k+l−1, zk+1:k+l) a nonlinear function of zk+1, . . . , zk+L. We currently assume
a single iteration sufficiently captures the effect of the measurements for a certain
control action on the GBS. Therefore,

X̂∗
k+l (uk:k+l−1, zk+1:k+l) = X̂k+l (uk:k+l−1, zk+1:k+l) .

The difference with the maximum-likelihood observations assumption is evident
from Eq. (25): in that case only the first term would appear in the above equation.
Lastly, we notice that the same linearization point (18) will be used also for the next
look-ahead step (l + 1), inwhich only a fewadditional termswill be added toEq. (19);
this allows large re-use of calculations. Moreover we notice the matrices appearing
in Eqs. (23) and (24) are sparse. We leave the investigation of these computational
aspects to future research.
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3 Application to a Specific Family of Cost Functions

3.1 Choice of the Cost Functions

The exposition of the approach thus far has been given for general immediate cost
functions. To demonstrate the effectiveness of our approach we will now focus on a
specific family of cost functions. We define:

cl (gb (Xk+l) , uk+l)
.=
∥∥∥EG

k+lX̂
∗
k+l − XG

∥∥∥
Mx

+ tr
(
MΣ I−1

k+lM
T
Σ

)+ ‖ζ (uk+l)‖Mu

(26)

cL (gb (Xk+L))
.=
∥∥∥EG

k+LX̂∗
k+L − XG

∥∥∥
Mx

+ tr
(
MΣ I−1

k+LMT
Σ

)
. (27)

Here MΣ, Mu and Mx are given weight matrices, and ζ (u) is some known function
that, depending on the application, quantifies the usage of control u. XG is the goal
for some subset of states (e.g., the last pose), and EG

k+l is a selection matrix, such

that the matrix EG
k+lX̂

∗
k+l contains a subset of states for which we want to impose a

goal. Similarly, the matrix MΣ may also be used to choose the covariance of some
subset of states from the joint covariance I−1

k+l (e.g., consider only uncertainty of the
landmarks in the environment).

Plugging Eqs. (26) and (27) into Eq. (8), taking the expectation, and rearranging
the terms, we get

Jk (uk:k+L−1)
.=

L−1∑

l=0

‖ζ (uk+l)‖Mu
+

L∑

l=0

tr
(

MΣ I−1
k+lM

T
Σ

)
+

L∑

l=0

E
zk+1:k+l

[∥∥∥EG
k+l X̂

∗
k+l −XG

∥∥∥
Mx

]
.

We recall that the posterior X̂∗
k+l at a generic step l is a function of the observations

zk+1:k+l, which are random variables. In order to obtain the final expression of the
objective function we have to compute the expectation in the last summand in the
above equation. We omit the complete derivation for space reasons; in this article we
report the final result after taking the expectation:

Jk (uk:k+L−1)
.=

L−1∑

l=0

‖ζ (uk+l)‖Mu
+

L∑

l=0

tr
(
MΣ I−1

k+lM
T
Σ

)

+
L∑

l=0

[∥∥EG
k+lX̄k+l − XG

∥∥
Mx

+ tr
(

Qk+l

(
H T

k+l Ī
−1
k+lH

T
k+l + Ω̆−1

v

))]

︸ ︷︷ ︸
(a)

,

(28)
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where X̄k+l is the nominal belief (18), Īk+l is the information matrix of the nominal

belief X̄k+l and Qk+l =
(

EG
k+lI

−1
k+lH

T
k+lΩ̆v

)T
Mx

(
EG

k+lI
−1
k+lH

T
k+lΩ̆v

)
. The first sum

contains the terms penalizing the control actions; the second sum contains terms
penalizing uncertainty (captured by the information matrix Ik+l of the belief); the last

term (a) was derived from E
zk+1:k+l

[∥∥∥EG
k+lX̂

∗
k+l − XG

∥∥∥
Mx

]
and represents the expected

incentive in reaching the goal.Wenotice that the term (a), thus being connected to goal

achievement, also contains a term, tr
(

Qk+l

(
H T

k+l Ī
−1
k+lH

T
k+l + Ω̆−1

v

))
, that depends

on the uncertainty. This termappears becausewedid not assumemaximum likelihood
observations, therefore the random nature of the estimate X̂∗

k+l (as a function of the
random variables zk+1:k+l) is preserved.

3.2 Choice of the Weight Matrices

In this section we discuss how to properly choose the weight matrices Mu, MΣ , and
Mx. Most related work assume thesematrices are given, while in practice their choice
can be scenario dependent and can largely influence the control policy. The matrix
Mu, appearing in the summand (a) of (28) has a very intuitive function: a larger Mu

induces conservative policies that will penalize large controls (or large variations in
the controls, depending on the definition of the function ζ (u)). Consequently, Mu

can be tuned to have smoother trajectories or when it is important to keep the controls
small (e.g., in presence of strict fuel/power constraints).

The choice of the matrices Mx and MΣ is instead less intuitive. A balance between
these two matrices is crucial for letting the robot satisfy the concurrent tasks of
reaching a goal andminimizing the estimation uncertainty. In this section,we propose
a grounded way to select these matrices. For simplicity we first assume that the two
matrices can be written as Mx = αxM̄x and MΣ = √

αΣM̄Σ for some constant and
known matrices M̄x and M̄Σ . For instance, M̄x can simply be a selection matrix that
“extract” the subset of states for which we want to set a goal; similarly M̄Σ can
be a selection matrix extracting from I−1

k+l the marginal covariance that we want to
minimize at planning time. Under these assumption the objective function becomes:

Jk (uk:k+L−1) =
L−1∑

l=0

‖ζ (uk+l)‖Mu
+ αΣ

L∑

l=0

tr
(
M̄Σ I−1

k+lM̄
T
Σ

)

+ αx

[
L∑

l=0

[∥∥EG
k+lX̄k+l − XG

∥∥
M̄x

+ tr
(

Q̄k+l

(
H T

k+l Ī
−1
k+lH

T
k+l + Ω̆−1

v

))]]
.
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with Q̄k+l =
(

EG
k+lI

−1
k+lH

T
k+lΩ̆v

)T
M̄x

(
EG

k+lI
−1
k+lH

T
k+lΩ̆v

)
. The scalar αx controls the

“attraction” towards the goal; similarly αΣ represents the “importance” of minimiz-
ing the uncertainty of the selected states. In order to determine suitable αx and αΣ we
notice that we can divide the cost function by a constant term, without altering the
solution of the optimization problem. Therefore, we divide the cost by (αx + αΣ),
obtaining:

Jk (uk:k+L−1) =
L−1∑

l=0

‖ζ (uk+l)‖M̄u
+ (α)

L∑

l=0

tr
(
M̄Σ I−1

k+lM̄
T
Σ

)

+ (1 − α)

[
L∑

l=0

[∥∥EG
k+lX̄k+l − XG

∥∥
M̄x

+ tr
(

Q̄k+l

(
H T

k+l Ī
−1
k+lH

T
k+l + Ω̆−1

v

))]]
. (29)

where α = αΣ

αx+αΣ
and M̄u = 1

αx+αΣ
Mu. The previous expression highlights the trade-

off between the last two terms in the cost function (uncertainty reduction VS goal
achievement). In order to set α we assume the robot is given an upper bound β on
tr
(
M̄xI−1

k+LM̄T
x

)
(which represents the uncertainty of a selected set of states at the

end of the horizon) and we want to compute α so that this upper bound is satisfied.

Therefore, we set α = tr(M̄xI−1
k+LM̄T

x )
β

such that for values of tr
(
M̄xI−1

k+LM̄T
x

)
close to

the bound β, the ratio α is closer to 1 and the robot will give more importance to the
second summand in (29) (i.e., it will prefer minimizing the uncertainty). Conversely,
when the uncertainty is far from the upper bound, the term (1 − α) will be large and
the robot will prefer reaching the goal. We notice that the quantity tr

(
M̄xI−1

k+LM̄T
x

)

can eventually become larger than β, as we are not imposing a hard constraint on

this term, and for this reason we set α = min
(

tr(M̄xI−1
k+LM̄T

x )
β

, 1
)
.

3.3 Simulation Results

We demonstrate our approach in simulated scenarios in which the robot has to nav-
igate to different goals while operating in an unknown environment, comprising
randomly scattered landmarks. The control is found by minimizing the objective
function (29), according to our dual-layer inference approach. We use a gradient
descent method for optimizing the outer layer and Gauss–Newton for calculating
inference in the inner layer. The number of look-ahead steps (L) is set to 5.

For simplicity we assume the robot can only control its heading angle while
keeping the velocity constant. The control effort ζ (u) in Eq. (29) is therefore defined
as the change in the heading angle. We assume on-board camera and range sensors
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Fig. 3 A mobile robot starts from the configuration a and has to plan a motion strategy to reach a
goal position, while reducing estimation uncertainty. Legend: {1} unknown environment W ; {2}
Goal; {3–4} Actual and estimated trajectories of the robot with 1σ uncertainty bounds; {5} mapped
environment Wk . a Robot trajectory before planning begins. b Trajectory before loop closure.
Planned motion (for L = 5 look ahead steps) is shown by diamond marks. c Final trajectory after
reaching the goal

withmeasurements corrupted byGaussian noisewith standard deviation of 0.5 pixels
and 1 meters, respectively. Using these sensors the robot can detect and measure the
relative positions of nearby landmarks. The corresponding measurements can be
described by the observation model (3), where the subset of states Xo comprises the
robot’s pose and the observed landmark. The motion model is represented by a zero-
mean Gaussian with standard deviation of 0.05 meters in position and 0.5 degrees
in orientation. The matrices M̄x and M̄Σ are set to extract the current robot state and
covariance at each of the look-ahead steps; Mu is chosen to be the identity matrix.

We first present a basic scenario where the robot needs to navigate to a single goal
(Fig. 3). For explanation purposes, in this first example we consider the planning
phase starts from the configuration shown in Fig. 3a. During the first planning steps
the distance to the goal is the dominant component in the objective function (28)
and the calculated control guides the robot towards the goal. However, as the robot
uncertainty increases, the parameter α increases causingmore weight to be placed on
uncertainty reduction. The planner then guides the robot towards previously observed
landmarks in the environment (Fig. 3b). After the robot makes observations of these
landmarks (loop closure), the uncertainty is reduced, hence the parameter α drops to
lower values and more weight is put on guiding the robot to the goal (Fig. 3c).

We now consider a more complicated scenario, where the planning is carried out
from the beginning and the robot has to navigate to a series of goals. The resulting
robot trajectory using our approach is shown in Fig. 4a. As seen, robot uncertainty
exceeds the threshold β twice (on the way to goals 4 and 7), see also Fig. 4b, and
our planning strategy leads it to re-visiting previously observed landmarks. For com-
parison, Fig. 4c shows the trajectory when the objective function does not account
for the uncertainty [i.e., without second and last terms in Eq. (29)]. Neglecting the
uncertainty during planning leads to much larger covariances, as shown in Fig. 4c.
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Fig. 4 Multi-goal planning example. The same notations as in Fig. 3 are used. Resulting trajectories
when planning with and without uncertainty terms in the objective function are shown in a and c,
respectively. b Covariance evolution in the two cases, with the covariance threshold β indicated by
a dashed-dotted line. The drops in the covariance values correspond to loop closure events. d Miss
distance at each of the goals

Moreover, this results in higher estimation errors, which leads to larger miss dis-
tances2 with respect to the goals (Fig. 4d).

4 Conclusion

This work presents an approach for planning in the belief space assuming no prior
knowledge of the environment in which the robot operates. In order to deal with the
uncertainty about the surrounding environment and its state, the robot maintains a
joint belief over its own state and the state of the world; this joint belief is used in the

2The robot considers a goal as achieved when its estimated position coincides with the goal; there-
fore, the miss distance is defined as the mismatch between the goal and the actual position at that
time.
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computation of a suitable control policy, leading to the concept of generalized belief
space (GBS) planning. Our approach for planning in the GBS includes two layers
of inference: the inner layer performs inference to calculate the belief at each of the
look-ahead steps, for a given control action; the outer layer performs inference over
the control, minimizing a suitable objective function. The approach does not assume
maximum likelihood observations and allows planning in a continuous domain (i.e.,
without assuming a finite set of possible control actions). We elucidate on the theo-
retical derivation by presenting an application to a specific family of cost functions
and discussing the policies computed in simulated examples.
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An Online POMDP Solver for Uncertainty
Planning in Dynamic Environment

Hanna Kurniawati and Vinay Yadav

Abstract Motion planning under uncertainty is important for reliable robot oper-
ations in uncertain and dynamic environments. Partially Observable Markov Deci-
sion Process (POMDP) is a general and systematic framework for motion planning
under uncertainty. To cope with dynamic environment well, we often need to modify
the POMDP model during runtime. However, despite recent tremendous advances
in POMDP planning, most solvers are not fast enough to generate a good solution
when the POMDPmodel changes during runtime. Recent progress in online POMDP
solvers have shown promising results. However, most online solvers are based on
replanning, which recompute a solution from scratch at each step, discarding any
solution that has been computed so far, and hence wasting valuable computational
resources. In this paper, we propose a new online POMDP solver, called Adaptive
Belief Tree (ABT), that can reuse and improve existing solution, and update the
solution as needed whenever the POMDP model changes. Given enough time, ABT
converges to the optimal solution of the current POMDPmodel in probability. Prelim-
inary results on three distinct robotics tasks in dynamic environments are promising.
In all test scenarios, ABT generates similar or better solutions faster than the fastest
online POMDP solver today; using an average of less than 50ms of computation
time per step.
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1 Introduction

Motion planning under uncertainty is important for reliable robot operation in imper-
fectly known and dynamic environments. Partially Observable Markov Decision
Process (POMDP) is a general and systematic framework for planning under uncer-
tainty. Motion planning under uncertainty problems can be modelled as POMDPs
quite naturally. However, solving a POMDP problem exactly is computationally
intractable [14]. A lot of effort and tremendous progress have been made in devel-
oping efficient approximate POMDP solvers [5, 6, 11, 15, 16, 19, 21, 24], such
that today, we have POMDP solvers that can solve simple to moderately difficult
motion planning problems within seconds to minutes [7, 8, 12]. However, many of
these solvers are not efficient enough to recompute or update its solution when the
POMDP model changes during runtime. Such changes in the POMDP model are
often required when a robot operates in dynamic environment. This paper proposes
a new approximate POMDP solver that improves and updates its solution online,
following changes in the environment.

In imperfectly known and dynamic environment, a robot rarely knows its exact
state due to errors in control and sensing. POMDPprovides a systematicway to reason
about the best action to performwhen perfect state information is unavailable. It finds
the best action with respect to the set of states that are consistent with the available
information so far. The set of states is represented as a probability distribution, called
a belief b, and the set of all possible beliefs is called the belief space B. A POMDP
solver calculates an optimal policy π∗: B → A that maps a belief in B to an action
in the set A of all possible actions the robot can perform, so as to maximize a
given objective function. An offline POMDP solver computes this mapping prior to
execution, while an online POMDP solver computes the mapping during runtime.

Methods that use POMDP framework to solve planning in imperfectly known
and dynamic environment can be classified into two approaches. The first approach
embeds all possible environments and their dynamics as part of the POMDP model.
It uses an offline POMDP solver to find a good policy, prior to execution. When
the environment and its dynamics are largely unknown, this approach constructs
POMDP models too huge to be solved by even the best offline solver today.

The second approach models only the known part of the environment and its
dynamics (both stochastic and deterministic), and allows the model to change during
execution when more information about the environment becomes available. Key to
the success of this approach is an efficient online POMDP solver that can compute
a good policy during runtime, following changes in the POMDP model.

Online POMDP solvers have advanced significantly over the past few years
[5, 6, 18, 19]. However, most of these solvers [5, 6, 18] are based on replanning,
which recompute the best action to perform from scratch at each step, discarding any
policy that has been computed so far. As a result, these solvers often waste significant
computational resources when changes happen gradually or only to some part of the
environment, which are often the case in robotics tasks.
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This paper proposes a new online POMDP solver, called Adaptive Belief Tree
(ABT), that reuses and improves existing policy at each time step, and update the
policy as needed whenever the POMDPmodel changes. To enable fast policy update,
ABT uses the following two observations. First, a change in the POMDP model is
directly reflected as a change in the robot’s behaviour at a particular set of states.
Second, a change in one optimal mapping π∗(b) from a belief b, may affect the
optimal policy π∗(.) at other beliefs that can reach b. Using insight from these
observations, ABT represents the policy as pairs of belief and action, and explicitly
represents the relation between beliefs, states, and their reachability information, so
that it can quickly identify subset of the policy affected by changes in the POMDP
model and update the policy fast whenever necessary. To quickly generate a good
policy, ABT plans with respect to only a set of representative sampled beliefs. It
represents each belief as a set of state particles, and samples a belief b by sampling
a set of state trajectories from a particle of the given initial belief b0. An effective
strategy for sampling state trajectories enables ABT to converge to an optimal policy
in probability, andquickly generate a goodpolicy. Preliminary results on three distinct
robotics tasks in dynamic environment indicate that ABT can generate similar or
better motion strategies faster than the best online POMDP solver today [19]. In all
three test scenarios, ABT requires an average of less than 400ms of preprocessing
time, and an average of less than 50ms of online computation time per step.

Furthermore, ABT is designed for POMDP problems with continuous state space
and uses a generativemodel. A generativemodel is a black box simulator that enables
us to generate experiences about the system dynamic and behaviour at various dif-
ferent states. By using a generative model, ABT does not need an explicit model on
control error, observation error, and uncertainty about the system dynamics, which
are often difficult to obtain in complex robotics tasks.

2 Related Work

2.1 POMDP Background

APOMDP is defined as a tuple 〈S, A, O, T, Z , R, b0, γ 〉, where S is the set of states,
A is the set of actions, and O is the set of observations. At each step, the agent is in a
state s ∈ S, takes an action a ∈ A, moves from s to an end state s ′ ∈ S, and perceives
an observation o ∈ O . Due to action uncertainty, the system dynamic from s to s ′
is represented as a conditional probability function T (s, a, s ′) = f (s ′|s, a). Further-
more, due to sensing uncertainty, after performing action a and ends at state s ′, the
observation that may be perceived by the agent is represented as a conditional prob-
ability function Z(s ′, a, o) = f (o|s ′, a). At each step, the agent receives a reward
R(s, a), if it takes action a from state s. The agent’s goal is to choose a suitable
sequence of actions that will maximize its expected total reward, while the agent’s
initial belief is denoted as b0. When the sequence of actions has infinite length, we
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specify a discount factor γ ∈ (0, 1) so that the total reward is finite and the problem
is well defined.

In many problems with large state space, explicit representation of the conditional
probability functions T and Z may not be available. However, one can use a gener-
ative model, which is a black box simulator that outputs an observation perceived,
reward received, and next state visited when the agent performs the input action from
the input state.

A POMDP planner computes an optimal policy that maximizes the agent’s
expected total reward. A POMDP policy π : B → A assigns an action a to each
belief b ∈ B. A policy π induces a value function V (b, π) which specifies the
expected total reward of executing policy π from belief b, and is computed as
V (b, π) = E[∑∞

t=0 γ t R(st , at )|b, π ]. A policy can be represented by various rep-
resentations, e.g., policy-graph [3] and pairs of belief and action [23]. However,
most online solvers do not maintain an explicit representation of the policy. Instead,
they calculate the mapping from beliefs to actions on the fly. In contrast, our pro-
posed online solver maintains an explicit representation of a subset of the policy, and
improves and updates the policy on the fly.

To execute a policy π , an agent executes action selection and belief update repeat-
edly. For example, if the agent’s current belief is b, it selects the action referred
to by a = π(b). After the agent performs action a and receives an observation o
according to the observation function Z , it updates b to a new belief b′ given by
b′(s ′) = τ(b, a, o) = ηZ(s ′, a, o)

∫
s∈S T (s, a, s ′)ds where η is a normalization con-

stant. We use generative model and represents each belief with a set of particles. The
belief update is approximated using particle filter.

2.2 Related POMDP Solvers

POMDP is a systematic and general approach for planning under uncertainty.
Although solving a POMDP exactly is computationally intractable [14], the past
few years have seen tremendous increase in the capability of both offline and online
POMDP solvers [11, 19, 21], such that POMDPapproach is nowpractical for solving
simple to moderately difficult motion planning problems.

The fastest offline POMDP solvers today are based on point-based approach
[11, 15, 20, 21]. This approach reduces the complexity of planning in the belief
space B by representing B as a set of sampled beliefs and planning with respect
to this set only. To generate a policy, most point-based POMDPs use value iter-
ation, utilizing the fact that the optimal value function satisfies Bellman equa-
tion. They start from an initial policy, represented as a value function V . And
iteratively perform Bellman backup on V at the sampled beliefs, i.e., V (b) =
maxa∈A

(
R(b, a) + γ

∑
o∈O τ(b, a, o)V̂ ∗(τ (b, a, o))

)
where V̂ ∗(b′) is the current

best value of b′. The iteration is performed until it converges. Over the past few
years, impressive progress have been gained by improving the strategy for sampling
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B [11, 21] and utilizing problem structures [13]. Different approaches have also been
proposed for restricted types of uncertainty, e.g., [17, 24] for Gaussian beliefs.

Many online solvers have been proposed too [18]. One of the fastest general online
POMDP solvers today is POMCP [19]. Starting from the current belief b, POMCP
performs best first search in the belief space. It samples action sequences to quickly
focuses on parts of the belief space that is most promising for generating the optimal
policy from b. As any sampling based method, the sampling strategy is crucial.
POMCP frames the problem of sampling the most promising action sequences as a
problem of balancing exploration and exploitation, often called multi-armed bandit
problem [22], and uses the Upper Confidence Bounds1 (UCB1) algorithm [1] to
select the actions. After POMCP finishes the search, it performs the best action,
updates the robot’s belief, and repeats the procedure until the goal is reached.

Aside from POMCP, various approaches have been proposed for online POMDP
solvers. PUMA [6] and RBSR [5] perform best first search in the belief space, just
as POMCP does. However, instead of solving a multi arm bandit problem, PUMA
and RBSR sample action sequences using heuristics in the state space, assuming
that states are fully observed after an action is performed. The work in [16] plans
with respect to only the most likely observation and then replan at each step. Recent
work, LQG-Obstacles [25] is very fast, but restricts the belief to be Gaussian and is
designed specifically for collision avoidance problems. Our new method is designed
as a general online POMDP solver and the beliefs can be any type of distribution.

When the POMDPmodel changes, in general, the above offline and online solvers
recompute the policy from scratch, wasting all computational effort that have been
performed so far. In contrast, our new solver ABT can reuse and improve the policy,
as well as update it as needed during runtime.

Recent work [10] has proposed a point-based method to modify a pre-computed
policy. However, the time it needs to update a policy is too slow to be practical
for dynamic environment, and the types of model changes that can be handled are
limited to changes in transition, observation, and reward functions. In contrast, our
new method can handle any types of changes in the model, and is fast enough to
update a policy online, as presented in Sect. 5.3.

3 Policy Representation

ABT’s policy representation must support fast identification on which parts of the
policy are affected by changes in the POMDPmodel, and must support fast update of
the policy. To this end, we note two observations. First, a change in any element of the
POMDPmodel can be identified from changes in the robot’s behaviour at a particular
set of states. By definition, any change in the state space can be identified as addition,
reduction, or changes in the types of a set of states. When the transition, observation,
or reward function changes, then in the long run, the results of performing an action,
the observations perceived, or the reward the robot received at a set of states would
change. Therefore, changes in these functions can be identified from changes in the
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robot’s behaviour at a particular set of states, too. Changes in action and observation
spaces will affect the transition and observation functions of a set of states, and
therefore these changes can be identified from the changes in the robot’s behaviour
at a particular set of states too. The second observation is a change in an optimal
policy π∗(b) from a belief b ∈ B may change the optimal policy π∗(.) from other
belief(s) that can reach b.

Utilizing the above observations, ABT represents the policy as pairs of belief
and action, and explicitly represents the relation between beliefs, states, and their
reachability information. This representation helps to quickly identify a subset of the
policy that needs to be updated, and to quickly update it. To maintain the relation,
ABT represents each belief as a set of state particles, and associates each belief b
with state trajectories that reach a particle of b from a particle of the given initial
belief b0. The details of the representation are below.

ABT maintains a set H of sampled episodes. An episode h ∈ H is a sequence of
quadruples (s, a, o, r) of state s ∈ S, action a ∈ A, observation o ∈ O , and immedi-
ate reward r = R(s, a). To sample an episode h, ABT samples an initial state s0 ∈ S
from a given initial belief b0 and selects an action a0 ∈ A. The details of action selec-
tion are discussed in Sect. 4.1. After an action a0 is selected, ABT calls the generative
model to sample an observation o0 ∈ O , an immediate reward r0, and a next state
s1 when the agent performs a0 at s0. ABT inserts the quadruple (s0, a0, o0, r0) as
the first element of h, and iteratively repeats the above steps starting from s1. The
iteration stops after either a terminal state is reached or h has exceeded a certain
length. As a last step, ABT inserts (s,–,–, r) as the last element of h, where s is the
next state sampled by the last call to the generative model and r = R(s) is the reward
of being at state s.

To maintain an explicit relation between beliefs, states, and their reachability
information efficiently, ABT maintains a belief tree, denoted as T , and associates
it with the set of episodes in H . Each node in T represents a belief. For writing
compactness, we refer to the node and the belief it represents interchangeably. The
root of T represents the initial belief b0. Each edge bb′ in T is labelled by a pair of
action and observation a − −o. An edge bb′ with label a − −o means that when a
robot at belief b performs action a and perceives observation o, its next belief would
be b′, i.e., b′ = τ(b, a, o) where b, b′ ∈ B, a ∈ A, and o ∈ O .

The paths in the belief tree T are associated with the episodes in H . Suppose φ is
a path in T and φ = 〈b0, a0, o0, . . . , an, on, bn+1〉, where bi , bn+1 ∈ B, ai ∈ A, and
oi ∈ O for i ∈ [0, n]. Then, φ is associated with the set of episodes Hφ ⊆ H which
consists of all episodes in H that contains 〈(s0, a0, o0, ∗), . . . , (∗, an, on, ∗), (∗,–,–
, ∗)〉, where s0 is any state sampled from b0, ai and oi (i ∈ [0, n]) are the correspond-
ing actions and observations in φ, and ∗means any relevant value. Figure1 illustrates
the relation between an episode in H and a path in the belief tree T . Each episode
in H corresponds to exactly one path of T , but a path of T may be associated with
many episodes.

Each belief in T is represented by a set of particles, which comprises the states
in the corresponding quadruples of the corresponding episodes. Suppose b is a node
at level-l of T (the root has level 0). Suppose Φ(b) is the set of all paths in T
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Fig. 1 Illustration of an
association between an
episode h ∈ H and path in
the belief tree T (s0, a0, o0, r0)

(s1, a2, o2, r2)

...

...

(sn+1,−,−, rn+1)

b0
s0

a0
o0

s1

a1
o1
...

... ...

sn+1

h ∈ H T

...
...

that starts from the root and contains the node b, and Hb = ⋃
φ∈Φ(b) Hφ . Then, b is

approximated with the set of particles {hl .s | h ∈ Hb}, which comprises the state in
the lth quadruple of each episode in Hb (the quadruples are indexed from 0).

The policy π of ABT is embedded in the belief tree T , with

π(b) = argmax
a∈A(E,b)

Q̂(b, a) (1)

and value V (b, π) = max
a∈A(E,b)

Q̂(b, a) (2)

where b ∈ B, E is the set of edges in T , and A(E, b) ⊆ A is the set of actions
that have been used to expand b, i.e., the actions that labelled the out-edges of b
in T . The value Q̂(b, a) denotes the estimated Q-value. Q-value Q(b, a) is the
value of performing action a from belief b and continuing optimally afterwards, i.e.,
Q(b, a) = R(b, a) + γ

∑
o∈O τ(b, a, o)V ∗(τ (b, a, o)). ABT estimates Q(b, a) as

Q̂(b, a) = 1∣∣H(b,a)

∣∣
∑

h∈H(b,a)

V (h, l) (3)

where H(b,a) ⊆ H is the set of all episodes associated with all paths in T that start
from b0 and contains the sequence (b, a), l is the depth level of b in T , and V (h, l)
is the value of an episode h starting from the lth element. V (h, l) is computed as

V (h, l) =
|h|∑

i=l

γ i−l R(hi .s, hi .a) (4)

where γ is the discount factor and R is the reward function. Note that each state in the
lth quadruple of each episode in H(b,a) is a particle of b and the action in that quadru-
ple is the action a. Therefore, it is clear that Q̂(b, a) approximates the first compo-
nent of Q(b, a) well. However, it may seem odd that Eqs. (3) and (4) can approx-
imate the second component of Q(b, a), which is

∑
o∈O τ(b, a, o)V ∗(τ (b, a, o)),
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as V (h, l + 1) for different h may correspond to different policy. It turns out by
using an appropriate action selection strategy when sampling the episodes, one can
ensure that as the number of episodes in H(b,a) increases, V (h, l + 1) converges to∑

o∈O τ(b, a, o)V ∗(τ (b, a, o)) in probability. This convergence result is based on
the convergence result of POMCP [19]. The action selection strategy is discussed in
Sect. 4.1 while the convergence result is discussed in Sect. 4.3.

The above policy representation and value calculation enable ABT to quickly
identify and update the policy following changes in the POMDP model. To identify
which parts of the policy need to be updated, ABT only needs to find the episodes
in H that contain states that are affected by the changes in the POMDP model. To
update the policy, ABT disconnects the association between each affected episode h
and its corresponding nodes in T , revises h according to the new POMDPmodel, and
associates it back with the nodes of T (which may be different than the previously
associated path). Then, ABT updates the values and Q-values of beliefs that have
new association or disassociation with h. Using Eqs. (2)–(4), the value and Q-value
revisions require only simple arithmetic calculation.With proper data structure, these
values can be updated incrementally, andfinding the affected episodes and the process
of association and disassociation can be done fast. Details on the identification and
policy update process are presented in Sect. 4.2.

4 Offline and Online Policy Computation and Update

ABT starts by computing a good approximation to the optimal policy for the a priori
POMDP model, offline. During runtime, if the environment and hence the POMDP
model changes, ABT identifies subset of the policy that needs to be updated and
updates it. Otherwise, ABT improves its current policy. Algorithm1 presents an
overview of ABT.

4.1 Sampling the Episodes

The key strategy in generating an initial policy (GENERATE-POLICY function)
and improving a policy (IMPROVE-POLICY function) are the same, which is in
sampling the episodes. The overall sampling strategy of ABT is in Algorithm2.

To sample a new episode, ABT starts by sampling a particle state s ∈ S from
a given starting belief bstart ∈ B. For the offline policy generation GENERATE-
POLICY function, the starting belief is always the given initial belief, while for
IMPROVE-POLICY, the starting belief is the belief at the current time. After a
state is sampled, ABT selects an action and uses the generative model to sample an
observation, reward, and next state (line 7–15, 20–30).

To select an action from state s ∈ S that corresponds to node b in T , ABT uses
two strategies. First is the UCB strategy [1, 19], which is used when all actions in
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Algorithm 1 Adaptive Belief Tree (b0)
PREPROCESS (OFFLINE)
(H , T ) = GENERATE-POLICY(P0, b0). {Pi is the POMDP model at time-i .}
Let S′ be the set of all sampled states in H , i.e., S′ = {hi .s | i ∈ [0, |h|], h ∈ H}
Let R be a range tree representation of S′.
b = b0.

RUNTIME (ONLINE)
while running do

if Pt 
= Pt−1 then
H ′ = IDENTIFY-AFFECTED-EPISODES(Pt−1, Pt , H , R, T ).
REVISE-EPISODES(Pt , T , b, H ′).
UPDATE-VALUES(T , b, H ′).

while there is still time do
IMPROVE-POLICY(Pt , H , R, T , b).

a = Get best action in T from b.
Perform action a.
o = Get observation.
b = τ (b, a, o).
t = t + 1.

A have been used to expand b at least once (line 8–9). UCB strategy frames the
action selection problem from each node as a multi-arm bandit problem. Multi-arm
bandit problem is a reinforcement learning problem to select a sequence of actions,
so as to maximize the total reward when the rewards for selecting the actions are not
known in advance. This problem is essentially a problem of balancing exploration
and exploitation, i.e., should one uses the action that has shown good performance so
far even though it may not be the best action (exploitation) or should one tries other
actions that have not shown good performance but may actually be the best action
(exploration). To select an action usingUCB strategy, ABT usesUCB1 algorithm [1],
which selects an action according to

a = argmax
a∈A

(
Q̂(b, a) + c

√
log(|Hb|)
|H(b,a)|

)
(5)

where Hb is the set of episodes in H that has been associated with b, H(b,a) is the
set of episodes in H that corresponds to sequence (b, a), |.| is size of a set, and
c is a scalar factor that determines the ratio between exploration and exploitation.
UCB1 algorithm is one of the best multi-arm bandit solutions when the reward of
performing an action follows a stationary distribution, which may not be known in
advance. UCB1 algorithm has also been used for action selection by the fastest online
POMDP solver today [19], and has been shown to enable convergence to the optimal
policy [9, 19].
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Algorithm 2 SAMPLING-AN-EPISODE(P , T , bstart , H , ε)
1: b = bstart
2: Let l be the depth level of node b in T .
3: Let s be a state sampled from b.

The sampled state s is essentially the state at the lth quadruple of an episode h′ ∈ H .
4: Initialize h with the first l elements of h′.
5: Initialize doneMode as UCB.
6: Let A be the action space of POMDP model P .
7: while γ l > ε AND doneMode == UCB do
8: Let A′ be the set of actions that labelled the edges from b in T .
9: if |A′| == |A| then
10: a = UCB-ACTION-SELECTION(T , b).
11: else
12: a = an action sampled from A\A′ uniformly at random.
13: doneMode = Rollout.
14: (o, r, s′) = GenerativeModel(P , s, a).
15: Insert (s, a, o, r) to h.
16: Add hl .s to the set of particles that represent belief node b and associate b with hl .
17: s = s′
18: b = child node of b via an edge labelled a-o. If no such child exist, create the child.
19: l = l + 1.
20: if doneMode == Rollout then
21: Let p be a number sampled uniformly at random from [0, 1].
22: if p < ppolicy then
23: r = ROLLOUT-POLICY(T , s, b).
24: rolloutUsed = policy.
25: else
26: r = ROLLOUT-DET(P , s).
27: rolloutUsed = deterministic.
28: else
29: r = GenerativeModel(P , s).
30: Insert (s,−,−, r) to h.
31: Add hl .s to the set of particles that represent belief node b and associate b with hl .
32: valueImprovement = UPDATE-VALUES(T , h)
33: ppolicy = UPDATE-ROLLOUT-PROB(rolloutUsed, valueImprovement).
34: Insert h to H .

When the condition for using UCB is not satisfied, ABT selects an action towards
satisfying the condition of UCB using rollout strategy. To select an action from state
s ∈ S that corresponds to node b of T , rollout strategy samples an action a uniformly
at random from the set of actions that has not been used to expand b (line 12).

Furthermore, to generate a good policy fast, ABT also tries to compute a good
estimate of the Q-value Q(b, a) in its rollout strategy (line 21–27). A good estimate
of the Q-value will help the UCB strategy to converge faster to the optimal action
once the condition to run UCB strategy has been satisfied. If the time to generate or
improve the policy has run out before the condition to run UCB is satisfied, a good
estimate of the Q-value helps ABT choose a good action.
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To estimate the Q-value during rollout, ABT uses two heuristics. Suppose rollout
strategy selects action a ∈ A to be performed from state s ∈ S that corresponds to
node b of T . The first heuristic to estimate Q(b, a) assumes the problem is deter-
ministic (line 26). ABT uses methods from deterministic motion planning to find a
good solution. It calculates the total reward if the robot starts from state s, performs
action a, and continues optimally, assuming the system is deterministic. This total
reward is the estimated Q-value of this heuristic and the output of ROLLOUT-DET
in line 26. The second heuristic is based on existing policy (line 23). For this purpose,
ABT first uses the generative model to sample an observation o ∈ O , computes the
belief b′ = τ(b, a, o) using particle filter, and finds the node in T nearest to b′. Any
distance metric for distributions can be used. ABT assumes that the state space is a
metric space, which is mostly the case for robotics tasks, and defines the distance
between two beliefs as the expected state space distance assuming the two beliefs are
independent. Suppose the nearest node to b′ is b̂′. If the distance between b′ and b̂′
is more than a given threshold, ABT uses ROLLOUT-DET to estimate the Q-value.
Otherwise, ABT assumes that b′ is equal to b̂′. It simulates the robot’s movement
according to the policy embedded in T starting from b̂′, until a leaf node of T is
reached. The total discounted reward gathered during this simulation becomes this
heuristic’s estimate of the Q-value Q(b, a) and the output of ROLLOUT-POLICY
in line 23.

Now, the question is which heuristic should be used at a particular rollout oper-
ation. This problem is similar to the action selection problem discussed earlier in
this section, and similarly ABT frames the problem of choosing which heuristic to
use as a multi-arm bandit problem. However for simplicity, this selection is valid
globally instead of per belief node as in the case with action selection. Due to this
simplification, we cannot use UCB1, as it assumes that the rewards follow a station-
ary distribution. Instead, we use Exp3 [2], one of the best multi-arm bandit solutions
when no statistical assumptions are made about the underlying reward function. Fur-
thermore, Exp3 has been shown to be competitive to the strategy that uses the best
action at each step. Using Exp3, ABT assigns a probability to each heuristic strategy,
and selects which heuristic to use based on this probability (line 22). The probability
is adapted based on how much the heuristic improves the value of the starting belief
(line 33), as follows

pi (t + 1) = (1 − cr )
wi (t + 1)

w1(t + 1) + w2(t + 1)
+ cr

2

where wi (t + 1) = wi (t) exp

(
cr (max(0, Vt (bstart ) − Vt−1(bstart )))

2pi (t)

)
(6)

where i ∈ [1, 2] indicates the different heuristics, t is the current time step, and
cr ∈ (0, 1) is the ratio between exploration and exploitation.
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4.2 Handling Changes in the POMDP Model

When the POMDP model changes, ABT identifies a subset of the policy that is
affected by the changes (IDENTIFY-AFFECTED-EPISODES function) and updates
it (REVISE-EPISODES and UPDATE-VALUES functions).

To identify a subset of the policy that are affected by changes in the POMDP
model, ABT needs to identify the set Sch ⊆ S of states affected by the changes, i.e.,
all states s ∈ S where the robot’s behaviour in s changes. In this paper, we do not
focus on how to identify changes in the POMDP model. Instead, we assume that
either changes in the POMDP model can be identified easily by identifying changes
in the environment map, or the user provides information on the set of affected
states Sch .

Once the set Sch of affected states is known, ABT finds the set of episodes
affected by the changes. An episode h ∈ H is affected by the changes in the
POMDP model if at least one of its state element is affected by the changes, i.e.,
∃ i ∈ [0, |h|] hi .s ∈ Sch .

To facilitate fast identification of affected episodes, ABT structures the set S′ ⊆ S
of all sampled states, i.e., the set of all states in each sampled episode S′ = {hi .s | i ∈
[0, |h|], h ∈ H}, in a range tree denoted as R. Since multiple episodes may contain
the same state,ABT labels each state s ∈ S′ with a set of two-tuple (h, idx) indicating
which episodes h of H and which index idx element of h contain s.

To identify episodes in H that are affected by the changes in the POMDP model,
ABT finds the intersection between the set Sch of affected states and the set S′ of
sampled states. For this purpose, ABT constructs a bounding rectangle for each
connected component of Sch . Here, rectangle is used in a general sense, referring
to hyper-rectangle when the dimension of S is more than two. Then, ABT solves
a rectangular query on the range tree R for each bounding rectangle and checks if
the states resulting from the rectangular queries are indeed in Sch . The results of the
rectangular queries that lie in Sch are sampled states that are affected by the changes
in the POMDP model. The two-tuple labels associated with these sampled states
indicate the episodes that are affected by the changes in the POMDP model.

Assuming the range tree has been constructed, the above identification proce-
dure takes O

(
logdim(S) |S′| + k + |H ′|), where dim(S) is the dimension of the state

space S and k is the total number of states outputted by all rectangular range
queries [4]. The first construction of the range tree, which happens offline, takes
O(|S′

0| logdim(S)−1 |S′
0|), where S′

0 is the set of all sampled states right after the offline
policy generation. During runtime, the time to insert the state of the newly sampled
quadruple to the range tree is O(logdim(S)−1 |S′

t |), where S′
t is the set of all sampled

states at time t .
Once the set H ′ ⊆ H of affected episodes are identified, ABT revises affected

elements of all episodes in H ′ according to the new POMDPmodel. Suppose h ∈ H ′
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is an affected episode to be revised. First, ABT finds the lowest element index idx
of h where the state is affected by model changes. Then, ABT revises the episode
starting from element index idxu = max(0, idx − 1) of h until the last element.
When idxu = 0, ABT erases the episode h from H , because in this case the entire
episode needs to be revised, which means the episode is not reusable and the results
would be similar as if ABT samples an entirely new episode. If idxu > 0, ABT uses
the generative model to re-sample the sequence of observations perceived, rewards
received, and next states visited, when the sequence of actions from element idxu

until the last element of h is performed, starting from the state in element idxu

of h. When this sequence of actions is obviously sub-optimal, e.g., when it causes
the robot to collide with a newly added obstacle, ABT uses heuristics to modify
the sequence of actions. The heuristics is the same as that used in ROLLOUT-DET
(line 26 of Algorithm2). It assumes the problem is deterministic and uses methods
from deterministic motion planning to find a good sequence of actions. Finally,
ABT replaces the content of the quadruples of h with the re-sampled sequence of
observations, rewards, and next states, at the respective indices. This revision of
h ∈ H ′ triggers re-computation of the values and Q-values of all beliefs in T that
correspond to h, and hence update the policy embedded in T .

4.3 Convergence to an Optimal Policy

ABT converges in probability to the optimal policy from the current belief under the
current POMDP model.

First, let us discuss the case when the POMDP model does not change. Key
to ABT’s convergence is the strategy for sampling the episodes H (Sect. 4.1), in
particular the action selection strategy. ABT frames the problem of selecting an
action when sampling an episode, as a multi-arm bandit problem and uses UCB1
algorithm. This action selection strategy has been proven to enable convergence to
the optimal policy in probability, regardless of the rollout strategy being used [19].
In fact, [19] has shown that Q̂(b, a) will converge to the optimal Q-value with a rate
of O(log(|HΓ (b)|)/|HΦ(b)|), where HΦ(b) ⊆ H is the set of episodes that correspond
to paths in T that starts from b0 and contains node b, and |.| is the size of a set. When
Q̂(b, a) converges to the optimal Q-value, the value V̂ (b) converges to the optimal
value function and the corresponding π(b) converges to the optimal policy.

When the POMDPmodel changes, the existing policy that has been revised can be
considered as an initial policy. When enough time is given to improve the policy, the
number of sampled episodes keeps increasing, such that the quality of the policy will
eventually be dominated by the results of the episode sampling strategy. Therefore,
the above results remain valid when the POMDP model changes.
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5 Experiments

5.1 Robotics Tasks

We have tested ABT on three robotics tasks that require the POMDP model to be
modified several times during runtime. To ensure that changes in the environment
affect the solution to the problem regardless of how fast or slow a solver is, we define
changes in terms of time steps. The three test scenarios are as follows.

Underwater navigation (Fig. 2). An Autonomous Underwater Vehicle (AUV) nav-
igates in an environment populated by obstacles and vortices that are not known a
priori. In the beginning, we only know the start and goal regions, and the positions of
underwater beacons where the AUV can localize perfectly (labelled ‘O’). During run
time, at time step 10, the obstacles (dark grey) become known. These obstacles pos-
sess unique features that can be used by the AUV to localize itself, but at the same
time obstruct some of the underwater beacons. To reflect these new information,
the POMDP model is modified; the number of states decreases while the number
of observations increases. At time step 20, the vortex (light grey with cross mark)
becomes known. The POMDP model again changes to reflect the vortex.

The AUV may start from one of the two possible regions labelled ‘S’ and needs
to reach the goal region labelled ‘G’ while avoiding obstacles and being dragged
in a vortex region. The environment is represented as a uniform grid of size 51 ×
52. At each step, the AUV can move one cell in 5 directions, i.e., East, North,
South, Northeast, and Southeast. Due to underwater current, the AUV movement is
accurate only 80% of the time. The rest of the time, it reaches the left or right of the
intended destination with equal probability. The AUV does not have a GPS, but can
localize perfectly at cellsmarked by ‘O’.At other cells, no observations are perceived.

Fig. 2 Underwater
navigation.
|St=0...9| = 2, 652,
|St≥10| = 2, 274,
|A| = 5,
|Ot=0...9| = 104,
|Ot=10...19| = 142,
|Ot≥20| = 138.
Black line is a path the robot
follows when using ABT
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TheAUVreceives a high reward for reaching the goal, a small penalty for every action
taken, and a high penalty for being in the vortex region.

Homecare (Fig. 3). A robot is deployed for caretaking purposes in a home environ-
ment. The robot needs to find and attend to an elderly whenever she needs assistance.
The elderly moves around in the house, starting from one of the regions labelled ‘T’.
Her motion is non-deterministic: At each step, she may pause or continue following
one of several paths (marked by dashed line). She is likely to stop for longer time in
places marked ‘W’, which represents washroom, regions near dining table, TV, or
refrigerator. At time step 30, 60, 90, and 120, new furnitures and appliances where
the elderly may pause longer are added (labelled ‘W’). To reflect these changes, the
transition function of the POMDP model is modified accordingly.

The environment is populated by obstacles (dark grey) and is represented as a
uniform grid of size 50 × 50. The robot starts from a region marked by ‘S’. At each
step, the robot may stay or move one cell in one of the 8 wind directions. Its motion
is accurate only 80% of the time. The rest of the time, it reaches the left or right of
the intended destination with equal probability. The elderly calls the robot whenever
assistance is needed and turns off the call when assistance is no longer needed.When
a call is made, the elderly pause at her current location until the robot comes or until
assistance is no longer needed. The robot receives a high reward whenever it reaches
the elderly when assistance is still needed. A small penalty is imposed for everymove
the robot takes to discourage it from wasting energy. The robot has access to four
types of observations. First is a GPS. Second is a visibility sensor that enables the
robot to localize the elderly exactly if she is within 1 cell away from the robot. Third
is from four sensors mounted on the ceiling. These sensors divide the home into four
equal regions and can identify which region the elderly is in with 90% accuracy.
The rest of the time, the sensor wrongly identifies the region where the elderly is in
with equal probability. Last is observation on whether the elderly requires assistance,
which is 100% accurate.

Fig. 3 Homecare.
|S| = 1, 926, 912,
|A| = 9,
|O| = 200, 000
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Fig. 4 Target finding.
|S| = 923, 520,
|A| = 9,
|O| = 100, 000.

Target finding (Fig. 4). This problem is similar to homecare, but here the goal is for
the robot to quickly find the elderly, while she is moving in the house. The environ-
ment is slightly more complex than homecare, due to additional obstacles. Similar
to homecare, the elderly behaviour changes with the addition of new furnitures and
appliances. The changes (time step 30 and 60) are reflected in the transition func-
tion. The robot’s dynamics are the same as in homecare. The robot’s observations
are also the same as homecare, but without observation on whether the elderly needs
assistance.

5.2 Experimental Setup

We implement ABT in C++ and test it on the above tasks. To calculate the quality
of the motion strategies generated by ABT, we estimate the expected total reward of
using ABT to solve each task. To this end, for each task, we first ran a few trial runs
to determine the best parameters for ABT to use. Then, we use the best parameters
for each task to generate 30 different offline policies. Finally, for each task and each
policy, we run 100 simulation runs and compute the total reward of each simulation.
The average of these 3,000 simulation runs is the estimated expected total reward.

As a comparator, we also apply POMCP [19], the fastest online POMDP solver
today, on the above tasks. For POMCP, we use the software released by the original
author, which is written in C++. Similar to ABT, for each task, we first ran a few trial
runs to determine the best parameters for POMCP to use. These parameters include
the use of additional heuristic to help POMCP’s rollout function performs better
(knowledge option in POMCP software). We use the best parameters to run 500
simulation runs for each task. The average of these simulation runs is the estimated
expected total reward generated by POMCP for solving the task.
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All experiments are conducted in a PCwith IntelXeonE5-1620 3.6GHzprocessor
and 16GB RAM.

5.3 Results

The results of ABT and POMCP are in Table1. All values in Table1 are in the
form of average ±0.95 confidence interval. POMCP recomputes the solution at each
step using 1,024 particles (note: The POMCP s/w always recomputes from scratch).
ABT improves the solution using an additional 1,000 or 2,500 unweighted particles
per step. The first column shows the expected total discounted reward. The second
column shows the time ABT uses for preprocessing, to generate an initial policy
for the a priori POMDP model. POMCP does not perform any preprocessing. The
last column shows the average online computation time ABT and POMCP use at
each step. The average time per step for ABT includes the time to improve existing
policy and to update the policy when the POMDP model changes. The average time
to perform one policy update for underwater navigation is (87.42 ± 1.13)ms, while
the average policy update of all ABT runs for homecare and target finding are less
than 1.5ms, which is below the timer accuracy of our computer system (4ms).

The results show that in all three scenarios, ABT significantly outperforms
POMCP. It can generate similar or better motion strategies up to 120× faster than
POMCP. By reusing existing policy, ABT can focus its search faster on parts of the

Table 1 Performance comparison

Total discounted
reward

Offline computation
time (ms)

Online computation
time
Average time/step
(ms)

Underwater navigation

POMCPa 138.98 ± 47.77 – 754.00 ± 11.23

ABTb 185.50 ± 38.23 364.00 ± 45.96 42.90 ± 0.25

Homecare

POMCPa 2,251.04 ± 275.98 – 1,933.75 ± 13.80

ABTb 2,297.34 ± 102.91 63.33 ± 5.82 16.12 ± 0.11

ABTc 2,509.38 ± 104.53 63.33 ± 5.82 39.98 ± 0.15

Target finding

POMCPa 2,237.12 ± 142.32 – 1,221.95 ± 6.59

ABTb 2,284.69 ± 60.28 63.00 ± 5.65 15.12 ± 0.16

ABTc 2,594.35 ± 60.28 63.00 ± 5.65 44.61 ± 0.33
aUse 1,024 particles/step
bImprove with 1,000 particles/step
cImprove with 2,500 particles/step
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belief space that are most promising for generating the best action strategy from the
current belief under the current POMDP model.

In underwater navigation, ABT requires more offline and online computation
time, compared to homecare and target finding, even though the size of state, action,
and observation spaces are smaller. The reason is underwater navigation requires
longer planning horizon and has more complex geometry, compared to the other two
problems.As a result, it takesmore time to compute the deterministicmotionplanning
heuristic, one of the heuristics used to estimate the Q-value (step 26 of Algorithm2).
This computation is also the reasonwhy policy update time for underwater navigation
takes much longer than the other two problems. A more efficient implementation of
the deterministic motion planner will reduce the offline and online computation time
of underwater navigation.

6 Summary

This paper proposes a new online POMDP solver, called ABT, that reuses and
improves existing policy, and updates the policy as needed whenever the POMDP
model changes. It is designed for POMDP problems with continuous state space
and uses a generative model. We have successfully tested ABT on three different
robotics tasks in dynamic environment, where each task requires the POMDPmodel
to change several times during runtime, so as to reflect the environment correctly.
Simulation results on these test scenarios show that ABT generates similar or bet-
ter motion strategies faster than the fastest online POMDP solver today. In all test
scenarios, ABT requires an average of less than 400ms of preprocessing time, and
an average of less than 50ms of online computation time at each step. These results
suggest that ABT brings POMDP a step closer to become practical for non-trivial
robotics tasks in uncertain and dynamic environments, even when the environment
dynamics are unknown in advance, a class of robotics tasks often deemed too difficult
to be solved using POMDP approach.
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An Enzyme-Inspired Approach to Stochastic
Allocation of Robotic Swarms Around
Boundaries
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Abstract Thiswork presents a novel control approach for allocating a robotic swarm
among boundaries. It represents the first step toward developing a methodology for
encounter-based swarm allocation that incorporates rigorously characterized spatial
effects in the system without requiring analytical expressions for encounter rates.
Our approach utilizes a macroscopic model of the swarm population dynamics to
design stochastic robot control policies that result in target allocations of robots
to the boundaries of regions of different types. The control policies use only local
information and have provable guarantees on the collective swarm behavior. We
analytically derive the relationship between the stochastic control policies and target
allocations for a scenario in which circular robots avoid collisions with each other,
bind to boundaries of disk-shaped regions, and command bound robots to unbind.
We validate this relationship in simulation and show that it is robust to environmental
changes, such as a change in the number or size of robots and disks.
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1 Introduction

In recent years, there has been an increasing focus on the development of robotic
swarms [5] for performing tasks that require high degrees of parallelism, redundancy
in system components and behaviors, and adaptability to changes in environmental
conditions and failures. These systems would be composed of hundreds or thousands
of relatively expendable, resource-constrained robots that operate with little-to-no
human supervision. Advances in computing, sensing, actuation, power, communi-
cation, and control technologies are currently enabling the production of affordable
robots that are designed to act in collectives, both in research and education [4, 20].
In the past few years, the miniaturization of these technologies has led to a plethora
of novel platforms for swarm applications, including micro quadrotors [15] and
flapping-wing micro aerial vehicles (MAVs) [27]. At even smaller scales, advances
in MEMS, low-power VLSI, and nanotechnology are facilitating the development
of sub-millimeter self-powered robots [25].

Many potential swarmapplicationswill require the self-organization of robots into
groups of different sizes around various regions or objects in their environment (see
Fig. 1). For instance, a swarm may be tasked to transport multiple payloads that are
each too heavy for a single robot to retrieve, which would necessitate that enough
robots aggregate around each load to move it to a target destination, possibly at a
desired speed. However, simply allocating robots to saturation on each payload may
be inefficient. Similarly, surveillance tasksmay require a swarm to surround different
types of regions, such as structure perimeters, to achieve particular degrees of sensor
coverage. Other possible applications include environmental monitoring and map-
ping, automated construction and manufacturing, and disaster response tasks such as
cordoning off a hazardous area or extinguishing a fire. At the micro- and nano-scale,
applications include micro-object manipulation, microfactories and nanofactories,
and medical monitoring, diagnosis, and treatment. For example, nano-scale robots

Fig. 1 Example scenario
with two types of
disk-shaped regions, labeled
1 and 2. The unlabeled
circles are robots that are
allocating themselves to the
region boundaries
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could collect in desired proportions around objects that are transparent to macro-
scopic sensing technologies. If the proportions of nano-scale robots were detectable,
then the presence of the objects could be inferred.

In order for robotic swarms to reliably carry out these tasks, a rigorous method-
ology is needed for synthesizing individual robot behaviors that provably result in
target robot allocations around boundaries. The swarm control framework must be
scalable to arbitrary robot population sizes and accommodate possibly extreme lim-
itations on each robot’s sensing, communication, and computation abilities. It must
also account for stochasticity arising from noise due to sensor and actuator errors;
inherent randomness in robot encounters with each other andwith environmental fea-
tures; and, for nanorobots, the effects of Brownian motion and chemical interactions
at scales below tens of micrometers [9].

In this work, we present our first efforts toward developing a control framework
with the aforementioned properties for the problem of allocating a robotic swarm in
target group sizes around the boundaries of disjoint, stationary regions of different
types. For simplicity, we consider only disk-shaped regions here, which we refer to
as disks, but this work can be extended to other region shapes. The robots have no
prior information about the disks and they use only local sensing and local commu-
nication, encountering the disks during the course of random walks. Disk types may
be categorized according to physical or subjective properties; for instance, size or
weight if the disks are payloads to be transported, or relative surveillance value if
they are areas to be monitored. Figure1 depicts an example scenario in which the
objective is to attain an average allocation of three robots per type-1 disk and one
robot per type-2 disk. Stochastic binding and unbinding behaviors of the robots will
result in fluctuations around these target allocations, as illustrated by the variation in
number of robots bound to each disk type.

We employ a top–down approach to synthesizing robot control policies that pro-
duce target allocations among the disks with probabilistic guarantees on perfor-
mance. We represent the stochastic robot interactions with disks and with each other
as a well-mixed chemical reaction network (CRN). The robot-to-robot interactions
consist of an enzyme-inspired behavior, implemented at the disk boundaries, that
greatly reduces the dependence of the allocation strategy on the encounter rates,
the difficult-to-characterize probabilities per unit time that a robot encounters an
occupied or unoccupied section of a disk boundary. This behavior also decouples
allocation tasks that may be occurring in parallel. The CRN formulation allows us
to abstract the system to a macroscopic population model, a set of ordinary differ-
ential equations (ODEs) that is amenable to analysis and control. Our approach can
be implemented by using a supervisory agent to design the model parameters for a
particular global objective and broadcast them to the robots. The robots use these
parameters to define their stochastic decision-making policies, and the resulting col-
lective behavior follows the macroscopic prediction in expectation.
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Through agent-basedNetLogo [26] simulations1 of amicroscopicmodel of robots
interacting with disks and other robots, we have validated that the simulated system
retains all of the qualitative features of the predictions of the macroscopic model
and is robust to environmental parameter variations. That is, a single control strategy
can be implemented based on the geometric properties of a single robot and a single
disk, and the equilibrium occupancy levels of robots around disks will be invariant
to changes in the total numbers of robots, disks, and disk types, as well as robust to
changes in robot speed (e.g., due to battery decay). Hence, the control strategy need
not be re-tuned if the environment around the robot changes over time.

1.1 Related Work

Similar to our swarm allocation strategy, much existing work on understanding and
controlling robotic swarm behaviors relies on developing an accurate macroscopic
model of the population dynamics. The model’s dimensionality is independent of
the swarm size, which facilitates quick simulation and a scalable control approach.
Previous work has addressed stochastic approaches to swarm robotic task allocation,
in which the robot task-switching rates are optimized using non-spatial macroscopic
models that describe the time evolution of the robot population in each state [1, 6,
16, 18, 23]. Non-spatial swarm models have also been used to optimize stochastic
robot behaviors in problems of robotic assembly of parts into products and self-
assemblyvia binding through randomcollisions [10, 14, 19, 22]. Spatialmacroscopic
models of swarms that describe robot deterministic and random motion in addition
to stochastic task switching have also been developed recently [8, 12, 24].

The utility of the macroscopic model in these works hinges on the ability to
accurately determine the non-tunable components of the model parameters. Specifi-
cally, in applications where the model captures random interactions between entities
in the system, these components are the corresponding encounter rates. However,
encounter rates can often be determined only through simulation [11, 13] because
the robot motion pattern and sensor footprint and the environment configuration can
induce unpredictable spatially dependent effects, or simply spatial effects, on the
frequency of robot encounters with other system entities. Encounter-rate formulas
based on geometric parameters have been used in previous work on macroscopic
swarm modeling of systems in which robots encounter objects that are small [17] or
large (and elongated) [7] relative to them. However, these formulas can be applied
only for environments with low densities of robots and objects in which robots are
uniformly spatially distributed at all times, which is ensured when robots execute
random walks and the objects do not bias the robots’ movements. Our scenario vio-
lates these assumptions in that the encountered objects are adjacent to one another
and thus not distributed at low density. The implausibility of deriving analytical solu-

1To obtain the code for the simulations presented in this paper, contact Dr. Theodore Pavlic (email
tpavlic@asu.edu).
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tions of encounter rates for our scenario motivated us to find a way of controlling the
swarm without knowledge of these rates while still using a macroscopic model.

2 Robot Controller

Weassume that each robot has a small sensing and communication radius. Evenwhen
communication is possible, it may be difficult for a robot to identify the location of
the source of a message. Consequently, we propose a control strategy that achieves a
desired average allocation around each type of disk using only local robot–robot and
robot–disk interactions. The controller for each robot, shown in Fig. 2, incorporates:

Robot movement: Robots move according to a correlated random walk (CRW)
in order to achieve approximately uniform distributions throughout empty space.
That is, each robot moves straight ahead in a short segment and then turns to a
random angle before repeating. If this assumption of spatial homogeneity is vio-
lated, then different regions of spacemay approach equilibrium at faster rates than
others. However, the limiting average allocations will be robust to inhomogeneity
of robot density.

Robot–disk interactions: Each robot can identify the type of disk that it encoun-
ters. The robot then chooses to bind to that disk with probability pb that depends
on disk type; otherwise, the robot ignores the encounter and continues its CRW.

Robot–robot interactions: Upon encountering another robot, a robot can identify
whether it is an unbound robot or a robot that is bound to a disk. If it encounters an
unbound robot, the robot executes a collision avoidancemaneuver. If it encounters
a bound robot, the robot chooses to command that robot to unbind based on a
probability pu that depends on the disk type; otherwise, the robot ignores the
encounter and continues its CRW.

We do not specify a behavior in which robots unbind spontaneously at a certain
probability rate. Robots either probabilistically choose to bind to encountered disks

Fig. 2 Diagram of control flow. Robots randomly cycle through searching and encountering robots
and unbound zones. On encountering those disk regions, they probabilistically choose to bind
to unbound regions or tell bound robots to unbind. On encountering unbound robots, they avoid
collisions. Probabilities can be implemented with a pseudo-random number R ∈ unif(0, 1)
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or stochastically command other robots to unbind from disks. If a bound robot is
never encountered by a free robot, it will never unbind from the disk.

3 Microscopic Model: Enzymatic Chemical Reaction
Network

The robot–disk system described in Sect. 2 resembles a gas made up of species of
free robots and disk zones that are either bound or unbound. For simplicity, we
only consider one disk type here; however, we will show how these results naturally
extend to an arbitrary number of disk types. The corresponding well-mixed chemical
reaction network (CRN) for the single-type case is:

r + U
pbeu−−→ B (1a)

r + B
pueb−−→ U + 2r (1b)

where r represents the free-robot species,B represents bound zones, andU represents
unbound zones. The mass-action rate constants pbeu and pueb include:

eu: The probability per unit time that a single free robot will encounter a single
unbound zone. This encounter rate is an environmental parameter.

eb: The probability per unit time that a single free robot will encounter a single
bound zone. This encounter rate is an environmental parameter.

pb: The probability that a free robot will bind to an unbound zone given that it has
just encountered it. This parameter is under the control of the designer.

pu: The probability that a free robot will command a bound robot to unbind given
that the free robot has just encountered the bound zone. This parameter is under
the control of the designer.

Reverse reactions are necessary to stabilize unique non-trivial equilibria. Without
a reverse reaction, the reaction in Eq. (1a) would cause the system to reach trivial
saturation of bound zones. In other examples in stochastic robotics (e.g. [1–3, 14,
19, 21]), event-driven forward reactions like Eq. (1a) are accompanied with delay-
driven reverse reactions—robots have a tendency to decay back into earlier behav-
ioral modes. Instead of implementing the reverse reactions as decay processes, we
implement the reverse direction with the event-driven enzymatic reaction in Eq. (1b).
That is, the free robot that encounters the bound zone in Eq. (1b) is not consumed by
the reaction; it is analogous to an enzyme which rapidly increases the decay rate of
bound zones. As we will show, because both reactions are event driven, the expected
equilibrium distributions will vary with the ratio eb/eu as opposed to the absolute
encounter rates. In general, the absolute encounter rates eb and eu will change with
robot density, total number of zones, and robot speed (which itself can change over
time with battery fatigue). However, the ratio eb/eu, and thus the equilibrium distri-
bution, will be invariant to these changes.
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4 Macroscopic Model: Concentration Fields
of Zones and Robots

From the theory ofmass-action kinetics inwell-mixed gases, a smooth concentration-
field approximation of the CRN in Eq. (1) for large populations is the multi-affine
system ⎧

⎪⎨

⎪⎩

ṙ = puebrB − pbeurU

U̇ = puebrB − pbeurU

Ḃ = pbeurU − puebrB

(2)

where r, U, and B represent the number of free robots, unbound zones, and bound
zones, respectively, for a given arena (i.e., concentrations in a fixed volume size).
The system clearly has a continuum of trivial equilibria characterized by r = 0,
which represents the total depletion of free robots. Moreover, because this system is
continuous, the set {r : r > 0} is positively invariant; if the initial concentration of
free robots is positive, then the concentration will remain positive indefinitely. Thus,
assuming non-zero mass-action rate constants, there is an additional equilibrium
(r, U, B) = (r∗, U∗, B∗) where r∗ > 0 and

B∗

U∗ = pbeu

pueb
or, equivalently,

B∗

B∗ + U∗ = pbeu

pbeu + pueb
=

pb

pu

pb

pu
+ eb

eu

. (3)

Let B0, U0, and r0 represent the initial number of bound zones, unbound zones, and
free robots, respectively. Noting that U̇ = ṙ and Ḃ = −ṙ, it must be the case that
B∗ +U∗ = B0 +U0. Additionally, the third-order system in Eq. (2) can be re-written
as a first-order differential equation

ṙ = puebr(

B︷ ︸︸ ︷
B0 − (r − r0)) − pbeur(

U︷ ︸︸ ︷
U0 + (r − r0))

= ((B0 + r0)pueb − (U0 − r0)pbeu)r − (pbeu + pueb)r
2

(4)

representing the dynamics of number of free robots. Under the assumption of non-
zero mass-action rate constants, the non-trivial equilibrium at r = r∗ > 0 is such
that

r∗ = (B0 + r0)
pueb

pbeu + pueb
− (U0 − r0)

pbeu

pbeu + pueb
.

So, by Eq. (3) and because B∗ + U∗ = B0 + U0,

r∗ = (B0 + r0)

(
1 − B∗

B0 + U0

)
− (U0 − r0)

B∗

B0 + U0

which is positive and asymptotically stable so long as B0 + r0 > B∗. That is, so
long as the total number of free and bound robots r0 + B0 is larger than the pre-
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dicted equilibrium number of bound robots B∗, the (r∗, U∗, B∗) equilibrium will be
asymptotically stable with r∗ > 0. In other words, from Eq. (3) and the condition
that B0 + r0 > B∗, the system in Eq. (1) has an asymptotically stable equilibrium
described by

(r, B, U) =
{

(r∗, B∗, U∗) if r0 + B0 > B∗,
(0, U0 − r0, B0 + r0) otherwise.

(5)

So the system is driven by the imbalance between fluxes to and from bound and
unbound zones; it comes to rest when enough free robots are converted into bound
zones to restore flux balance or when the pool of free robots is totally depleted.

4.1 High-Population Linear Approximation

Due to its quadratic structure, Eq. (4) can be solved explicitly. For any t > 0,

r(t) = r∗ r0
r0 + (r∗ − r0) exp(−r∗(pbeu + pueb)t)

,

which, for r0 � 0, is essentially constant. That is, r(t) ≈ r∗ ≈ r0 for r0 � 0.
Consequently, for r0 � 0, the multi-affine system in Eq. (2) that approximates the
bimolecular CRN in Eq. (1) can be viewed as the linear system

{
U̇ = puebr0B − pbeur0U

Ḃ = pbeur0U − puebr0B
that models the unimolecular

U
pbeur0−−−→ B

B
puebr0−−−→ U

. (6)

In this r0 � 0 regime, the number of free robots scales the per-zone encounter rates.
Moreover, although the linear system in Eq. (6) has an equilibrium in Eq. (3) that is
independent of r0, the time constant of the system is

1

(pbeu + pueb)r0
. (7)

Thus, increasing r0 increases the total speed of the system but has no impact on the
equilibrium allocation of robots to disks.

4.2 Multiple Disk Types: Decoupled Analysis and Control

For any number of zones, there is some sufficiently large initial number of free robots
r0 that satisfies the condition that B0 + r0 > B∗ and thus guarantees the stability of
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a non-trivial equilibrium zone concentration described by Eq. (3), which is invariant
to changes in r0. So if the pool of free robots is sufficiently large, the equilibrium
analysis of a system with multiple disk types can be performed independently for
each disk type.

For example, if there are n disk types and the number of free robots r0 is initially
greater than the total number of unbound zones across all disk types, then the con-
centration of bound zones Bi and unbound zones Ui on disk type i ∈ {1, 2, . . . , n}
at equilibrium is such that Bi/Ui = (ei

u/ei
b)(p

i
b/pi

u) where ei
u, pi

b, ei
b, and pi

u are the
encounter rates and reaction probabilities specialized for type i. That is, the equilib-
rium analysis for any type is decoupled from the analysis of any other type.

Although the multiple types have a coupled effect on convergence rate and tran-
sient dynamics in general, the equilibrium allocations can be predicted in isolation.
So for the remainder of this paper, we assume a sufficiently large pool of robots to
meet subjective convergence time constraints for an arbitrary number of disk types.
Moreover, we will only explicitly discuss design for a single disk type; it is implied
that the process is identical for multiple coexisting types.

4.3 Corrections for Spatial Effects on Boundaries

In principle, robots can be organized around a disk to reach 100% allocation (i.e.,
B/(B + U) = 1). However, in practice, it is likely that two robots interacting sto-
chastically with a disk will bind with non-zero inter-robot space between them that
is nevertheless too small for another robot to encounter. So although the amount of
unbound space on a disk may be large, the actual number of unbound zones avail-
able for additional binding may be small. Thus, the maximum value of B/(B + U)

will be less than unity; even a (pb, pu) = (1, 0) policy will saturate with free space
remaining on disks. Moreover, even well before saturation, some amount of free
space will be inaccessible for free robots to bind to because it will be too close to
existing bound robots. Thus, a theory is needed to model the non-linear reduction in
remaining unbound space as robots bind to disks.

In the following, assume that all linear distances are given in units of the arc length
occupied by a robot when bound to a disk. That is, each robot binds to 1 unit of arc
length, and so the theoretical maximum number of robots bound to a disk is equal to
the disk’s circumference. However, because robots are not equipped with the ability
to cluster together, the actual maximum number of bound robots will be much lower.
Consider:

• A disk with a single robot bound to it. An incoming unbound robot will not be
able to discover disk space adjacent to a bound robot unless its center is at least
0.5 units away from the edge of the bound robot. So the bound robot effectively
occupies both its own 1 unit of arc space plus an additional 1 unit of arc length
adjacent to it. Additionally, if the incoming unbound robot maintains a distance a
between itself and every other robot (e.g., to avoid collisions), then the additional
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space occupied by the bound robot increases to δmax � 1+ 2a units because there
are 0.5 + a units of additional occupation on both sides of the bound robot.

• A disk with many robots bound to it. If two robots have less than 1+ 2a unbound
arc length between them, an incoming unbound robot will not be able to discover
it. However, these small distances can be no smaller than the avoidance distance
δmin � a.

With this in mind, we partition the space between robots into sections no longer than
δmax � 1 + 2a, as shown in Fig. 3. We then define the quantity δ to be the mean
size of the partitioned inter-robot spaces. Thus, although truncation of an inter-robot
space that is only slightly larger than 1 + 2a can create a truncated space smaller
than a, the mean δ is bounded above and below such that

δmin = a ≤ δ ≤ 1 + 2a = δmax.

The statistic δ is actually a function δ : [0, 1] → [a, 1+ 2a] that maps an allocation
ratio B/(U +B) to the mean additional arc occupancy per bound zone δ(B/(U +B)),
which we abbreviate to δ here for convenience. At low allocation ratios, δ ≈ 1 +
2a because the space between bound robots is large. Consequently, there will be
more encounters with bound zones and fewer encounters with unbound zones than
otherwise expected. Similarly, at high allocation ratios, δ ≈ a. So although bound
zones are still magnified, this magnification decreases with added allocation ratio.

Tomodel the effective increase inB by δB and the corresponding effective decrease
in U by δB, we apply the substitution B∗ �→ (1 + δ)B∗ and U∗ �→ U∗ − δB∗ to the

Fig. 3 Partitioning of space
between robots. Here, four
robots are shown connected
to a single disk. Each robot
with its corresponding disk
sector, shown with a “B”,
constitutes a bound zone.
The four spaces between
each pair of robots have been
partitioned into smaller
spaces no larger than
δmax = 1 + 2a, which
represents the maximum
additional arc length that a
bound robot can interfere
with due to spatial effects
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equilibrium condition in Eq. (3). Consequently, the actual (B∗, U∗) equilibrium will
be such that

Correction factor︷ ︸︸ ︷
(1 + δ)

1 − δ B∗
U∗

B∗

U∗ = eupb

ebpu
(8)

where the overbraced expression is a correction factor for the spatial effects in a
physical robot scenario. For comparison, the corrected allocation can be related to
the idealized allocation by

B∗

U∗ + B∗ = B∗

(U∗ − δB∗) + (1 + δ)B∗ =
B∗

(1+δ)B∗
U∗−δB∗
(1+δ)B∗ + 1

= 1

1 + δ

Idealized allocation︷ ︸︸ ︷
pb

pu

pb

pu
+ eb

eu

(9)

where the overbraced expression matches the idealized allocation ratio in Eq. (3). So
the ideal and actual allocations are predicted to be related by a 1/(1 + δ) gain. For
low allocations, this gain will be 1/(1 + 2a); for high allocations, this gain will be
determined by the saturated value of δ > δmin = a.

4.3.1 Shape of δ Function

An important future direction is to develop theory to predict the precise shape of the
δ function. However, as we will discuss later, we have experimental evidence that δ
is only determined by the value of a. Moreover, δ appears to be a cosine of the form
δ(r) = A cos(2π(r/T)+ c) that pierces δ(0) ≈ 1+2a and δ(1/(1+a)) = a subject
to the constraints A ≥ (1 + a)/2, T ≥ 2/(1 + a), and c ≥ 0.

5 Control of Equilibrium Allocations

From the equilibriumdescribedbyEq. (8), a (pb, pu) control policy canbe synthesized
using the rule

pb

pu
= eb

eu

B∗

U∗
(1 + δ)

1 − δ B∗
U∗

(10)

where B∗/U∗ is the desired bound–unbound allocation ratio of zones at equilibrium.
Equivalently, if the desired robot-to-boundary-space allocation ratio isB∗/(B∗+U∗),
then (pb, pu) should chosen according to Eq. (9). Thus, for any given allocation ratio,
there is a continuum of (pb, pu) pairs that will achieve the desired equilibrium.

The control policy in Eq. (10) has one degree of freedom over which some feature
of the system can be optimized. For example, by Eq. (7), the convergence rate of
the system can be maximized by making the sum pb + pu as large as possible. So,
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for fastest convergence for to a desired allocation (B∗, U∗), pb and pu can be chosen
so that

(pb, pu) =
⎧
⎨

⎩

(
eb
eu

B∗
U∗

(1+δ)

1−δB∗/U∗ , 1
)

if ebB∗(1 + δ) < euU∗(1 − δB∗/U∗),(
1, eu

eb

U∗
B∗

1−δB∗/U∗
(1+δ)

)
otherwise.

(11)

However, optimization criteria other than maximal convergence rate may suggest
other choices of (pb, pu). For example, there will be fewer temporal variations in the
number of robots bound to each disk if pb + pu is reduced. Similarly, the variance
in allocation across disks may be reduced for certain (pb, pu) combinations. Further-
more, if the eb/eu ratio can be artificially shifted (e.g., by asymmetrically changing
the relative distance that sensors react to bound and unbound zones) or the avoidance
distance a changed, it is possible to shift the pb/pu control policy for a desired B∗/U∗
allocation ratio. Thus, there are mechanisms that can further adjust the pu + pb sum
without changing the equilibrium allocation ratio.

6 Model Validation in Simulation

To test our macroscopic model of stochastic allocation to circular boundaries, exper-
imental trials were conducted using NetLogo [26]. The framework allowed for sim-
ulating hundreds of mobile robots randomly interacting with each other and with
disks of different types.

6.1 Variations Due to Encounter-Rate Ratio

For many robot motion behaviors, the encounter-rate ratio eb/eu may be approxi-
mated, for example, by dividing the sum of the areas of a robot and an unbound zone
sector by the area of an unbound zone sector alone, where zone sectors are slices
of each disk with arcs that are the length of the interaction region with the robot. In
general, it can be estimated from equilibrium allocation data. If, for example, it is
incorrectly assumed that the eb/eu ratio is unity, the equilibrium allocation will shift
in a predictable way based on the correct eb/eu ratio, as shown in Eq. (4). Conse-
quently, if the eb/eu ratio is not well known, it can be estimated by measuring this
curve during system testing. Inferring this encounter-rate ratio is empirically much
simpler than inferring the actual encounter rates. Also shown in Fig. 4 is the effect
of the inter-robot space δ(1.0) being both non-zero and yet smaller than required to
fit any additional robots. Thus, disks saturate at a level less than full occupancy.

To validate these predictions, experimental trials were conducted using 500 sim-
ulated mobile robots moving along correlated random walks in a space with 6 disks
with circumference capacity for 28.27 robots per disk. By increasing the so-called

millitsa@ece.neu.edu



An Enzyme-Inspired Approach to Stochastic Allocation … 643

Fig. 4 Effect of encounter
ratio. For each eb/eu ratio, a
plot comparing the idealized
allocation ratio to the actual
allocation ratio is shown
according to Eq. (9). Here,
δ(r) = cos(2π(r/4.6)+0.2),
which is consistent with an
a = 0 case. Allocations
saturate near an actual ratio
of 0.75 because the mean
slack space δ(1) is both
non-zero and too small to
accommodate additional
binding
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turning angle of the CRW, the robotmotion became less directional andmoreBrown-
ian. Consequently, robots with higher turning angle are more likely to re-encounter a
disk and re-bind immediately after being told to unbind. This decrease in unbinding
efficacy decreases the effective eb/eu ratio, as shown in Fig. 5 which matches Fig. 4
for different eb/eu ratios.

6.1.1 Estimation of δ Function

The δ function used in Figs. 4 and 5 is based on an avoidance range of a = 0 and
a circumference of 28.27 robot widths. As shown in Fig. 6, this δ fits mean data
from simulated scenarios regardless of CRW parameters and effective encounter-
rate ratio. The empty-occupancy δ(0) < 1+ 2a because the circumference does not
divide evenly by 1 + 2a. That is, the partitioned space of the empty disk includes a
residual sub-unity partition, and so the mean across those partitions is less than 1.

6.2 Robustness to Environmental Variations

Empirical studies show that the relationship between idealized and actual allocation
is not sensitive to environmental variations. For example, Fig. 7 shows statistics
taken from simulation runs with several combinations of robot population, robot
size, number of disks, and disk size. As shown, varying the size and number of disks
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Fig. 5 Effect of encounter ratio in simulation. For each eb/eu ratio, a plot comparing the idealized
allocation ratio to the actual allocation ratio is shown according to Eq. (9). The particular eb/eu ratios
corresponding to the twomotion primitives (i.e., low and high turning angle) were fit to the observed
data. Additionally, δ(r) = cos(2πr/4.6+ 0.2), which is consistent with predictions from an a = 0
case with a disk circumference of 28.27 robot widths. Allocations saturate near an actual ratio of
0.75 because the mean slack space δ(1) is both non-zero and too small to accommodate additional
binding. The slight deviations from prediction in (b) can be improved with better understanding
of the derivation of the δ function. Small dots show outcomes of individual simulation runs. Open
circles show means across ten trials of each allocation ratio. Error bars show ±1 standard error
of the mean (SEM). Each trial uses 500 simulated robots and 6 disks. a Low CRW turning angle
(eb/eu ≈ 0.9). b High CRW turning angle (eb/eu ≈ 0.29)

and robots does not change the actual allocation ratio. A single control strategy leads
to the same equilibrium mean allocation ratio in every case.

7 Conclusions and Future Work

We have presented a rigorous methodology for designing control policies that dis-
tribute a swarm of robots among a set of boundaries. The control policies rely only
on local information obtained by the robots and have probabilistic guarantees on
steady-state performance. We investigated the effect of robot interactions on the
actual steady-state allocations that were achieved with the use of control policies
derived from a coarse-grained description of the swarm population. Our simulation
results illustrate that the actual system behavior follows predictable and controllable
trends when robot interactions at the boundaries and in the free space are introduced.
In this way, we build a foundation for further work on encounter-based swarm robotic
allocation that obviates an analytical characterization of encounter rates.
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Fig. 6 Simulated effect of encounter ratio on δ. The single δ function fromFig. 4 accurately predicts
mean inter-robot space across different encounter ratios andmotion primitives. Each smalldot shows
a result from an individual simulation run. Open circles show means for different allocations. Error
bars show SEM. Ten trials were run per allocation ratio. a Low CRW turning angle. b High CRW
turning angle

Fig. 7 Effect of varying
environmental parameters.
Ten trials were generated for
each disk size, and the
average across the trials are
shown with error bars
indicating ±1 standard error
of the mean. A dashed line
of unity slope is shown for
reference. The solid line
represents the predicted
curve based on the avoidance
distance a, which is non-zero
for these cases
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In future work, we will repeat these investigations for more arbitrary shapes. We
also plan to gain a better understanding of the relationship between actual allocation
ratio and the mean space between robots. Leveraging the several degrees of freedom
in the enzymatic swarms (i.e., binding and unbinding probabilities, robot geometry,
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avoidance distances, and motion primitives that shape encounter-rate ratios), we will
explore the design of optimal robot control policies to achieve convergence to desired
allocations subject to other constraints, such as ensuring minimal allocation variance
or settling within a specified time. We will extend our control approach to other
scenarios in which robotic swarms must allocate among both static and dynamically
moving regions, such as surveillance and target-tracking applications, and we will
investigate how this approach can simplify other stochastic strategies such as swarm
self assembly. Finally, we plan to experimentally validate our approach on a physical
multi-robot testbed.
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Polynomial Trajectory Planning
for Aggressive Quadrotor Flight
in Dense Indoor Environments

Charles Richter, Adam Bry and Nicholas Roy

Abstract We explore the challenges of planning trajectories for quadrotors through
cluttered indoor environments. We extend the existing work on polynomial trajectory
generation by presenting a method of jointly optimizing polynomial path segments
in an unconstrained quadratic program that is numerically stable for high-order poly-
nomials and large numbers of segments, and is easily formulated for efficient sparse
computation. We also present a technique for automatically selecting the amount
of time allocated to each segment, and hence the quadrotor speeds along the path,
as a function of a single parameter determining aggressiveness, subject to actuator
constraints. The use of polynomial trajectories, coupled with the differentially flat
representation of the quadrotor, eliminates the need for computationally intensive
sampling and simulation in the high dimensional state space of the vehicle dur-
ing motion planning. Our approach generates high-quality trajecrtories much faster
than purely sampling-based optimal kinodynamic planning methods, but sacrifices
the guarantee of asymptotic convergence to the global optimum that those methods
provide. We demonstrate the performance of our algorithm by efficiently generat-
ing trajectories through challenging indoor spaces and successfully traversing them
at speeds up to 8 m/s. A demonstration of our algorithm and flight performance is
available at: http://groups.csail.mit.edu/rrg/quad_polynomial_trajectory_planning.
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1 Introduction

Recent advances in small unmanned aircraft have enabled highly dynamic, aero-
batic flight maneuvers [1, 9, 10, 20]. Simultaneously, advances in fast, accurate
state estimation methods have enabled these vehicles to fly through dense, clut-
tered spaces without the need for a motion capture system [4, 25]. However motion
planning algorithms have not yet succeeded in joining these capabilities to enable
quadrotors to navigate autonomously at high speeds using their full dynamic capabil-
ities. This paper addresses that need and provides a planning algorithm that enables
autonomous, aggressive, high-speed quadrotor flight through complex indoor envi-
ronments.

While there exist advanced techniques for robotic navigation and trajectory opti-
mization, there has yet to emerge a single algorithm that can both find and optimize
a quadrotor trajectory through a complex real-world environment quickly enough to
be useful for a deployable robotic system. While algorithms such as RRT* provably
converge to the optimal solution in the limit of infinite samples, it is often impracti-
cal to rely on this limit to perform optimization for vehicles with nonlinear 12-DOF
dynamics. These algorithms have been most successful for simple Dubins vehicle or
double-integrator systems where analytical techniques can be used to steer between
two points in state space [13]. For other systems, the search over dynamically feasible
trajectories often requires iterative simulation of the equations of motion.

Nonlinear programming techniques for trajectory optimization, such as direct
collocation and shooting methods, can also be used to find locally optimal paths for
systems with general dynamics. However, these methods are also computationally
intensive and may require accurate analytical representations of environmental con-
straints in order to efficiently compute cost gradients with respect to obstacles. These
limitations make them impractical when constraints are represented in the form of
an occupancy map.

Nevertheless, explicit optimization is useful for high-speed trajectories through
cluttered environments. Minimum-snap polynomial splines have proven very effec-
tive as quadrotor trajectories, since the motor commands and attitude accelerations
of the vehicle are proportional to the snap, or fourth derivative, of the path [19].
Minimizing the snap of a trajectory quantifies a notion of gracefulness that is desir-
able for maintaining the quality of onboard sensor measurements as well as avoiding
abrupt or excessive control inputs.

The differentiability of polynomial trajectories makes them a natural choice for
use in a differentially flat representation of the quadrotor dynamics. Differential
flatness provides an analytical mapping from a path and its derivatives to the states
and control inputs required to follow that path. This powerful property effectively
guarantees feasibility of any differentiable trajectory, provided that its derivatives are
sufficiently bounded to avoid input saturation, thus eliminating the need for iterative
simulation in the search for trajectories.

Our contribution is to extend the work of Mellinger et al. [19], and show that
their minimum-snap trajectory generation can be solved in a numerically stable
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unconstrained quadratic program (QP) for long-range trajectories composed of many
segments. We show that this minimum-snap technique can be coupled with an appro-
priate kinematic planner to generate fast, graceful flight paths in cluttered environ-
ments, while accounting for collisions of the resulting polynomial trajectories. This
combination of search and optimization significantly outperforms pure search-based
planning methods in computational performance. Finally, we modify their strategy
of allocating time along the trajectory to allow the planner to automatically adjust to
widely varying size scales with a single user-set parameter on aggressiveness.

1.1 Problem Statement and Solution Outline

Given a 3D occupancy map of an environment, we wish to efficiently compute
feasible, minimum-snap trajectories that follow the shortest collision-free path from
start to goal utilizing the full dynamic capabilities of the quadrotor.

Our solution to this problem is to utilize the RRT* algorithm to find a collision-
free path through the environment, initially considering only the kinematics of the
vehicle and ignoring the dynamics. That path is pruned to a minimal set of waypoints,
and a sequence of polynomial segments is jointly optimized to join those waypoints
into a smooth minimum-snap trajectory from start to goal. Utilizing a differentially
flat model of the quadrotor and the associated control techniques, we can follow
these paths precisely.

The paper proceeds as follows. We first discuss the differentially flat quadrotor
model and its implications for planning and polynomial trajectories. We then present
a closed-form solution to the QP used to obtain the polynomial trajectory that is
numerically stable for both high-order polynomials and large numbers of segments.
For comparison with purely sampling-based approaches, we compare our process
with an RRT* algorithm that uses polynomial segments to grow a tree of candidate
trajectories (i.e., as its steer function to connect sampled points in state space). We
show that our process returns superior paths in much shorter running time. Finally,
we highlight the performance of our QP formulation and show the results of flight
tests in real-world environments.

2 Quadrotor Dynamics and Control

In order to ensure that we can precisely follow the polynomial trajectories we intend
to generate, we utilize the property of differential flatness for the standard quadrotor
equations of motion:

mr̈ = mgzW − f zB (1)

ω̇ = J−1 [−ω × Jω + M] (2)
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Differential flatness of this model was demonstrated in [19]. Here, r is the position
vector of the vehicle in a global coordinate frame, ω is the angular velocity vector
in the body-fixed coordinate frame and f and M are the net thrust and moments in
the body-fixed coordinate frame. J and m are the inertial tensor and mass of the
quadrotor. zB is the unit vector aligned with the axis of the four rotors and indicates
the direction of thrust, while zW is the unit vector expressing the direction of gravity.
There exists a simple mapping from f and M to the four desired motor speeds.

A polynomial trajectory segment consists of four polynomial functions of time
specifying the independent evolution of the so-called flat output variables, x, y, z,
and ψ (yaw angle) between two states in flat output space. The nonlinear controller
employed to follow differentiable trajectories was developed in [18], and consists of
independent calculations for thrust and moments:

f = (−kxex − kvev + mgzW + mr̈d) · Rzw (3)

M = −kReR − kωeω + ω × Jω

− J(ω̂RT Rdωd − RT Rdω̇d) (4)

where ex, ev, eR, and eω are the error vectors in position, velocity, orientation and
angular velocity, kx, kv, kR, and kω are associated control gains, and R is the rotation
matrix representing the orientation of the quadrotor.

Since the desired trajectory and its derivatives are sufficient to compute the states
and control inputs at every point along the path in closed form (Eqs. 3 and 4), these
quantities serve as a simulation of the vehicle’s motion in the absence of disturbances.
This is the powerful capability enabled by differential flatness that eliminates the need
for iterated numerical integration of equations of motion, or a search over the space
of inputs during each iteration of the planning algorithm.

3 Polynomial Trajectory Optimization

We now describe an analytical method for generating minimum-snap polynomial
trajectories to be followed by a quadrotor using the control techniques outlined above.
We assume that we have obtained a sequence of waypoints in 3D space representing
the shortest piecewise-linear path through the environment, and we wish to generate
a minimum-snap polynomial path passing through each of those waypoints. For this
purpose, we use a simple RRT* algorithm to obtain the optimal straight-line path
from start to goal, and then select waypoints from that optimal path according to a
line-of-sight technique. Figure 1b shows the sequence of waypoints obtained by this
method.

The choice of polynomial trajectories is natural for highly dynamic vehicles and
robots since these trajectories can be obtained efficiently as the solution to a QP
that minimizes a cost function of the path derivatives. This optimization framework
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(a) 

RRT* with polynomial
steer function terminated after
120s returns high-cost path.

(b)

Pruned waypoints from
straight-line RRT* become
waypoints in 6c.

(c)

Solution by our algorithm
after 3s running time, finds
much lower cost than 6a.

Fig. 1 Using polynomial segments directly as a RRT* steer function (a) is computationally slow.
Therefore, we run a straight-line RRT* and select waypoints from the optimal path (b). However,
the straight-line RRT* ignores dynamics and returns a path that does not match our objective
function. We therefore jointly optimize a set of polynomials through those waypoints to obtain a
minimum-snap path (c)

allows the endpoints of path segments to be optionally fixed to desired values or left
free, and the polynomials can be jointly optimized while maintaining continuity of
the derivatives up to arbitrary order. Maintaining continuity of derivatives ensures
smooth motions and can be used to generate trajectories that do not require step
inputs to the vehicle’s actuators.

Polynomial trajectories allow for a analytical solution via elimination as a con-
strained QP [2]. While this method is acceptable for joint optimization of a few
segments, it involves the inversion of matrices that may be very close to singular,
along with high sensitivity to coefficients on the order of 10−20 or smaller, leading
to inaccurate results. We present this constrained QP solution next and then use it
in a following section as the basis for an unconstrained QP reformulation, which is
robust to numerical instability.

For the following derivations, we require that the vector of segment times is fixed.
That is, we require an a priori selection of the amount of time required to traverse
between one waypoint and the next. These times can be selected approximately based
on a desired average speed of the vehicle, however in general an arbitrary selection
of times will not yield the lowest-cost solution. Therefore, we relax this assumption
in a subsequent section where we iteratively refine the vector of times.
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3.1 Cost Function for Minimizing Derivatives

For quadrotors, a single trajectory segment between two points in flat output space is
composed of independent polynomials, P(t), for the flat output variables x, y, z and
yaw angle. The cost function penalizing the squares of the derivatives of P(t) can be
written as:

J(T) =
∫ T

0
c0P(t)2+c1P′(t)2+c2P′′(t)2+· · ·+cN P(N)(t)2dt = pT Q(T)p (5)

In this expression, p is a vector of the N coefficients of a single polynomial. In order
to minimize snap, all derivative penalties in the cost function except for c4 would
be set to zero. The construction of the Hessian matrix Q is omitted for brevity, but
follows from differentiation of the square of the polynomial with respect to each of
its coefficients. Since the cost of a given polynomial is a function of its duration T ,
we must fix T prior to optimization. M polynomial segments can be jointly optimized
by concatenating their cost matrices in a block-diagonal fashion:

Jtotal =
⎡

⎢⎣
p1
...

pM

⎤

⎥⎦

T ⎡

⎢⎣
Q1(T1)

. . .

QM(TM)

⎤

⎥⎦

⎡

⎢⎣
p1
...

pM

⎤

⎥⎦

T

(6)

3.2 Constraints

Constraints in the polynomial optimization are imposed on the endpoints of each
segment. These constraints allow the endpoints to be pinned to known locations
in space, or assigned specific values of velocity, acceleration, jerk or snap. Such
constraints are useful to enforce, for example, that the quadrotor start from rest
at the beginning of a trajectory. Constraints on the ith segment in a trajectory are
formulated using a mapping matrix (A) between coefficients and endpoint derivatives
of a polynomial:

Aipi = di, Ai =
[

A0

AT

]

i

, di =
[

d0

dT

]

i

(7)

where di is a vector containing the derivative values for the beginning (d0) and
end (dT ) of the ith segment. If specific derivatives are not known, then continuity
constraints must be imposed to ensure that the derivatives at the end of the ith segment
match the derivatives at the beginning of the (i + 1)th segment:

AT ,ipi = A0,i+1pi+1 (8)
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These constraints can be compiled into a single set of linear equality constraints for
the joint optimization problem:

Atotal

⎡

⎢⎣
p1
...

pM

⎤

⎥⎦ =
⎡

⎢⎣
d1
...

dM

⎤

⎥⎦ (9)

Standard methods can be used to solve the resulting constrained QP.

3.3 Reformulation as an Unconstrained QP

While the method above works well for single segments and small joint optimization
problems as in [19], this formulation becomes ill-conditioned for more than several
segments, polynomials of high order, and when widely varying segment times are
involved. Hence, it is only useful for short trajectories and must be improved to be
practical for optimizing long range paths requiring many waypoints and segments.

We improve upon the solution above using a technique of substitution to convert
the problem into an unconstrained QP, and solve directly for endpoint derivatives
as decision variables, rather than solving for polynomial coefficients. In practice,
our reformulation is substantially more stable than the method above, allowing the
joint optimization of more than 50 polynomial segments in a single matrix operation
without encountering numerical issues. Once the optimal waypoint derivatives are
found, the minimum-order polynomial connecting each pair of waypoints can be
obtained by inverting the appropriate constraint matrix.

We begin by substituting the constraints into the original cost function:

J =
⎡

⎢⎣
d1
...

dM

⎤

⎥⎦

T ⎡

⎢⎣
A1

. . .

AM

⎤

⎥⎦

−T ⎡

⎢⎣
Q1

. . .

QM

⎤

⎥⎦

⎡

⎢⎣
A1

. . .

AM

⎤

⎥⎦

−1 ⎡

⎢⎣
d1
...

dM

⎤

⎥⎦ (10)

Now the decision variables in this new quadratic cost function are the endpoint
derivatives of the segments. We re-order these variables such that fixed/specified
derivatives are grouped together (dF) and the free/unspecified derivatives are grouped
together (dP). A permutation matrix assembled of ones and zeros (C) is used to
accomplish this re-ordering. Now we have:

J =
[

dF

dP

]T

CA−T QA−1CT

︸ ︷︷ ︸
R

[
dF

dP

]
=

[
dF

dP

]T [
RFF RFP

RPF RPP

] [
dF

dP

]
(11)

where we have written the block-diagonal matrices as A and Q for simplicity of
notation. We group the new augmented cost matrix into a single matrix R and partition

millitsa@ece.neu.edu



656 C. Richter et al.

it according to the indices of the fixed and free derivatives. Partitioning allows us to
write out the expression for total cost as:

J = dT
FRFFdF + dT

FRFPdP + dT
PRPFdF + dT

PRPPdP (12)

Differentiating J and equating to zero yields the vector of optimal values for the free
derivatives in terms of the fixed/specified derivatives and the cost matrix:

d∗
P = −R−1

PPRT
FPdF (13)

The polynomials can now be recovered from individual evaluations of the appropriate
constraint equations mapping derivatives back into the space of coefficients.

3.4 Time Allocation

Until this point in the optimization, we have fixed an arbitrary amount of time asso-
ciated with each segment, since these times factor into the construction of the cost
matrix. These segment times constrain the solution quality, but can be allowed to
vary to improve the overall solution with respect to a cost function. We therefore
begin with an initial guess of segment times and then iteratively refine those times
using gradient descent. Several cost functions may be suitable candidates: [5] min-
imizes total time subject to constraints, while [19] fixes the total time by hand and
minimizes snap (the original cost function) with the remaining degrees of freedom.
In the planning context, we do not know the total trajectory time a priori, so we allow
it to vary in the optimization to perform a trade-off between minimizing snap and
total trajectory time. We attempt to minimize:

JT =
⎡

⎢⎣
p1
...

pM

⎤

⎥⎦

T ⎡

⎢⎣
Q1(T1)

. . .

QM(TM)

⎤

⎥⎦

⎡

⎢⎣
p1
...

pM

⎤

⎥⎦

T

+ kT

M∑

i=1

Ti (14)

where kT is a user-specified penalty on time. The first term in this cost function is
simply the original cost function for polynomial optimization. When penalizing only
acceleration, jerk or snap, this original cost can be driven arbitrarily close to zero by
increasing the total time, but Eq. (14) has a definite minimum value that varies with
kT . Figure 2 shows several iterations of gradient descent in which the total trajectory
time is decreased from a large initial guess (red) to smaller optimal value (blue),
while the ratio of times between segments also shifts to minimize the modified cost.

Rather than selecting total times arbitrarily, this cost function allows our algorithm
to automatically adjust for environments of widely varying scales, or where the vehi-
cle must slow down to navigate tightly spaced obstacles without incurring excessive
snap. Furthermore, our procedure produces trajectories of comparable aggressiveness
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Fig. 2 Illustration of the iterative refinement of segment times, color-coded by total traversal time.
The initial guess of total time is 10.5 s (red) and the final optimized total time is 7 s (blue)

Fig. 3 Segment time optimization with the penalty on time kT set at 500 (top) and 50,000 (bottom).
The optimal total trajectory times are 9.1 and 5.1 s respectively. Vectors for waypoint velocity (red)
and acceleration (green) are shown

in a wide range of scenarios for a given fixed value of the single scale-independent
parameter, kT .

Figure 3 shows optimized trajectories for the same set of waypoints using two
different kT values. The red arrows indicate waypoint velocities while the green
arrows indicate accelerations. These quantities are greater in the bottom trajectory
due to the higher time penalty. The quadrotor axes are plotted at 0.1 s increments
along the path. One emergent property resulting from time allocation is that the
quadrotor moves very slowly around the sharp corner and then smoothly accelerates
up to a higher speed in the straightaway where it does not incur a severe penalty on
snap. Furthermore, the geometric shape of the optimal trajectory remains the same
regardless of the value of kT , indicating that the minimum-snap ratios of segment
times are independent of kT .
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Polynomial trajectory (blue) intersects an
obstacle even though the underlying straight
line between waypoints is collision-free.

After bisecting the underlying straight line
twice with two additional waypoints, the poly-
nomial trajectory is collision-free.

(a) (b)

Fig. 4 a The polynomial (blue) intersects an obstacle even though the line between waypoints is
collision free (magenta). These scenarios are resolved by iteratively adding waypoints along the
collision-free path returned by the search algorithm (b)

3.5 Ensuring the Trajectory Is Collision-Free

If a particular trajectory segment is found to intersect an obstacle after optimization,
an additional waypoint is simply added halfway between its two ends, splitting this
segment into two. This midpoint is known to be collision-free because it lies on the
optimal piecewise-linear path returned by the search algorithm. The polynomial is
re-optimized with the additional waypoint, and the process is repeated if necessary
until the polynomial trajectory is collision free. A similar technique is used in [23].
Figure 4 illustrates this process successfully resolving a collision.

In very dense environments, trajectories may need many additional waypoints
to repair collisions, thus requiring the optimization problem to be re-solved many
times to find a feasible solution. Furthermore, additional waypoints increase the
computational complexity of the QP being solved in each iteration. However, in our
experience with indoor environments, the number of additional waypoints required
to repair collisions was usually less than half of the original number of waypoints in
the trajectory, representing only a modest increase in computational complexity.

3.6 Actuator Constraints

The second major factor contributing to feasibility is to ensure that the input con-
straints of the quadrotor are satisfied such that no portion of the commanded trajectory
requires a thrust outside the range that the motors are capable of providing. Formally,
solving a trajectory optimization problem in the flat output space of a differentially-
flat model requires mapping the constraints into the flat output space as well as the
dynamics. Some work has focused on computationally estimating the feasible set in
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flat output space [6], however this set is generally a non-convex function of nonlinear
inequalities and is a hard optimization problem unto itself.

Instead, we address this challenge during the time-allocation step of trajectory
optimization, since the distribution of time along the trajectory largely determines the
required accelerations and therefore the peaks in required thrust. First, we observe
that in the limit as T → ∞, the quadrotor states along the trajectory converge to
hover, which is known to be feasible. Therefore, we initialize our time-allocation
optimization step with a conservatively large guess for initial segment times. Then,
as the modified cost function is minimized, we compute the actuator commands
algebraically during each iteration to verify that we remain within the feasible set.
Optimization is terminated when either a local minimum is obtained or an actuator
constraint becomes active. Figure 5 illustrates two different time allocations during
the optimization of a sample trajectory. One of these time allocations is safely within
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Motor commands for a conservative time al-a
location, barely exceeding the 3.8 N per motor
required for hover (top). Velocity along the tra-
jectory is low (middle). Trajectory with veloc-
ity vectors is shown for reference, with black
dots indicating waypoints (bottom).

Motor commands for aggressive time al-
location, with one motor command reaching
the maximum available thrust, indicated by the
‘X’ (top). Velocity along the trajectory is high
(middle). Trajectory with larger velocity vec-
tors is shown for reference(bottom).

(a) (b)

Fig. 5 Comparison between two time allocations during the gradient descent procedure. The first
time allocation (a) is conservative in that it is a slower trajectory than the second one (b), which
reaches one of the actuator constraints during the final deceleration
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the feasible set, since it commands thrusts barely above the nominal thrust required for
hover, whereas the other time allocation is very aggressive and activates an actuator
constraint.

Due to the non-convexity of the feasible set in flat output space, the optimization
algorithm may encounter an actuator limit and terminate before converging to the
optimal ratio of segment times (for example, one of the red or orange lines in Fig. 2).
To avoid this scenario, one strategy is to first optimize the ratio of segment times via
gradient descent while ignoring actuator constraints, taking advantage of the fact that
the optimal ratio of times is invariant to the total time as noted in Sect. 3.4. Then once
the optimal ratio of times is achieved, scale the total trajectory time in a separate
univariate optimization, preserving the optimal ratio, until the modified cost function
is minimized or an actuator constraint becomes active.

4 Results

We have tested our trajectory generation process in a variety of environments.
Figures 1 and 6 show solutions to challenging 2D and 3D problems. The use of
a minimal set of waypoints and the joint polynomial optimization described above
yields paths that are typically composed of natural high-speed arcs in unconstrained
regions of the environment while slowing in tight spaces to minimize snap around
sharp corners. Our process sacrifices the guarantee of asymptotic convergence to a
globally optimal solution provided by sampling-based approaches, but returns supe-
rior paths in much shorter running times than a purely sampling-based approach.

Fig. 6 Automatically generated 3D trajectory navigating a real-world environment with closely-
spaced obstacles
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4.1 Comparison with RRT* Using Polynomial Steer Function

For comparison to a strictly sampling-based planning approach, we implemented an
RRT* algorithm using polynomial segments as the steer function to grow a search
tree. Figure 1a shows the resulting solution. Sampling was performed in position and
velocity space. We use the distance metric described by [11] of Euclidean distance
divided by average velocity. One major difficulty with this approach is that segment
times must be fixed when generating polynomials to extend the tree, however as
discussed above, the selection of segment time can have a dramatic impact on the
quality of a path, so an appropriate guess must be made a priori for each segment,
or the segment time must be included in the sampling space. In our implementation,
the segment times were chosen as the Euclidean distance between vertices divided
by the desired average velocity along the segment.

Table 1 shows several statistics on the performance of the RRT* with a polynomial
steer function compared to our algorithm. The RRT* runs much longer and fails to
find a path as smooth or with a cost as low as our algorithm. When sampling in
the full state space of the system, the RRT* with a polynomial steer function would
converge to a globally optimal solution in the limit of infinite samples, however as
shown here, the paths returned prior to convergence are of lower quality than those
returned by our algorithm in a much shorter running time.

4.2 Performance of Polynomial Optimization

A key to the success of this trajectory planning process is the speed and numerical
stability of the joint polynomial optimization method. We performed benchmark
tests on an example problem consisting of four waypoints (3 polynomial segments)
chosen to represent distance and time scales consistent with common environments
for quadrotor flight. The results are given in Table 2 and reflect MATLAB as well as
C++/Eigen implementations [7]. This computational efficiency makes it feasible to
use this planning framework in online applications and to use iterative path refinement
methods with polynomial optimization in the loop.

Table 1 Comparison of our method with RRT* using the polynomial steer function for the 2D
problem in Fig. 1

Method Runtime (s) Jpoly. Tpath (s) Lpath (m)

RRT* with polynomial steer
function

120 5.72 × 108 21.94 40.35

Low-Dim. search + uncon-
strained QP optimization

3 1.07 × 105 19.66 35.51
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Table 2 Comparison of polynomial optimization times

Benchmark problem: 3-segment joint optimization

Method Solution time (ms)

MATLAB quadprog.m 9.5

MATLAB constrained 1.7

MATLAB unconstrained (dense) 2.7

C++/Eigen constrained 0.18

C++/Eigen unconstrained (dense) 0.34

Table 3 Numerical stability of optimization techniques for high-order polynomials and various
numbers of segments

Success rates on randomized polynomial optimization problems

Formulation Polynomial order Number of segments Success (%)

Constrained 9 3 100

9 4 55

9 ≥5 0

Unconstrained 9 50+ 100

15 50+ 100

While the unconstrained formulation is slightly slower than the constrained for-
mulation, its primary benefit lies in its stability. The constrained formulation encoun-
ters matrices very close to singular for joint optimizations consisting of more than
three 9th order polynomials, and therefore may return inaccurate results depending
on the quality of the linear algebra solver. In contrast, the unconstrained formula-
tion is robust to numerical issues, as shown in Table 3, which lists the results of 20
polynomial optimization problems in which the locations of intermediate waypoints
and the segment times were randomly generated in the range [1, 3]. Clearly, the
unconstrained optimization is much more robust to numerical instability, enabling
this method to be used as a reliable, efficient long-range trajectory optimization tool
for navigation outside of small motion-capture environments.

Finally, since A−1 and Q are sparse block-diagonal and C is sparse, these prob-
lems can be easily implemented using a sparse solver which is roughly an order of
magnitude faster than the dense computation for 10-segment joint optimizations.

4.3 Experimental Flight Tests

We demonstrate the performance of our algorithm on a challenging real-world plan-
ning problem by generating and flying a trajectory through a complex indoor lab space
in the Stata Center (MIT). The environment used for these tests was a lab space with
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Fig. 7 Automatically generated trajectory through a map of a laboratory environment in the Stata
Center, MIT

curved, non-vertical walls, interior columns and barriers aligned at oblique angles.
An OctoMap representation of the lab was generated using a pair of planar laser
range finders and each occupied cell was dilated with a radius of 0.65 m to leave
room for the 0.35 m radius of the vehicle and a minimal allowance for error in esti-
mation and control. Estimation and control were performed completely onboard the
AscTec Pelican aircraft, using a Hokuyo LIDAR, a Microstrain IMU and an Intel
Atom processor.

The trajectories returned by our algorithm are shown in Figs. 6 and 7, and were
generated in several seconds. These trajectories exhibit roughly 2 m of altitude vari-
ation in order to fly through doorways and navigate over tall shelves and dividing
walls. Figure 8 shows onboard video frames taken while executing these trajectories
at speeds up to 8 m/s. Video of these trajectories and flights is available at: http://
groups.csail.mit.edu/rrg/quad_polynomial_trajectory_planning.

Fig. 8 Onboard video frames from aggressive quadrotor flight up to 8 m/s
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5 Related Work

The literature on motion planning for robots and vehicles is extensive, considering
both simple holonomic systems as well as those with differential constraints. Ran-
domized algorithms such as PRM, RRT and RRT* have enjoyed success due to their
simplicity and performance in high-dimensional spaces [12, 14, 16].

Sampling-based algorithms have also been demonstrated for motion planning
under differential constraints, which often perform very well when there exist simple
analytical techniques for obtaining a steer function from one vertex in state space
to the next [13, 17]. However, for general dynamical systems, steering between
two states may require iteratively simulating the vehicle dynamics at a significant
computational cost [11]. Furthermore, the nearest vertex according to a Euclidean
distance metric is not, in general, the vertex that will yield an optimal (or even
feasible) path to a new sample in state space [26]. Nevertheless, sampling-based
methods have proven successful in real-world applications to motion planning of
vehicles with non-trivial dynamics [15].

Many methods exist for optimizing trajectories between two states of a dynamical
system [3], and have been successfully applied to quadrotor control [24]. B-splines
[23] and Legendre polynomials [21] have been used to avoid ill-conditioning in tra-
jectory optimization problems, however these options preclude the efficient method
presented here. Finally, our method is not limited to quadrotor control, as there
exist simple differentially flat representations of fixed-wing aircraft [8] and cars [22]
among many other systems.

6 Conclusion

We have presented an algorithm for generating trajectories for the differentially flat
quadrotor model through complex real-world environments that is computationally
much faster than solving the same problems using a pure sampling approach, though
at the expense of global optimality. We observe that in this domain it is infeasible
to rely on the limit of infinite sampling to perform optimization, and instead we
perform low-dimensional search for route-finding followed by analytical optimiza-
tion in which the shortest path is translated into a dynamically feasible polynomial
trajectory. We then iteratively refine the polynomial trajectory by a time allocation
procedure that trades off between time and snap of the path.
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Fast Marching Trees: A Fast Marching
Sampling-Based Method for Optimal Motion
Planning in Many Dimensions

Lucas Janson and Marco Pavone

Abstract In this paper we present a novel probabilistic sampling-based motion
planning algorithm called the Fast Marching Tree algorithm (FMT∗). The algo-
rithm is specifically aimed at solving complex motion planning problems in high-
dimensional configuration spaces. This algorithm is proven to be asymptotically
optimal and is shown to converge to an optimal solution faster than its state-of-
the-art counterparts, chiefly PRM∗ and RRT∗. An additional advantage of FMT∗
is that it builds and maintains paths in a tree-like structure (especially useful for
planning under differential constraints). The FMT∗ algorithm essentially performs
a “lazy” dynamic programming recursion on a set of probabilistically-drawn sam-
ples to grow a tree of paths, which moves steadily outward in cost-to-come space. As
such, this algorithm combines features of both single-query algorithms (chieflyRRT)
and multiple-query algorithms (chiefly PRM), and is conceptually related to the Fast
Marching Method for the solution of eikonal equations. As a departure from pre-
vious analysis approaches that are based on the notion of almost sure convergence,
the FMT∗ algorithm is analyzed under the notion of convergence in probability:
the extra mathematical flexibility of this approach allows for significant algorithmic
advantages and provides convergence rate bounds—a first in the field of optimal
sampling-based motion planning. Numerical experiments over a range of dimen-
sions and obstacle configurations confirm our theoretical and heuristic arguments by
showing that FMT∗, for a given execution time, returns substantially better solutions
than either PRM∗ or RRT∗, especially in high-dimensional configuration spaces and
in scenarios where collision checking is expensive.

L. Janson
Department of Statistics, Stanford University, Stanford, CA 94305, USA
e-mail: ljanson@stanford.edu

M. Pavone (B)
Department of Aeronautics and Astronautics, Stanford University, Stanford,
CA 94305, USA
e-mail: pavone@stanford.edu

© Springer International Publishing Switzerland 2016
M. Inaba and P. Corke (eds.), Robotics Research, Springer Tracts
in Advanced Robotics 114, DOI 10.1007/978-3-319-28872-7_38

667

millitsa@ece.neu.edu



668 L. Janson and M. Pavone

1 Introduction

Probabilistic sampling-based algorithms represent a particularly successful approach
to robotic motion planning problems in high-dimensional configuration spaces,
which naturally arise, e.g., when controlling the motion of high degree-of-freedom
robots or planning under uncertainty [13, 20]. Accordingly, the design of rapidly con-
verging sampling-based algorithms with sound performance guarantees has emerged
as a central topic in robotic motion planning, and represents the main thrust of this
paper.

Specifically, the key idea behind probabilistic sampling-based algorithms is to
avoid the explicit construction of the configuration space (which is prohibitive in the
high-dimensional case), and instead conduct a search that probabilistically probes
the configuration space with a sampling scheme. This probing is enabled by a colli-
sion detection module, which the motion planning algorithm considers as a “black
box” [13]. Probabilistic sampling-based algorithms can be divided betweenmultiple-
query and single-query. Multiple-query algorithms construct a topological graph
called a roadmap, which allows a user to efficiently solve multiple initial-state/goal-
state queries. This family of algorithms includes the probabilistic roadmap algorithm
(PRM) [10] and its variants, e.g., Lazy-PRM [4], dynamic PRM [7], and PRM∗ [9].
On the contrary, in single-query algorithms, a single initial-state/goal-state pair is
given, and the algorithm must search until it finds a solution (or it may report early
failure). This family of algorithms includes the rapidly exploring random trees algo-
rithm (RRT) [14], the rapidly exploring dense trees algorithm (RDT) [13], and their
variants, e.g., RRT∗ [9]. Other notable sampling-based planners include expansive
space trees (EST) [5, 17], sampling-based roadmap of trees (SRT) [18], rapidly-
exploring roadmap (RRM) [2], and the “cross-entropy” planner in [11]. Analysis
in terms of convergence to feasible or even optimal solutions for multiple-query
and single-query algorithms is provided in [3, 5, 6, 9, 12]. A central result is that
these algorithms provide probabilistic completeness guarantees in the sense that the
probability that the planner fails to return a solution, if one exists, decays to zero
as the number of samples approaches infinity [3]. Recently, it has been proven that
both RRT∗ and PRM∗ are asymptotically optimal, i.e. the cost of the returned solu-
tion converges almost surely to the optimum [9]. Building upon the results in [9],
the work in [15] presents an algorithm with provable “sub-optimality” guarantees,
which trades “optimality” with faster computation.

Statement of Contributions: The objective of this paper is to propose and ana-
lyze a novel probabilistic motion planning algorithm that is asymptotically opti-
mal and improves upon state-of-the-art asymptotically-optimal algorithms (namely
RRT∗ and PRM∗) in terms of the convergence rate to the optimal solution (con-
vergence rate is interpreted with respect to execution time). The algorithm, named
the Fast Marching Tree algorithm (FMT∗), is designed to be particularly efficient
in high-dimensional environments cluttered with obstacles. FMT∗ essentially com-
bines some of the features of multiple-query algorithms with those of single-query
algorithms, by performing a “lazy” dynamic programming recursion on a set of
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probabilistically-drawn samples in the configuration space. As such, this algorithm
combines features of PRMand SRT (similar to RRM), and grows a tree of trajectories
like RRT. Additionally, FMT∗ is conceptually similar to the Fast Marching Method,
one of the main methods for the solution of stationary eikonal equations [19] (see
[21] for a recent overview of path planning algorithms inspired by the Fast Marching
Method). As in the FastMarchingMethod, themain idea is to exploit a heapsort tech-
nique to systematically locate the proper sample point to update and to incrementally
build the solution in an “outward” direction, so that one needs never backtrack over
previously evaluated sample points. Such a Dijkstra-like one-pass property is what
makes both the Fast Marching Method and FMT∗ particularly efficient.

The end product of the FMT∗ algorithm is a tree, which, together with the con-
nection to the Fast Marching Method, gives the algorithm its name. An advantage of
FMT∗ with respect to PRM∗ (in addition to a faster convergence rate) is the fact that
FMT∗ builds and maintains paths in a tree-like structure, which is especially useful
when planning under differential or integral constraints. Our simulations across 5
and 10 dimensions, both without obstacles and with 50% obstacle coverage show
that FMT∗ outperforms PRM∗ and RRT∗. The speedups are particularly prominent
in higher dimensions and in scenarios where collision checking is expensive, which
is exactly the regime in which sampling-based algorithms are particularly useful.

It is important to note that in this paper we use a notion of asymptotic optimality
(AO) different from the one used in [9]. In [9], AO is defined through the notion of
convergence almost everywhere (a.e.). Explicitly, in [9], an algorithm is considered
AO if the cost of the solution it returns converges a.e. to the optimal cost as the
number of samples n approaches infinity. This definition is completely justified when
the algorithm is sequential in n, such as RRT∗ [9], in the sense that it requires that
with probability 1 the sequence of solutions converges to an optimal one, with the
solution at n + 1 heavily related to that at n. However, for non-sequential algorithms
such as PRM∗ and FMT∗, there is no connection between the solutions at n and
n + 1. Since these algorithms process all the nodes at once, the solution at n + 1 is
based on n + 1 new nodes, sampled independently of those used in the solution at
n. This motivates the definition of AO used in this paper, which is that the cost of
the solution returned by an algorithm must converge in probability to the optimal
cost. Although mathematically convergence in probability is a weaker notion than
convergence a.e. (the latter implies the former), in practice there is no distinction
when an algorithm is only run on a predetermined, fixed number of nodes. In this
case, all that matters is that the probability that the cost of the solution returned by
the algorithm is less than an ε fraction greater than the optimal cost goes to 1 as
n → ∞, for any ε > 0, which is exactly the statement of convergence in probability.
Since this is a mathematically weaker, but practically identical condition, we sought
to capitalize on the extra mathematical flexibility, and indeed find that our proof of
AO for FMT∗ allows for an improved implementation of PRM∗ in [9]. Our proof of
AO also gives a convergence rate bound both for FMT∗ and PRM∗—a first in the
field of optimal sampling-based motion planning. Hence, an additional important
contribution of this paper is the analysis of AO under the notion of convergence in
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probability, which is of independent interest and could enable the design and analysis
of other AO sampling-based algorithms.

Organization: This paper is structured as follows. In Sect. 2 we formally define
the optimal path planning problem. In Sect. 3 we present FMT∗ and we discuss some
basic properties, e.g., termination. In Sect. 4 we prove the asymptotic optimality of
FMT∗. In Sect. 5 we first conceptually discuss the advantages of FMT∗ and then we
present results from numerical experiments supporting our statements. Finally, in
Sect. 6, we draw some conclusions and we discuss directions for future work.

Notation: Consider theEuclidean space ind dimensions, i.e.,Rd . Given a point x ∈
R, a ball of radius r > 0 centered at x̄ ∈ R

d is defined as B(x̄; r) := {x ∈ R
d | ‖x −

x̄‖ < r}. Given a subsetX ofRd , its boundary is denoted by ∂X . Given two points x
and z inRd , the line connecting them is denoted by xz. Let ζd denote the volume of the
unit ball in the d-dimensional Euclidean space. The cardinality of a set S is written as
card S. Given a set X ⊆ R

d , μ(X ) denotes its d-dimensional Lebesgue measure.
In this paper, we will interchangeably refer to points in X as nodes, samples, or
vertices.

2 Problem Setup

The problem formulation follows closely the problem formulation in [9]. Let X =
[0, 1]d be the configuration space, where d ∈ N, d ≥ 2. Let Xobs be the obstacle
region, such thatX \Xobs is an open set (we consider ∂X ⊂ Xobs), and denote the
obstacle-free space asXfree = cl(X \Xobs), where cl(·) denotes the closure of a set.
The initial condition xinit is an element ofXfree, and the goal regionXgoal is an open
subset ofXfree. A path planning problem is denoted by a triplet (Xfree, xinit,Xgoal).
A function of bounded variation σ : [0, 1] → R

d is called a path if it is continuous.
A path is said to be collision-free if σ(τ) ∈ Xfree for all τ ∈ [0, 1]. A path is said to
be a feasible path for the planning problem (Xfree, xinit,Xgoal) if it is collision-free,
σ(0) = xinit , and σ(1) ∈ cl(Xgoal).

Agoal regionXgoal is said to be regular if there exists ξ > 0 such that∀y ∈ ∂Xgoal,
there exists z ∈ Xgoal withB(z; ξ) ⊆ Xgoal and y ∈ ∂B(z; ξ). In otherwords, a regular
goal region is a “well-behaved” set where the boundary has bounded curvature. We
will say Xgoal is ξ -regular if Xgoal is regular for the parameter ξ . Let Σ be the
set of all paths. A cost function for the planning problem (Xfree, xinit,Xgoal) is a
function c : Σ → R≥0 from the set of paths to the nonnegative real numbers; in this
paper we will consider as cost functions c(σ ) the arc length of σ with respect to the
Euclidean metric inX (recall that σ is, by definition, rectifiable). Extension to more
general cost functions (possibly not satisfying the triangle inequality) are possible
and are deferred to future work. The optimal path planning problem is then defined
as follows:
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Optimal path planning problem: Given a path planning problem
(Xfree, xinit,Xgoal) with a regular goal region and an arc length func-
tion c : Σ → R≥0, find a feasible path σ ∗ such that c(σ ∗) = min{c(σ ) :
σ is feasible}. If no such path exists, report failure.

Finally, we introduce some definitions concerning the clearance of a path, i.e., its
“distance” fromXobs [9]. For a given δ > 0, the δ-interior ofXfree is defined as the
set of all states that are at least a distance δ away from any point inXobs. A collision-
free path σ is said to have strong δ-clearance if it lies entirely inside the δ-interior
of Xfree. A path planning problem with optimal path cost c∗ is called δ-robustly
feasible if there exists a strictly positive sequence δn → 0, and a sequence {σn}n

i=1
of feasible paths such that limn→∞ c(σn) = c∗ and for all n ∈ N, σn has strong δn-
clearance, σn(1) ∈ ∂Xgoal, σn(τ ) /∈ Xgoal for all τ ∈ (0, 1), and σn(0) = xinit. Note
this definition is slightly different mathematically than admitting a robustly optimal
solution as in [9], but the two are nearly identical in practice. Briefly, the difference is
necessitated by the definition of a homotopy class only involving pointwise limits, as
opposed to limits in bounded variation, making the conditions of a robustly optimal
solution potentially vacuously satisfied.

3 The Fast Marching Tree Algorithm (FMT∗)

In this section we present the Fast Marching Tree algorithm, FMT∗, described in
pseudocode in Algorithm1.

3.1 High-Level Description

At a high level, FMT∗ performs a forward dynamic programming recursion over
a set of sampled vertices, and correspondingly generates a tree by moving steadily
outward in cost-to-come space (see Fig. 1). The dynamic programming recursion per-
formed by FMT∗ is characterized by two main adaptations (that make the algorithm
“lazy”). First, two nodes are considered neighbors (hence connectable) if their dis-
tance is below a given bound, referred to as connectivity radius. Note that according
to this definition two vertices are “lazily” considered neighbors even if the straight
line joining them intersects an obstacle. The choice of the connectivity radius relies
on a trade-off between computational complexity (roughly speaking, more neighbors
lead to more computation) and quality of the computed path (roughly speaking, more
neighbors lead to more paths one can optimize over), and is a central aspect for the
analysis of FMT∗. Second, for the evaluation of the immediate cost in the dynamic
programming recursion, one “lazily” neglects the presence of obstacles, and when-
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Fig. 1 The FMT∗ algorithm generates a tree by moving steadily outward in cost-to-come space.
This figure portrays the growth of the tree in a 2D environment with 1000 nodes (not shown)

Algorithm 1 Fast Marching Tree Algorithm (FMT∗)
1: V ← {xinit} ∪ SampleFree(n); E ← ∅
2: W ← V\{xinit}; H ← {xinit}
3: z ← xinit
4: Nz ← Near(V\{z}, z, rn)

5: Save(Nz, z)
6: while z /∈ Xgoal do
7: Hnew ← ∅
8: Xnear = Intersect(Nz, W)

9: for x ∈ Xnear do
10: Nx ← Near(V\{x}, x, rn)

11: Save(Nx, x)
12: Ynear ← Intersect(Nx, H)

13: ymin ← argminy∈Ynear {Cost(y, T = (V , E))+Cost(yx)}
14: if CollisionFree(ymin, x) then
15: E ← Merge(E, {(ymin, x)}) { // yminx is collision-free}
16: Hnew ← Merge(Hnew, {x})
17: W ← W\{x}
18: end if
19: end for
20: H ← Merge(H, Hnew)\{z}
21: if H = ∅ then
22: return Failure
23: end if
24: z ← argminy∈H {Cost(y, T = (V , E))}
25: end while
26: return Path(z, T = (V , E))

ever a locally-optimal (assuming no obstacles) connection to a new vertex intersects
an obstacle, that vertex is simply skipped and left for later (as opposed to looking for
other locally-optimal connections in the neighborhood), see line 14 in Algorithm1.
The reason this is possible, as we show in the proof of Theorem1, is that the cases
where an optimal connection under this strategy is not made become vanishingly
rare as n → ∞. This manifests itself into a key computational advantage. By only
checking for collision on the locally-optimal (assuming no obstacles) connection,
as opposed to every possible connection (essentially what is done in PRM∗), FMT∗
saves a large (indeed unbounded as the number of vertices increases) number of
costly collision-check computations.
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As a more specific comparison to PRM∗, when there are no obstacles and the cost
is Euclidean distance, FMT∗ reports the exact same solution (or failure) as PRM∗.
This is because, without obstacles, FMT∗ is indeed using dynamic programming
to build the minimum-cost spanning tree, with xinit as the root, of the set of nodes
in the PRM∗ graph which are connected to xinit. The only difference is that by not
starting with the entire PRM∗ graph itself, FMT∗ is able to find the solution faster
(see Sect. 5). In the presence of obstacles, FMT∗ and PRM∗ no longer return the same
solution in general, and this is due to how FMT∗ deals with obstructing obstacles.
Looking at Algorithm1, FMT∗ maintains dual sets H and W , where H keeps track
of nodes which have already been added to the tree, although it drops nodes that
are not near enough to the edge of the expanding tree to actually have any new
connections made. The set W maintains the nodes which have not been added to the
tree. When FMT∗ searches for a connection for a node v, it will leave v unconnected
(and let it remain in W to be checked again in later iterations) if the node x ∈ H
whose connection (if obstacle-free) would produce the smallest cost-to-come for v
is blocked from connecting to v by an obstacle. Assuming x0 is the optimal parent
of v with respect to the PRM∗ graph, v will never be connected to x0 in FMT∗ only
if when x0 is the minimum-cost node in H, there is another node x1 ∈ H such that
(a) x1 has (necessarily, by the structure of H) greater cost-to-come than x0, (b) x1 is
within a radius rn of v, (c) x1 is blocked from connecting to v by an obstacle, and (d)
obstacle-free connection of v to x1 would have lower cost-to-come than connection
to x0. If any of these conditions fail, then on some iteration (possibly not the first),
v will be connected optimally with respect to PRM∗. Note that the combination of
conditions (a), (b), (c), and (d) ought to make such suboptimal connections quite rare
(more specifically, vanishingly rare as n → ∞).

3.2 Detailed Description

Let SampleFree(k) be a function that returns a set of k ∈ N points sampled inde-
pendently and identically from the uniform distribution onXfree. We use the uniform
distribution in this paper for simplicity, but any distribution supported onXfree would
yield identical theoretical results, in particular AO. Given a vertex x ∈ X and a set
of vertices V , let Save(V , x) be a function that stores in memory a set of vertices
V associated with a vertex x. Given a set of vertices V and a positive number r, let
Near(V , x, r) be a function that returns the set of vertices {v ∈ V : ‖v − x‖ < r}.
Given a graph G = (V , E), where V is the vertex set and E is the edge set, and a
vertex x ∈ V , let Cost(x, G) be a function that returns the cost of the shortest path in
the graphG between the vertices xinit and x. With a slight abuse of notation, we define
the function Cost(vz) as the function that returns the cost of the line vz (note that
Cost(vz) is well defined regardless of vz being collision free). Given two vertices
x and z in Xfree, let CollisionFree(x, z) denote the Boolean function which is
true if and only if xz does not intersect an obstacle. Given two sets of pointsS1 and
S2 in Xfree, let Intersect(S1,S2) be the function that returns the set of points

millitsa@ece.neu.edu



674 L. Janson and M. Pavone

that belong to both S1 and S2. Given two sets S1 and S2, let Merge(S1,S2) be
the function that returns the union of the two sets. Given a tree T = (V , E), where
V is the vertex set and E is the edge set, and a vertex x ∈ T , let Path(x, T) be the
function returning the unique path in the tree T from xinit to x. The algorithm is given
in Algorithm1.

In the extended version of this paper [8], we show that FMT∗ always terminates in
at most n iterations. We also present fairly in-depth implementation details to ensure
optimized algorithm speed. Finally, we show that the computational complexity of
FMT∗ is O(n log(n)), matching that of PRM∗ and RRT∗. Proofs of these results are
omitted here due to space limitations.

In the next section we discuss the (asymptotic) optimality of FMT∗.

4 Asymptotic Optimality of FMT∗

The following theorem presents the main result of this paper.

Theorem 1 (Asymptotic optimality ofFMT∗)Let (Xfree, xinit,Xgoal)be a δ-robustly
feasible path planning problem in d dimensions, with δ > 0 and Xgoal ξ -regular. Let
c∗ denote the arc length of an optimal path σ ∗, and let cn denote the cost of the path
returned by FMT∗ (or ∞ if FMT∗ returns failure) with n vertices using the following
radius,

rn = (1 + η) 2
(
1/d

)1/d(
μ(Xfree)/ζd

)1/d(
log(n)/n

)1/d
, (1)

for some η > 0. Then limn→∞ P (cn > (1 + ε)c∗) = 0 for all ε > 0.

Proof Note that c∗ = 0 implies xinit ∈ cl(Xgoal), and the result is trivial, therefore
assume c∗ > 0. Fix θ ∈ (0, 1/4) and define the sequence of paths σn such that
limn→∞ c(σn) = c∗, σn(1) ∈ ∂Xgoal, σn(τ ) /∈ Xgoal for all τ ∈ (0, 1), σn(0) = xinit ,
and σn has strong δn-clearance, where δn = min

{
δ, 3+θ

2+θ
rn

}
. Such a sequence of paths

must exist by the δ-robust feasibility of the path planning problem.
Let σ ′

n be the concatenation of σn with the line that extends from σn(1) in the
direction perpendicular to the tangent hyperplane of ∂Xgoal at σn(1) of length
min

{
ξ, rn

2(2+θ)

}
. Note that this tangent hyperplane is well-defined, since the regu-

larity assumption for Xgoal ensures that its boundary is differentiable. Note that,
trivially, limn→∞ c(σ ′

n) = limn→∞ c(σn) = c∗.
Fix ε ∈ (0, 1), suppose α, β ∈ (0, θε/8), and pick n0 ∈ N such that for all n ≥ n0

the following conditions hold: (1) rn
2(2+θ)

< ξ , (2) 3+θ
2+θ

rn < δ, (3) c(σ ′
n) < (1 + ε

4 )c
∗,

and (4) rn
2+θ

< ε
8c∗.

For the remainder of this proof, assume n ≥ n0. From conditions (1) and (2),
σ ′

n has strong 3+θ
2+θ

rn-clearance. Letting κ(α, β, θ) := 1 + (2α + 2β)/θ , conditions

(3) and (4) imply: κ(α, β, θ) c(σ ′
n) + rn

2+θ
≤ κ(α, β, θ)

(
1+ ε

4

)
c∗+ ε

8 c∗ ≤
((

1+ ε
2

)

(
1 + ε

4

)
+ ε

8

)
c∗ ≤ (1 + ε)c∗. Therefore,
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P (cn >(1+ε)c∗)=1−P (cn ≤ (1+ε)c∗)≤1−P
(
cn ≤ κ(α, β, θ) c(σ ′

n)+ rn
2+θ

)
.

(2)

Define the sequence of balls Bn,1, . . . , Bn,Mn ⊆ Xfree parameterized by θ as

follows. For m = 1 we define Bn,1 := B
(
σn(τn,1); rn

2+θ

)
,with τn,1 = 0. For m =

2, 3, . . . , let Γm =
{
τ ∈ (τn,m−1, 1) : ‖σn(τ ) − σn(τn,m−1)‖ = θrn

2+θ

}
; if Γm �= ∅ we

define Bn,m := B
(
σn(τn,m); rn

2+θ

)
,with τn,m = minτ Γm. Let Mn be the first m such

that Γm = ∅, then, Bn,Mn := B
(
σ ′

n(1); rn
2(2+θ)

)
, and we stop the process, i.e., Bn,Mn

is the last ball placed along the path σn (note that the center of the last ball is
σ ′

n(1)). Considering the construction of σ
′
n and condition (1) above, we conclude that

Bn,Mn ⊆ Xgoal. Recall that V is the set of nodes available to algorithm FMT∗ (see line
1 inAlgorithm1).We define the eventAn,θ := ⋂Mn

m=1{Bn,m ∩ V �= ∅};An,θ is the event
that each ball contains at least one (not necessarily unique) node in V (for clarity, we
made the event’s dependence on θ , due to the dependence on θ of the balls, explicit).
Further, for all m ∈ {1, . . . , Mn − 1}, let Bβ

n,m be the ball with the same center as Bn,m

and radius βrn

2+θ
, and let Kβ

n be the number of smaller balls Bβ
n,m not containing any

of the nodes in V , i.e., Kβ
n := card{m ∈ {1, . . . , Mn − 1} : Bβ

n,m ∩ V = ∅}. We now
present three important lemmas, the first of which is proved in the Appendix, and
the other two of which are proved in the extended version of this paper available on
arXiv [8].

Lemma 1 Under the assumptions of Theorem1 and assuming n ≥ n0, the following
inequality holds:

P
(
cn ≤ κ(α, β, θ) c(σ ′

n) + rn
2+θ

) ≥ 1 − P(Kβ
n ≥ α(Mn − 1)) − P(Ac

n,θ ).

Lemma 2 Under the assumptions of Theorem1, for all α ∈ (0, 1) and β ∈ (0, θ/2),
it holds that: limn→∞ P(Kβ

n ≥ α(Mn − 1)) = 0.

Lemma 3 Under the assumptions of Theorem1, assume that rn = γ (log n/n)1/d,
where γ = (1 + η) · 2 (1/d)

1
d (μ(Xfree)/ζd)

1/d and η > 0. Then for all θ < 2η,
limn→∞ P(Ac

n,θ ) = 0.

Essentially, Lemma1 provides a lower bound for the cost of the solution delivered
by FMT∗ in terms of the probabilities that the “big” balls and “small” balls do not
contain vertices in V . Lemma2 states that the probability that the fraction of small
balls not containing vertices in V is larger than an α fraction of the total number
of balls is asymptotically zero. Finally, Lemma3 states that the probability that at
least one “big” ball does not contain any of the vertices in V is asymptotically zero.
The asymptotic optimality claim of the theorem then follows easily. Let ε ∈ (0, 1)
and pick θ ∈ (0,min{2η, 1/4}) and α, β ∈ (0, θε/8) ⊂ (0, θ/2). From Eq. (2) and
Lemma1, one can write
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lim
n→∞P (cn > (1 + ε)c∗) ≤ lim

n→∞P

(
Kβ

n ≥ α(Mn − 1)
)

+ lim
n→∞P

(
Ac

n,θ

)
.

The right hand-side of this equation equals zero by Lemmas2 and 3, and the
claim is proven. The case with general ε follows by monotonicity in ε of the above
probability. �

Since the solution returned by FMT∗ is never better than the one returned by
PRM∗, the same result holds for PRM∗. Note that this proof uses a γ which is a
factor of (d + 1)1/d smaller than that in [9]. We conclude this section by presenting
a characterizationof the convergence rate of FMT∗ (and thus also ofPRM∗),assuming
no obstacles. As far as the authors are aware, this is the first such convergence rate
result for an optimal sampling-based motion-planning algorithm, and is an important
step towards understanding the behavior of this class of algorithms. We note that the
bound converges to zero very slowly, but we have not studied how tight it is—this is
a potential area for future work.

Theorem 2 (ConvergenceRate of FMT∗)Let the configuration space be [0, 1]d with
no obstacles and the goal region be [0, 1]d ∩ B(1; ξ). Taking xinit to be the center
of the configuration space, the shortest path has length c∗ = √

d/2 − ξ and has
clearance δ = ξ

√
(d − 1)/d. Denote by cn the cost of the path returned by FMT*

with n points sampled and by ζd the volume of the ball in d dimensions. Let η > 0, ε >

0, θ ∈ (0, 2η
∧ 1

4 ), α, β ∈ (0, θ
8 (1

∧
ε)), ν ∈ (0, 1). Let H(a) = 1 + a(log(a) − 1),

γ = 2(1 + η) ( 1
dζd

)1/d, and rn = γ (log(n)/n)1/d . Letting n0 > (α/e2)
− (2+θ)

νζd βd γ d and

such that rn0 < min
{
2 ξ(2 + θ), 2+θ

3+θ
δ, ε(2+θ)

8 c∗
}

, then for n ≥ n0,

P(cn > (1 + ε)c∗)

<
1

1 − e−νnH( n+1
νn )

e
− α

2

⌊
2+θ
θrn

c∗
⌋(

log
(
α
⌊

2+θ
θrn

c∗
⌋)

+ζd( βrn
2+θ )

d
νn

)

+
⌊
2 + θ

θrn
c∗

⌋ (
1 − ζd

(
rn

2 + θ

)d
)n

+
(
1 − ζd

(
rn

2(2 + θ)

)d
)n

.

Proof The proof essentially relies in collecting the bounds obtained for the proof of
Theorem1. The details are provided in the extended version of this paper [8]. �

5 Numerical Experiments and Discussion

In this section we discuss the advantages of FMT∗ over previous sampling-based
motion planning algorithms. To our knowledge, the main other asymptotically opti-
mal algorithms are PRM∗ and RRT∗ [9], so it is with these state-of-the-art methods
that we draw comparison. We first present a brief conceptual comparison between
FMT∗ and such algorithms, and then we present results from numerical experiments.
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As compared to RRT∗, we expect FMT∗ to show some improvement in solution
quality per number of nodes placed. This is because for a given set of nodes, FMT∗
creates connections nearly optimally (exactly optimally when there are no obstacles)
within the radius constraints, while RRT∗, even with its rewiring step, is ultimately
a greedy algorithm. However, it is hard to conceptually compare how long the algo-
rithms might take to run on a given set of nodes, given how differently they generate
paths. One advantage of FMT∗ over PRM∗, besides the reduction in the number of
collision checks (see Sect. 3.1), is that FMT∗ builds paths in a tree-like structure at all
times, which has some potential advantages when differential or integral constraints
are added to the paths. The extension of FMT∗ to the kinodynamic case is, however,
left for future research.

All simulations were run in C++, using a Linux operating system with a 2.4GHz
processor and 7.5GB of RAM. The implementation of RRT∗ was taken from the
Open Motion Planning Library (OMPL). We adjusted the search radius to match the
lower bound in [9] plus 10%, and used a steering parameter of 60% of the max-
imum extent of the configuration space. Additionally, we implemented an “ellip-
soidal” node-rejection criterion [1, Sect. III.D], which is guaranteed to improve the
performance (i.e., the convergence rate) of RRT∗. To ensure a fair comparison, both
PRM∗ and FMT∗ were also implemented in OMPL. This means that RRT∗, PRM∗,
and FMT∗ used the exact same primitive routines (e.g., nearest neighbor search, col-
lision checking, data handling, etc.). Specifically, for collision checking we used a
hashing scheme [13, 16], where the partition resolution was optimized via numerical
experiments. Similarly as for RRT∗, for both PRM∗ and FMT∗ we used the radius
suggested in [9] for PRM∗ plus 10% (in other words, we used an rn of 10% over
the lower bound given there, as opposed to the smaller rn lower bound presented in
this paper). The configuration space was the unit hypercube, with the initial state xinit
set to be the center of the hypercube, andXgoal set to be the ball of radius 0.0011/d ,
centered at the 1-vector. The algorithms were run on identical sample sets; in case
a sample set did not contain any nodes in Xgoal, the 1-vector (belonging, by con-
struction, to Xgoal) was added at the end of that sample set. (The implementation
of FMT∗ and the code used for algorithm comparison are available at: http://www.
stanford.edu/~pavone/code/fmt.)

We performed two sets of simulations. In the first set of simulations a robot was
modeled as a point mass. This scenario strongly favors PRM∗ against FMT∗, as
collision checking is computationally inexpensive. In the second set of simulations
a robot was modeled as a d-dimensional cuboid. This scenario models the more
realistic setting where collision checking is computationally expensive, and arguably
represents the typical operating regime of sampling-based algorithms [13]. This is
the scenario where FMT∗ is expected to prove its superior performance with respect
to PRM∗ (see Sect. 3.1).

Figures2 and 3 show the results of simulation runs for the first simulation scenario
(i.e., the one with a point-mass robot) in 5 and 10 dimensions, respectively, with no
obstacles and 50% obstacle coverage (the obstacles are hyperrectangles). The points
on the plots represent simulations of the three algorithms on node sets increasing in
size to the right. The maximum number of nodes used varied slightly across graphs,
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Fig. 2 Simulation results in 5 dimensions with and without obstacles for a point-mass robot. Left
figure (normalized) cost versus time with 0% obstacle coverage. Right figure cost versus time with
50% obstacle coverage

Fig. 3 Simulation results in 10 dimensions with and without obstacles for a point mass robot. Left
figure (normalized) cost versus time with 0% obstacle coverage. Right figure cost versus time with
50% obstacle coverage

but FMT∗ always went up to 4000 nodes, PRM∗ went up to about 2000 nodes, and
RRT∗ went up to about 4000 nodes in all obstacle-free graphs, and up to about
35000 in the graphs with 50% obstacles. The error bars represent plus and minus
one standard error of the mean at each node, reflecting that different graphs represent
different numbers of simulations, 100 in 5D, and 50 in 10D. In all the figures, FMT∗
dominates the other two algorithms, in that the FMT∗ curve is below and to the left of
the other two. Specifically, note that in Fig. 3, the solution of RRT∗ never dips below
the solution of FMT∗ on the smallest node set, making it hard to estimate the speedup,
but it is clearly multiple orders of magnitude. As compared to PRM∗, FMT∗ also
provides significant speedups (no less than a factor of three in any of the graphs, if one
imagines drawing a horizontal line and comparing where it crosses the two curves).
While both curves seem to plateau, FMT∗ reaches that plateau faster than PRM∗.
As noted above, this simulation scenario is characterized by inexpensive collision
checking, so we argue that the speedup factors shown by Figs. 2 and 3 represent
“minimum” speedups provided by FMT∗ (which is specifically designed tominimize
the number of collision-check calls) over the other algorithms.We performed similar
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experiments in 2 and 7 dimensions: the general trend is essentially identical and the
results are omitted in the interest of brevity. We also simulated RRT∗ by including
goal biasing, which is implemented by attempting a connection to the goal region
every 100 samples [13, p. 235]. Goal biasing somewhat improves the success rate
(measured as the fraction of times the algorithm returns a feasible solution) of RRT∗,
but the general trend is essentially the same (the results are within 5% of the results
shown in Figs. 2 and 3 for RRT∗) and, again, the results are omitted in the interest of
brevity.

We also note that, although it is not exactly clear from these plots because the
points are not labeled with the number of nodes, when all three algorithms are run on
the same number of nodes, the curve for PRM∗ looks like that for FMT∗ but shifted
to the right (similar solution quality, but slower), while that of RRT∗ looks like that
of FMT∗ but shifted up and to the left (faster per node, but much worse solution
quality). This agrees with our heuristic analysis. It is of some interest to note that
in 10D with 50% obstacle coverage, RRT∗ achieved a success rate ranging from
12% for low sample counts (e.g., 100 nodes= 12%) to approximately 95% for high
sample counts (35000 nodes = 96%), while FMT∗ had a 100% success rate for all
but the smallest node set (100 nodes= 96%). Finally, although the error bars depend
on the number of simulations, each graph used the same number of simulations for
each point, and thus it is noteworthy that RRT∗’s error bars are uniformly larger than
those of FMT∗. This means that the solutions returned by FMT∗ are both higher
quality and more consistent.

Figure4 shows the results of simulation runs in 5 and 10 dimensions with 50%
obstacle coverage for the second simulation scenario (i.e., with a cuboid robot). In
5D, we use the same number of samples as in the point mass scenario. In 10D, FMT∗
was run up to 600 samples, PRM∗ was run up to 100 samples, and RRT∗ was run
up to 4000 samples. Each curve starts at a point where the success rate is larger than
75% (as in the point-mass scenario, the success rates for a given execution time
is significantly larger for PRM∗ and FMT∗ than for RRT∗). In both figures, FMT∗
outperforms the other two algorithms by orders of magnitude. As discussed, in this

Fig. 4 Simulation results in 5 and 10 dimensions with obstacles for a cuboid robot. Left figure
cost versus time in 5 dimensions with 50% obstacle coverage. Right figure cost versus time in 10
dimensions with 50% obstacle coverage
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scenario collision-checking is more computationally expensive, which explains the
significant move of the PRM∗ curve to the top-right corner of the plots (see also
Sect. 3.1).

6 Conclusions

In this paper we have introduced and analyzed a novel probabilistic sampling-based
motion planning algorithm called Fast Marching Tree algorithm (FMT∗). This algo-
rithm is asymptotically optimal and appears to converge significantly faster than
its state-of-the-art counterparts. The speedups are particularly prominent in higher
dimensions and in scenarios where collision checking is expensive, which is exactly
the regime in which sampling-based algorithms are particularly useful. We used
the weaker notion of convergence in probability, as opposed to convergence almost
surely, and showed that the extra mathematical flexibility provides substantial theo-
retical and algorithmic benefits, including convergence rate bounds.

This paper leaves numerous important extensions open for further research. First,
it is of interest to extend the FMT∗ algorithm to address problems with differen-
tial motion constraints and in non-metric spaces (relevant, e.g., for information-
planning). Second, we plan to further explore the convergence rate bounds provided
by the proof of AO given here. Third, we plan to use this algorithm as the backbone
for scalable information-theoretic planning algorithms. Fourth, we plan to extend
the FMT∗ algorithm for solving the eikonal equation. Finally, we plan to test the
performance of FMT∗ on mobile ground robots and robotic manipulators operating
in dynamic environments.

Acknowledgments The authors gratefully acknowledge the contributions ofAshleyClark, Edward
Schmerling, Tim Wheeler, and Wolfgang Pointner to the implementation of FMT∗. This work was
supported by NASA under the Space Technology Research Grants Program, Grant NNX12AQ43G.

Appendix

Proof (Proof of Lemma 1) To start, note that P(Kβ
n ≥ α(Mn − 1)) + P(Ac

n) ≥
P({Kβ

n ≥ α(Mn − 1)} ∪ Ac
n) = 1 − P({Kβ

n < α(Mn − 1)} ∩ An), where the first
inequality follows from the union bound and the second equality follows from De
Morgan’s laws. Note that the event {Kβ

n < α(Mn − 1)} ∩ An is the event that each
Bn,m contains at least one node, and more than a 1 − α fraction of the Bβ

n,m balls also
contains at least one node.

When two nodes xi and xi+1, i ∈ {1, . . . , Mn − 2}, are contained in adjacent balls
Bn,i andBn,i+1, respectively, their distance apart ‖xi+1 − xi‖ can be upper bounded by,
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⎧
⎪⎪⎨

⎪⎪⎩

θrn
2+θ

+ βrn

2+θ
+ βrn

2+θ
: if xi ∈ Bβ

n,i and xi+1 ∈ Bβ

n,i+1
θrn
2+θ

+ βrn

2+θ
+ rn

2+θ
: if xi ∈ Bβ

n,i or xi+1 ∈ Bβ

n,i+1
θrn
2+θ

+ rn
2+θ

+ rn
2+θ

: otherwise,

where the three bounds have been suggestively divided into a term for the distance
between ball centers and a termeach for the radii of the twoballs containing the nodes.
This bound also holds for ‖xMn − xMn−1‖, although necessarily in one of the latter
two bounds, since Bβ

n,Mn
being undefined precludes the possibility of the first bound.

Thus we can rewrite the above bound, for i ∈ {1, . . . , Mn − 1}, as ‖xi+1 − xi‖ ≤
c̄(xi) + c̄(xi+1), where

c̄(xk) :=
{

θrn
2(2+θ)

+ βrn

2+θ
: xk ∈ Bβ

n,k,

θrn
2(2+θ)

+ rn
2+θ

: xk /∈ Bβ

n,k .
(3)

Again, c̄(xMn) is still well-defined, but always takes the second value in Eq. (3) above.
Let Ln,α,β be the length of a path that sequentially connects a set of nodes {x1 =
xinit, x2, . . . , xMn}, such that xm ∈ Bn,m ∀m ∈ {1, . . . , Mn}, and more than a (1 − α)

fraction of the nodes x1, . . . , xMn−1 are also contained in their respective Bβ
n,m balls.

The length Ln,α,β can then be upper bounded as follows

Ln,α,β =
Mn−1∑

k=1

‖xk+1 − xk‖ ≤
Mn−1∑

k=1

2c̄(xk) − c̄(x1) + c̄(xMn )

≤ (Mn − 1)
θrn

2 + θ
+ �(1 − α)(Mn − 1)� 2βrn

2 + θ
+ �α(Mn − 1)� 2rn

2 + θ
+ (1 − β)rn

2 + θ

≤ (Mn − 1) rn
θ + 2α + 2(1 − α)β

2 + θ
+ (1 − β)rn

2 + θ
≤ Mn rn

θ + 2α + 2β

2 + θ
+ rn

2 + θ
. (4)

In Eq. (4), �x� denotes the smallest integer not less than x, while �x� denotes the
largest integer not greater than x. Furthermore, we can upper bound Mn as follows,

c(σ ′
n) ≥

Mn−2∑

k=1

‖σn(τk+1)−σn(τk)‖ + ‖σ ′
n(1)−σn(τMn−1)‖ ≥ (Mn−2)

θrn

2 + θ
+ rn

2(2 + θ)

= Mn
θrn

2 + θ
+

(
1

2
− 2θ

)
rn

2 + θ
≥ Mn

θrn

2 + θ
, (5)

where the last inequality follows from the assumption that θ < 1/4. Combining
Eqs. (4) and (5) gives

Ln,α,β ≤ c(σ ′
n)

(
1 + 2α + 2β

θ

)
+ rn

2 + θ
= κ(α, β, θ) c(σ ′

n) + rn

2 + θ
. (6)
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We will now show that when An occurs, cn is no more than the length of the path
connecting any sequence of Mn vertices tracing through the balls Bn,1, . . . , Bn,Mn

(this of course also implies cn < ∞). Coupling this fact with Eq. (6), one can then
conclude that the event {Kβ

n < α(Mn − 1)} ∩ An implies that cn ≤ κ(α, β, θ) c(σ ′
n) +

rn
2+θ

, which, in turn, would prove the lemma.
Let x1 = xinit, x2 ∈ Bn,2, . . . , xMn ∈ Bn,Mn ⊆ Xgoal. Note that the xi’s need not

all be distinct. The following property holds for all m ∈ {2, . . . , Mn − 1}: ‖xm −
xm−1‖ ≤ ‖xm − σn(τm)‖ + ‖σn(τm) − σn(τm−1)‖ + ‖σn(τm−1) − xm−1‖ ≤ rn

2+θ
+

θrn
2+θ

+ rn
2+θ

= rn. Similarly, one can write ‖xMn − xMn−1‖ ≤ rn
2+θ

+ (θ+1/2)rn

2+θ
+

rn
2(2+θ)

= rn. Furthermore, we can lower bound the distance to the nearest obstacle

for m ∈ {2, . . . , Mn − 1} by infw∈Xobs ‖xm − w‖ ≥ infw∈Xobs ‖σn(τm) − w‖ − ‖xm −
σn(τm)‖ ≥ 3+θ

2+θ
rn − rn

2+θ
= rn, where the second inequality follows from the assumed

δn-clearance of the path σn. Again, similarly, one can write infw∈Xobs ‖xMn − w‖ ≥
infw∈Xobs ||xm − σn(1)‖ − ‖σn(1) − w‖ ≥ 3+θ

2+θ
rn − rn

2+θ
= rn. Together, these two

properties imply that, for m ∈ {2, . . . , Mn}, when a connection is attempted for xm,
xm−1 will be in the search radius and there will be no obstacles in that search radius.
In particular, this implies that either the algorithm will return a feasible path before
considering xMn , or it will consider xMn and connect it. Therefore, FMT∗ is guaranteed
to return a feasible solution when the event An occurs. Since the remainder of this
proof assumes that An occurs, we will also assume cn < ∞.

Finally, assuming xm is contained in an edge, let c(xm) denote the (unique) cost-to-
come of xm in the graph generated by FMT∗ at the end of the algorithm, just before the
path is returned. If xm is not contained in an edge, we set c(xm) = ∞. Note that c(·)
is well-defined, since if xm is contained in any edge, it must be connected through a
unique path to xinit.We claim that for allm ∈ {2, . . . , Mn}, either cn ≤ ∑m−1

k=1 ‖xk+1 −
xk‖, or c(xm) ≤ ∑m−1

k=1 ‖xk+1 − xk‖. In particular, taking m = Mn, this would imply
that cn ≤ min{c(xMn),

∑Mn−1
k=1 ‖xk+1 − xk‖} ≤ ∑Mn−1

k=1 ‖xk+1 − xk‖, which, as argued
before, would imply the claim.

The claim is proved by induction on m. The case of m = 1 is trivial, since the first
step in the FMT∗ algorithm is tomake every collision-free connection between xinit =
x1 and the nodes contained in B(xinit; rn), which will include x2 and, thus, c(x2) =
‖x2 − x1‖. Now suppose the claim is true for m − 1. There are four exhaustive cases
to consider:

1. cn ≤ ∑m−2
k=1 ‖xk+1 − xk‖,

2. c(xm−1) ≤ ∑m−2
k=1 ‖xk+1 − xk‖ and FMT∗ ends before considering xm,

3. c(xm−1) ≤ ∑m−2
k=1 ‖xk+1 − xk‖ and xm−1 ∈ H when xm is first considered,

4. c(xm−1) ≤ ∑m−2
k=1 ‖xk+1 − xk‖ and xm−1 /∈ H when xm is first considered.

Case 1: cn ≤ ∑m−2
k=1 ‖xk+1 − xk‖ ≤ ∑m−1

k=1 ‖xk+1 − xk‖, thus the claim is true for
m. Without loss of generality, for cases 2–4 we assume that case 1 does not occur.

Case 2: c(xm−1) < ∞ implies that xm−1 enters H at some point during FMT∗.
However, if xm−1 were ever the minimum-cost element of H, xm would have been
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considered, and thus FMT∗ must have returned a feasible solution before xm−1 was
ever the minimum-cost element of H. Since the end-node of the solution returned
must have been the minimum-cost element of H, cn ≤ c(xm−1) ≤ ∑m−2

k=1 ‖xk+1 −
xk‖ ≤ ∑m−1

k=1 ‖xk+1 − xk‖, thus the claim is true for m.
Case 3: xm−1 ∈ H when xm is first considered, ‖xm − xm−1‖ ≤ rn, and there are

no obstacles in B(xm; rn). Therefore, xm must be connected to some parent when it
is first considered, and c(xm) ≤ c(xm−1) + ‖xm − xm−1‖ ≤ ∑m−1

k=1 ‖xk+1 − xk‖, thus
the claim is true for m.

Case 4:When xm is first considered, theremust exist z ∈ B(xm; rn) such that z is the
minimum-cost element of H, while xm−1 has not even entered H yet. Note that again,
since B(xm; rn) intersects no obstacles and contains at least one node in H, xm must
be connected to some parent when it is first considered. Since c(xm−1) < ∞, there
is a well-defined path P = {v1, . . . , vq} from xinit = v1 to xm−1 = vq for some q ∈
N. Let w = vj, where j = maxi∈{1,...,q}{i : vi ∈ H when xm is first considered}. Then
there are two subcases, either w ∈ B(xm; rn) or w /∈ B(xm; rn). If w ∈ B(xm; rn), then,
c(xm) ≤ c(w) + ‖xm − w‖ ≤ c(w) + ‖xm−1 − w‖ + ‖xm − xm−1‖ ≤ c(xm−1) +
‖xm − xm−1‖ ≤ ∑m−1

k=1 ‖xk+1 − xk‖, thus the claim is true for m (the second and third
inequalities follow from the triangle inequality). If w /∈ B(xm; rn), then, c(xm) ≤
c(z) + ‖xm − z‖ ≤ c(w) + rn ≤ c(xm−1) + ‖xm − xm−1‖ ≤ ∑m−1

k=1 ‖xk+1 − xk‖,
where the third inequality follows from the fact that w /∈ B(xm, rn), which means that
any path through w to xm, in particular the pathP ∪ xm, must traverse a distance of
at least rn between w and xm. Thus, in the final subcase of the final case, the claim is
true for m. Hence, we can conclude that cn ≤ ∑Mn−1

k=1 ‖xk+1 − xk‖. As argued before,
coupling this fact with Eq. (6), one can conclude that the event {Kβ

n < α(Mn − 1)} ∩
An implies that cn ≤ κ(α, β, θ) c(σ ′

n) + rn
2+θ

, and the claim follows. �
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Safe Motion Planning for Imprecise Robotic
Manipulators by Minimizing Probability
of Collision

Wen Sun, Luis G. Torres, Jur van den Berg and Ron Alterovitz

Abstract Robotic manipulators designed for home assistance and new surgical
procedures often have significant uncertainty in their actuation due to compliance
requirements, cost constraints, and size limits. We introduce a new integrated motion
planning and control algorithm for robotic manipulators that makes safety a priority
by explicitly considering the probability of unwanted collisions. We first present a
fast method for estimating the probability of collision of a motion plan for a robotic
manipulator under the assumptions of Gaussian motion and sensing uncertainty. Our
approach quickly computes distances to obstacles in theworkspace and appropriately
transforms this information into the configuration space using a Newton method to
estimate the most relevant collision points in configuration space. We then present
a sampling-based motion planner based on executing multiple independent rapidly
exploring random trees that returns a plan that, under reasonable assumptions, asymp-
totically converges to a plan that minimizes the estimated collision probability. We
demonstrate the speed and safety of our plans in simulation for (1) a 3-D manipu-
lator with 6 DOF, and (2) a concentric tube robot, a tentacle-like robot designed for
surgical applications.
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1 Introduction

As robotic manipulators enter emerging domains such as home assistance and enable
new minimally-invasive surgeries, their designs are increasingly diverging from the
designs of traditional manufacturing robots. Home assistance robotic manipulators
must feature compliant joints for safety and must be lower cost to spur adoption,
which results in decreased precision of sensors and actuators. Medical robots, such
as tentacle-like and snake-like robots (e.g., [7, 9, 23, 32]), are becoming smaller and
also are gaining larger numbers of degrees of freedom. These features are necessary
to enable new, less invasive surgical procedures that require maneuvering around
sensitive or impenetrable anatomical obstacles. These trends in robotic manipulator
design and applications have an inevitable consequence: uncertainty in robot motion
and state estimation. For robotic manipulators to operate with some level of auton-
omy in people’s homes and inside people’s bodies, uncertainty should explicitly be
considered when planning motions to ensure both safety and task success.

In this paper, we introduce a new integrated motion planning and control algo-
rithm for manipulators with uncertainty in actuation and sensing. Our objective is to
compute plans and corresponding closed-loop controllers that a priori minimize the
probability that any link of the robot will collide with an obstacle. To accomplish this
objective, our algorithm incorporates two primary contributions. First, we introduce
a fast and accurate method for assessing the quality of a manipulator motion plan by
efficiently estimating the a priori probability of collision using fast numerical com-
putations that do not require sampling in configuration space. Second, we introduce
a sampling-based motion planner that, under reasonable assumptions, guarantees
that the probability of finding a plan that minimizes the estimated probability of
collision approaches 100% as computation time is allowed to increase. We note that
current planners such as RRT* [12] cannot guarantee asymptotic optimality for our
problem since the optimal substructure property does not hold, i.e., the optimal plan
from a particular state is not independent of the robot’s prior history. Our approach is
applicable to robotic manipulators for which uncertainty in actuation and sensing can
be modeled using Gaussian distributions, a Kalman filter is used for state estimation,
and an optimal linear controller (i.e., LQG control) is used to follow the plan. To the
best of our knowledge, this is the first approach for computing a plan that minimizes
the a priori probability of collision for general robotic manipulators.

For robots with motion and sensing uncertainty, collision detection during motion
planning must be done in a probabilistic sense by considering the possibility of
collision with respect to all possible states of the robot. Extensive prior work has
investigated integrated motion planning and control under uncertainty for robots that
can be approximated as points in the workspace (e.g., [4, 20, 26, 27]), but robotic
manipulators raise new challenges. Whereas for point robots analytically estimat-
ing probability of collisions is facilitated by the fact that the robot’s configuration
space and workspace share parameters, for manipulators the configuration space
and workspace are disjoint. Furthermore, manipulators (especially tentacle-like and
snake-like medical robots) can have large numbers of degrees of freedom.
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In our first contribution, we introduce a method to efficiently estimate the a priori
probability of collision for a given plan for a robotic manipulator. Given the robot’s
uncertainty represented as a distribution in configuration space, efficiently estimating
the probability of collision is challenging because the shapes of the obstacles are
defined in the workspace and cannot be directly computed in configuration space in
closed form [6]. The key insight of our method is that an appropriate minimization
of distance from the robot to an obstacle in C-space corresponds to a minimum
distance in the workspace. Hence, we propose a fast method using Newton’s method
to estimate the closest point in configuration space that will cause a collision, and use
this information to estimate the probability of collision. We extend this formulation
to multiple obstacles and then propagate these estimates over time (in a manner
that considers dependencies across time steps) to estimate the a priori probability of
collision for a plan.

In our second contribution, we present an asymptotically optimal motion planner
that minimizes the estimated a priori probability of collision for a manipulator. Our
motion planner is based on a simple idea: it generates a large number of plans,
computes an optimal linear controller for each plan, then estimates the probability
of collision for each plan using our approach above, and selects the best plan. By
evaluating cost over entire plans, we properly handle the fact that the probability of
collision from a configuration onwards depends on prior history.We show that, under
reasonable assumptions, the computed plan will converge to a minimum estimated
collision probability plan as computation time is allowed to increase.

We evaluate ourmethod using simulated scenarios involving a 6-DOFmanipulator
and a tentacle-like robot designed formedical applications such as skull base surgery.
Our results show that we can quickly estimate the a priori probability of collision of
motion plans across highly distinct robotic manipulators and select plans that safely
and robustly guide the robot’s end effector to desired goals.

2 Related Work

Since uncertainty is inherent in many robotics applications, approaches for man-
aging uncertainty have been investigated for a variety of settings. Our focus in
this paper is on robots with uncertainty in their motion and state estimation; we
do not consider uncertainty in sensing of obstacle locations (e.g., [11]) or grasping
(e.g., [19]). Extensive prior work has investigated motion planning under uncertainty
for mobile robots that can be approximated as points or spheres in the workspace,
e.g., [2, 4, 8, 17, 18, 20, 21, 26, 28]. For point or spherical robots, computing an esti-
mate of the probability of collision with obstacles can be done in the workspace since
the geometry of the C-obstacles is low dimensional and can be directly computed. It
is not trivial to directly extend these methods to robotic manipulators, which are typ-
ically articulated and are composed of more complex shapes. Our approach avoids
complexity in the configuration space by computing distance only in the workspace,
as has been done in other contexts [3]. Another approach to estimate the probability
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of collision is using Monte Carlo simulation in the space of uncertain parameters,
but the computation time needed to run a sufficient number of simulations to achieve
a desired accuracy can be prohibitive in some applications.

Our approach computes a plan and controller simultaneously to minimize proba-
bility of collision. Approaches that blend planning and control by defining a global
control policy over the entire environment have been developed using Markov deci-
sion processes (MDPs) [2] and partially-observable MDPs (POMDPs) [14]. These
approaches are difficult to scale, and computational costs may prohibit their appli-
cation to robots with higher dimensional configuration spaces. Another class of
approaches rely on sampling-based methods to compute a path and then compute
an LQG feedback controller to follow that path [1, 4, 21, 26]. Other approaches
compute a locally-optimal trajectory and an associated control policy [20, 27, 30].
Recent work has begun to investigate computing plans for manipulators that are
robust to uncertainty using local optimization [15], but place restrictions on robot
geometry and do not accurately estimate probability of collision.

For some applications, uncertainty in robot motion and sensing necessitates that
the robot performmaneuvers purely to gain information. The general POMDP formu-
lation enables such information gathering. However, this typically comes at the cost
of additional computational complexity [14] or the ability to only compute locally
optimal rather than globally optimal plans [27]. Although in this paper we address a
broad class of problems, the use of sampling-based motion planning in our approach
does place restrictions, e.g., the optimal planmust be goal-oriented (i.e., optimality is
not guaranteed for problems that require returning to previously explored regions of
the state space for information gathering). Because of these restrictions, our method
does not address the general POMDP problem.

Sampling-based methods such as RRT* provide asymptotic optimality [12], but
they are not suitable for finding the optimal plan for the cost metric of minimizing
probability of collision because the required optimal substructure property does not
hold. We show that our motion planner, under reasonable assumptions, is asymptot-
ically optimal for goal-oriented problems when minimizing probability of collision.

3 Problem Definition and Overview

We consider an articulated robotic manipulator with l links operating in an envi-
ronment with obstacles. Let C be the configuration space of the robot. Let q ∈ C
denote a configuration of the robot, which consists of the parameters over which the
robot has control (e.g., joint angles). We assume we are given a description of the
geometry X(q) of the robot in the workspace for any given configuration q ∈ C and
a description of the geometry of the obstacles O in the workspace. The continuous
time τ is discretized into periods with equal time duration Δ, and we define q(τ )

as the configuration at time τ . For simplicity, we define qt = q(tΔ) for time step
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t ∈ N. Let u ∈ U denote the robot’s control inputs, which are provided at discrete
time steps. At time step t, the dynamics of the robot evolves as

qt+1 = f (qt, ut, mt), mt ∼ N (0, M) (1)

where mt is the process noise with variance M. We assume noisy and partial obser-
vation zt can be obtained by the sensing model

zt = h(qt, nt), nt ∼ N (0, N), (2)

where nt is the sensing noise with variance N .
Our objective is to enable the robotic manipulator to move from a start config-

uration q0 to a goal G ⊆ C in a manner that minimizes the probability of collision
with obstacles. We define a motion plan π as a sequence of nominal configurations
and corresponding control inputs, π = {q0, u0, q1, u1, . . . , qT , uT }, where qT ∈ G
and uT = 0. When executing a plan, we assume the robot uses an optimal linear
controller (a linear quadratic Gaussian (LQG) feedback controller) in combination
with a Kalman Filter for state estimation to guide the robot along the nominal plan.

In Sect. 4, we introduce a method to efficiently estimate the a priori probability of
collision for a given plan. In Sect. 5 we introduce an asymptotically optimal motion
planner that computes a plan that reaches a goal and asymptotically minimizes the a
priori probability of collision.

4 Estimating Probability of Collision

In this section, we present our approach to estimating the probability of collision for
a robotic manipulator moving along a planned trajectory. The approach works for
complex workspace geometry and configuration spaces of arbitrary dimension and
shape (including high-DOF manipulators).

We begin by considering the probability of collision when the robot is at a partic-
ular configuration with a given uncertainty distribution. We assume we have access
to a collision-checker (e.g., [25]) that can compute the (signed) distance d(q) in the
workspace between the geometry of the robot X(q) configured at q and the geometry
of the obstacles O (the distance is negative if the robot collides with an obstacle,
in which case the penetration depth is returned). The goal is to approximate the
probability that the robot is in collision, i.e., p(X(q) ∩ O �= ∅), given a Gaussian
distribution of the configuration q ∈ C of the robot;

q ∼ N (q̂,Σ), (3)

with mean q̂ and variance Σ .
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4.1 Approach

Our approach is as follows. Let us assume that the geometry of the configuration
space obstacles is (locally) convex in the neighborhood of q̂ (we will alleviate this
assumption below). Then,we can approximate the free part of the configuration space
by a single linear inequality constraint (aT q < b) that is tangent to the configuration
space obstacles at the point on the C-space obstacles “closest” to q̂. Given a linear
inequality constraint, there is a closed-form expression for the probability that the
constraint is violated if q has a Gaussian distribution [26], which serves as a (conser-
vative) approximation of the probability that the robot is in collision. The challenge
is to find a “closest” point on the boundary of the C-space obstacles, since we only
have access to the geometry of the obstacles in the workspace. In our approach, we
make use of one key relation between workspace geometry and configuration space
geometry that holds in general: configuration q ∈ C lies on the boundary of a config-
uration space obstacle if and only if the workspace distance d(q) between the robot
X(q) configured at q and the workspace obstacles O is zero (i.e., the robot touches
an obstacle).

In order to define “closest”, we use the distance metric
√

(q − q̂)TΣ−1(q − q̂).
This ensures that the constraint includes asmuch probabilitymass as possible. Hence,
decomposing Σ = LLT and defining a transformed configuration space C ′ = L−1C
allows us to use the standard Euclidean distance metric

√
(q′ − q̂′

)T (q′ − q̂′
), where

q̂′ = L−1q̂ is the mean of the distribution in the transformed configuration space C ′.
Also, let us define a workspace distance function that takes in configurations q′ ∈ C ′
from the transformed configuration space:

d′(q′) = d(Lq′). (4)

We are looking for a transformed configuration q′ for which d′(q′) = 0 (i.e., a config-
uration q′ on the boundary of the transformed C-space obstacles) that is closest to the
transformedmean q̂′. For this, we use a variant of Newton’s root finding method with
q̂′ as the initial “guess.” Newton’s method (with line search) finds a root close to the
given initial “guess,” but does not guarantee to find the actual closest root. (We note
that computing the true minimum distance point requires solving an optimization
problem subject to a constraint that the solution is on the surface of a C-obstacle,
which cannot be efficiently computed). Newton’s method iteratively performs the
following update:

q′
i+1 = q′

i − d′(q′
i)

∂d′

∂q′ [q′
i]/

(
∂d′

∂q′ [q′
i]T ∂d′

∂q′ [q′
i]
)

, (5)

withq′
0 = q̂′.Here, ∂d′

∂q′ [q′
i] is the gradient vector ofd′ at configurationq′

i. The gradient
points in the direction of steepest ascent of d′ and has a magnitude equal to the slope
of d′ in that direction. Hence, if the function d′ would be linear along the gradient,
the above equation gives a configuration q′

i+1 for which d′ is zero. Since this is in
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general not the case, the equation is iterated, which lets it approach a root q′
� of

d′ with a second-order convergence rate [16]. In our implementation, we use line
search in Newton’s method to ensure that the (absolute value) of the distance strictly
decreases with each iteration, i.e., |d′(q′

i+1)| < |d′(q′
i)|. The gradient vector ∂d′

∂q′ [q′
i]

can be computed using numerical differentiation (recall that d′(q′) can be evaluated
for any q′ ∈ C ′ using Eq. (4) and the collision checker).

Figure1 shows an example workspace and configuration space of a 2-D manip-
ulator with mean q̂′ and the approximately closest point q′

� on the boundary of the
C-obstacles as found by Newton’s method. As can be seen, the q′

� is indeed close to
the mean, but is not the exact closest point. To construct the linear constraint tangent
to the transformed C-obstacles at q′

�, we need the vector n′ normal to the surface of
the transformed C-obstacle at q′

�. For this, we use n′ = sign(d′(q′
�−1))(q

′
� − q′

�−1),
where q′

�−1 is the before-last iterate of Newton’s method. Given n′, the linear con-
straint (aT q < b) in the original configuration space C is given by:

aT = n′T L−1, b = n′T q′
�. (6)

This equation, as well as the ones above, suggest that we need to decompose
Σ into LLT and compute the inverse of L, which are potentially costly operations
and require Σ to be non-singular. However, this is not necessary. It can be shown
that the configurations qi = Lq′

i in the untransformed configuration space evolve in
Newton’s method as:

qi+1 = qi − d(qi)Σ
∂d

∂q
[qi]/

(
∂d

∂q
[qi]TΣ

∂d

∂q
[qi]

)
, (7)

(a) (b) (c) (d)

Fig. 1 Example of our method for estimating the closest collision point. The 2-D manipulator at
configuration q̂ with 2 obstacles in the workspace (a). The configuration space of the manipulator
defined by (θ1, θ2) zoomed in to the area around q̂ (b). The uncertainty ellipse is shown with greater
uncertainty in θ2 than in θ1. We transform the C-space such that the ellipse is circular, enabling us to
compute distances using a collision checker (c). Using Newton’s method, we compute the closest
point (q′

�) and corresponding constraint tangent for each link that collides with an obstacle. We
illustrate in the workspace the q′

� that collides with the orange obstacle (d). Using the tangents in
c, we truncate the uncertainty distribution and propagate to next time steps, enabling us to estimate
probability of collision along a trajectory

millitsa@ece.neu.edu



692 W. Sun et al.

with q0 = q̂. The constraint (aT q < b) upon convergence is then given by:

a = −|d(q�−1)|∂d

∂q
[q�−1], b = aT q�, (8)

where the distance and gradient are available from the last step of Newton’s method.
FromEq. (7) we can see that in each iteration ourmethod needsO(n) distance queries
and O(n2) operations, where n is the dimension of the configuration space.

4.2 Multiple Constraints

Above we made the assumption that the geometry of the configuration space obsta-
cles is (locally) convex. This is in general not an accurate assumption, in particular if
the geometry of the workspace and of the robot is highly non-convex (as is the case
with a manipulator). Therefore, we take the following approach to create multiple
constraints: we assume that the geometry of the workspace obstacles O is decom-
posed into n convex sets O1, . . . ,On such that

⋃
i Oi = O and, similarly, that the

workspace geometry X(q) of the robot for a configuration q is decomposed into m
convex sets X1(q), . . . , Xm(q) such that

⋃
i Xi(q) = X(q). For a manipulator robot

for instance, one can imagine that each link of the manipulator forms a convex set.
We then apply the above approach for each pair of workspace obstacle Oi and

robot subset Xj(q), giving a set of nm approximately locally-closest configurations
on the geometry of the C-space obstacles and their associated constraints. To avoid
having unuseful constraints, we take the following pruning approach: we consider
the locally-closest configurations in order of increasing distance from the mean q̂,
and remove the configuration from the list if it does not obey one of the constraints
associated with configurations that came before it in the list. The intersection of the
remaining constraints form an approximate local convexification of the free config-
uration space around the distribution of the configuration of the robot. We note that
this approach relies on an implicit assumption that for a convex (piece of the) robot
and a convex obstacle, the corresponding C-space obstacle is (locally) convex. This
is not the case in general, but it is reasonable to assume that the surfaces of such C-
obstacles are “well-behaved” and that the constraint as found by Newton’s method
gives a reasonable local approximation. This is the case for the example in Fig. 1.

Given the set of constraints {aT
i q < bi} thus computed, we can approximate the

probability that any of the constraints is violated given the Gaussian distribution of q
(see [18, 30]). In addition, we can truncate the Gaussian distribution to approximate
the conditional distribution that the robot is collision free. This conditional distri-
bution can then be propagated along a given motion plan for the robot (e.g., using
LQG-MP [26]). Since arriving at a particular time step along a plan is conditioned on
the previous time steps being collision free, we account for dependencies between
successive time steps by repeating the above procedure for each time step along the
plan to approximate the probability that the entire path of the robot is collision free
(see, e.g., [18]).
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5 Computing Motion Plans that Minimize Collision
Probability

Wenext present amotion planner that guarantees that, as computation time is allowed
to increase, the computed plan will approach a plan that minimizes probability of
collision estimated using the method in Sect. 4. Guaranteeing asymptotic optimality
for motion planning under uncertainty is challenging because it is necessary to not
only explore the configuration space but also to consider the a priori uncertainty
distribution at each configuration. The uncertainty distribution at a configuration is
history dependent, i.e., it depends on the trajectory used to reach the configuration.
This breaks the optimal substructure assumption required by prior asymptotically
optimalmotion planners such asRRT* [12] since the cost of any subpath is dependent
on what succeeds and precedes it.

5.1 Multiple Independent RRTs (MIRRT)

Ourmotion planningmethod,Multiple Independent RRTs (MIRRT), builds upon the
rapidly-exploring random tree (RRT) [6], a well-established sampling-based motion
planner for finding feasible plans in configuration space. Our method begins by
building an RRT and terminating as soon as a plan is found. For the computed
plan, we compute the corresponding LQG controller and estimate the probability of
collision of the plan as described in Sect. 4. We then launch a completely new RRT to
compute another plan. We continue executing independent RRTs until a maximum
time threshold is reached or the user stops the planner. (We note that this planning
approach is trivially parallelizable.) As the plans are generated, we save the plan with
minimum estimated probability of collision.

A single RRT for general cost functions will not converge to an optimal plan [12].
We show in Sect. 5.2 that, with some reasonable assumptions, MIRRT is asymptoti-
cally optimal for minimizing the probability of collision estimated using Sect. 4.

5.2 Analysis of Asymptotic Optimality

We analyze MIRRT for holonomic robotic manipulators for goal-oriented problems,
i.e., we require the optimal plan π∗ to have the property that state q∗

t along the plan
π∗ is closer (based on the Euclidean distance in configuration space) to the state q∗

t−1
than to any state q∗

t′ where t′ < t − 1. For any goal-oriented problem, themanipulator
will never return to a previous configuration to gain information. We show that for a
goal-oriented problem in which a plan is represented by control inputs over a finite
number of time steps, the plan returned by MIRRT asymptotically approaches the
optimal plan π∗ with probability 1.
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For purposes ofmotion planning, we define cost function c(π, q0) as the estimated
probability of collision when plan π is executed starting at configuration q0. Given
q0 and two feasible plans π1 and π2, we define the distance between π1 and π2 as
‖π1 − π2‖ = maxζ∈[0,1] ‖q(ζT1Δ,π1) − q(ζT2Δ,π2)‖, where Ti is the number of
time steps of πi and q(τ, π) represents the configuration at time τ while executing
the plan π . For our cost function, similar plans have similar cost. The cost function
c(π, q0) is Lipschitz continuous, i.e., there exists some constant K such that starting
from q0, for any two feasible plans π1 and π2, ‖c(π1, q0) − c(π2, q0)‖ ≤ K‖π1 −
π2‖.

To expand an RRT in the direction of a sampled configuration qsample, the algo-
rithm uses the function Steer : (q, qsample) �→ qnew, which is defined as in [12]. Steer
returns a configuration qnew that moves linearly from q toward qsample up to a prede-
fined distance η ∈ R

+. For the optimal plan π∗, we define d∗ = max0≤i≤T−1 ‖q∗
i −

q∗
i+1‖. We assume η is sufficiently large that ∃β ∈ R

+, d∗ + β = η.
Because we consider uncertainty, we leverage the assumption that an optimal plan

π∗ is α-collision free, i.e., the nominal plan avoids obstacles by a clearance distance
of at least α for some α ∈ R

+. This assumption is reasonable since moving adjacent
to an obstacle would almost surely cause collision.

Motivated by [13], we build “balls” along the optimal plan π∗. Given any ε ∈
(0,min( β

2 , α)), for any q∗
t , we define (ε, t)-ball Bq∗

t
as all q such that ‖q∗

t − q‖ ≤ ε.
Because of the choice of ε, at time step t, if the robot is at a state q within Bq∗

t
, and a

sample qsample ends up within Bq∗
t+1
, the function Steer(q, qsample) can connect q and

qsample by a straight line in C. The straight line is also collision free. For any feasible
plan π that has the same number of time steps as π∗, we call π an ε-close path if
and only if for any time step t along π , qt ∈ Bq∗

t
.

Theorem 1 (MIRRT is asymptotically optimal) Let πi denote the best plan found
after i RRTs have returned solutions. Given the assumptions above and assuming the
problem is goal-oriented and admits a feasible solution, as the number of independent
RRT plans generated in MIRRT increases, the best plan almost surely approaches
the optimal plan π∗, i.e., P(limi→∞ ‖c(πi, q0) − c(π∗, q0)‖ = 0) = 1.

Proof For any ε (without loss of generality, we assume ε ∈ (0,min(α,
β

2 ))), we build
(ε, t)-balls along π∗. Consider a sequence of events that can generate an ε-close path.
In one RRT, we start from the initial state q0 (we assume q0 = q∗

0). The first sam-
ple q1 ends in Bq∗

1
with nonzero probability. The steering function connects q∗

0 and
q1. The second sample qt ends in Bq∗

2
with nonzero probability. Based on the goal-

oriented assumption, qt is closer to q1 and hence the steering function connects q1

and q2. We repeat until the last sample qT ends in Bq∗
T
with nonzero probability

and the steering function connects qT−1 and qT . Thus, the probability of generat-
ing an ε-close path by one execution of RRT is nonzero, which we express as Pε ∈
R

+. Hence we have P(‖πi − π∗‖ > ε) = (1 − Pε)
i = P̄i

ε. Thus,
∑

i P(‖πi − π∗‖ >

ε) = ∑
i P̄i

ε ≤ 1
1−P̄ε

is finite. Based on a Borel-Cantelli argument [10], we have
P(limi→∞ ‖πi − π∗‖ = 0) = 1. Since the cost function of estimating probability of
collisions is Lipschitz continuous, P(limi→∞ ‖c(πi, q0) − c(π∗, q0)‖ = 0) = 1. �
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We have shown that when the above assumptions hold and the number of feasible
plans approaches infinity, the plan returned by MIRRT will almost surely approach
a solution that minimizes the estimated probability of collision c.

6 Experiments

We evaluated our methods on two simulated scenarios: (1) a 6-DOF manipulator in
a 3-D environment with narrow passages, and (2) a concentric tube robot that has
applications to surgical procedures. In both scenarios, the robots have substantial
actuation uncertainty and limited sensing feedback. We evaluated our C++ imple-
mentation on a 3.33GHz Intel i7 PC.

For both scenarios, we first evaluated our method for estimating probability of
collision by comparing the estimated collision probabilitywith the ground truth prob-
ability.We computed ground truth by running at least 5,000Monte Carlo simulations
of the given motion plan and reporting the percentage of collision free simulations.
Each simulation was executed in a closed-loop fashion using the given linear feed-
back controller and aKalmanfilter, andwith artificially generatedmotion and sensing
noise. We also demonstrated the ability of MIRRT to compute plans that approach
optimality as computation time is allowed to increase.

6.1 6-DOF Manipulator Scenario

We first applied our method to a holonomic 6-DOF articulated robotic manipulator
in a 3-D environment as shown in Fig. 2a. The robotic manipulator must move from
its initial configuration to a configuration in which its end-effector is inside the pre-
defined goal region (red ball) while avoiding the cyan obstacles. To reach the goal,
the manipulator must pass through one of two narrow passages; the left narrow pas-
sage is wider than the upper narrow passage. Although our geometric representation
resembles an industrial manipulator, we model the robot as a low-cost, compliant
manipulator with uncertainty in actuation and with an encoder only at the base joint,
resulting in limited state feedback.

We define the configuration of the robot as q = (θ1, θ2, θ3, θ4, θ5, θ6), the manip-
ulator’s joint angles. The control inputs are the angular velocities of the joints, w =
(w1, w2, w3, w4, w5, w6), each corrupted by a process noise m = (w̃1, w̃2, w̃3, w̃4,

w̃5, w̃6) ∼ N (0, M) where M = σ 2
1 I with σ1 = 0.03 rad/s. We define the robot’s

discrete dynamics model as

qt+1 = qt + Δ(w + m) (9)

where Δ is the time step size. We assume the robot has an encoder only at its base
joint and hence define the sensing model as
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(a) (b) (c)

(d)
(e)

Fig. 2 The 6-DOF manipulator with an encoder only at its base joint must move from its initial
configuration shown in a to a goal configuration in which its end-effector reaches the red ball while
avoiding the cyan obstacles. An example feasible plan (b), where the trajectory of the robot over time
is shown by its yellow, magenta, and blue links. Our method estimates the probability of collision of
this plan at 39.39% and ground truth is 40.68%.We compare our probability of collision estimation
method andMonte Carlo simulation for the example plan (d). ForMonte Carlo simulation to achieve
similar accuracy to our method, 700 simulations are needed, which requires over 26s rather than
234ms for our method. The optimal plan computed byMIRRT run for 20s passes through the upper
passage (c). The estimated probability of collision is 4.19% while the ground truth is 3.12%. The
performance of the MIRRT converges as the computation time is allowed to increase (e)

h(q, n) = θ1 + n (10)

where the observation is corrupted by noise n ∼ N (0, σ 2
2 )with σ2 = 0.03 rad/s. This

is indeed a formally unobservable sensing model.
We first evaluate the ability of our method to accurately estimate the probability

of collision for a particular plan. For the example feasible plan shown in Fig. 2b that
was computed by an RRT, we compare our method to the alternative of using Monte
Carlo simulations for estimating probability of collision. Our method required 234
ms of computation time. Figure2d shows the deviation in the probability estimates
computed usingMonte Carlo simulations with varying number of samples (averaged
over 100 trials). As expected, the variance decreases as the number of Monte Carlo
simulations increases. It takes over 700 Monte Carlo simulations, each simulation
requiring an average of 38 ms, to arrive within the accuracy bounds of our method,
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which corresponds to over 26 s of computation time just to estimate the collision
probability. Hence, our method is over 100 times faster thanMonte Carlo simulation.

To assess the accuracy of our method across a broader range of plans, we also ran-
domly generated 100 feasible plans using independent RRTs. The average absolute
error between the ground truth probability of collision (computed using 10,000Monte
Carlo simulations) and the estimation by our method is 9.78%. The average compu-
tational time of our method for each plan is 158ms.

We also evaluate our MIRRT approach for computing motion plans with low
probability of collision. We executed MIRRT for varying computation times up to
20s, which allows for computation of ∼100 plans. In Fig. 2e, we show the estimated
probability of collision of the best plan computed by ourmethod aswell as the ground
truth probability of collision for that plan. Each bar is the average of 20 executions.
As computation time is allowed to increase, the MIRRT approach returns a plan
that is almost guaranteed to avoid collisions, and its performance is verified by the
ground truth value. In the optimal plan (shown in Fig. 2c) the robot pulls back and
then passes through the upper narrow passage rather than through the left passage,
even though the left passage would allow a path that is both shorter and has greater
clearance from obstacles. The reason for selecting a path through the upper narrow
passage is because the robot has low uncertainty for θ1 due to its ability to sense that
joint’s orientation, and that decreases the chances of collision when moving through
the upper passageway because the robot’s kinematics for the remaining joints will
restrict uncertainty primarily along the z axis.

6.2 Concentric Tube Robot Scenario

We also apply our method to a concentric tube robot, a tentacle-like robot composed
of nested, pre-curved elastic tubes. These devices have the potential to enable physi-
cians to perform new minimally-invasive surgical procedures that require maneu-
vering through narrow passages or around anatomical obstacles. Potential clinical
applications include surgeries of the pituitary gland or nearby structures in the skull
base [5] as well surgeries that require maneuvering inside the heart [29].

Each tube of a concentric tube robot is pre-curved and can be inserted and axially
rotated independently of the other tubes. A device having n tubes thus has 2n degrees
of freedom. Due to the elastic interaction of the tubes, the kinematics of concentric
tube robots is complex and must be computed numerically [22, 31]. Computing the
kinematic model of the concentric tube robot requires over 50 times more computa-
tion time than for the 6-DOF manipulator.

We consider a 3-tube robot for which the state q = (θ1, θ2, θ3, β1, β2, β3) consists
of an axial angle θi and insertion distance βi for each tube.We define the control input
as u = (w1, w2, w3, v1, v2, v3), where wi and vi represent the axial rotation angular
velocity and insertion speed, respectively, for the i’th tube. We assume the control
input is corrupted by a process noise m = (w̃1, w̃2, w̃3, ṽ1, ṽ2, ṽ3, ) ∼ N (0, M). This
results in the dynamics model
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qt+1 = qt + Δ(u + m), (11)

where Δ is the time step size. We set M =

[
σ 2
1 I 0
0 σ 2

2 I

]
with σ1 = 0.02 rad/s and σ2 =

0.001 m/s. We assume the concentric tube robot’s tip position can be tracked in 3-D
using an electromagnetic tracker (e.g., the NDI Aurora Electromagnetic Tracking
System as in [5]). This gives the stochastic measurement model

h[qt, n] = [
xt yt zt

]T + n, (12)

where n ∼ N (0, N). We set N = σ 2
3 I with σ3 = 0.001 m.

For the concentric tube robot, we evaluate the ability of our method to accurately
estimate the probability of collision. As shown in Fig. 3, we consider a tubular envi-

Fig. 3 The3-tube concentric tube robotmust reach the yellow goal spherewhile avoiding theorange
obstacles and remaining inside the cyan cylinder (a). We compare our method with Monte Carlo
simulation for the example plan (b). The average computation time per Monte Carlo simulation is
98ms (which is higher than for the 6-DOF manipulator due to the complex kinematics). For Monte
Carlo simulation to achieve a similar accuracy to our method, over 450 simulations are needed,
which requires over 44s rather than 2.4 s total for our method. We also illustrate a clinically-
motivated scenario in which a concentric tube robot enters the body via the nasal cavity and reaches
a rightward facing pose at the pituitary gland (green) for skull base surgery (c)
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ronment with spherical obstacles similar to the environments used in prior work
[24]. For the example plan shown in Fig. 3a, our method required 2.4 s of computa-
tion time. Figure3b compares the probability of collision estimates computed using
Monte Carlo simulation with varying number of samples (averaged over 100 tri-
als). As expected, the variance decreases as the number of Monte Carlo simulations
increases. It takes over 450 Monte Carlo simulations to achieve the accuracy of our
method, which corresponds to over 44 s of computation time just to estimate the
collision probability. Hence, our method is over 10 times faster than Monte Carlo
simulation for the concentric tube robot scenario.

To assess the accuracy of our method across a broader range of concentric tube
robot plans, we also randomly generated 100 feasible plans using independent RRTs.
The average absolute error between the ground truth probability of collision (com-
puted using 10,000 Monte Carlo simulations) and the estimation by our method
is 4.36%. The optimal plan picked by MIRRT using our method has an estimated
probability of collision of 9.11 × 10−7 % while ground truth is 0%.

To treat cancers of the pituitary gland, surgeons oftenmust resect the tumor, which
requires inserting surgical instruments to reach the skull base. Enabling surgeons to
access the pituitary gland (shown in green in Fig. 3c) via the nasal cavity and by
drilling through thin sinus bones would be far less invasive than current surgical
approaches, but requires controllable, curvilinear instruments for surgical access
[5]. For the concentric tube robot, we generated 100 plans for the anatomy in Fig. 3c,
avoiding obstacles such as bone and blood vessels and requiring a rightward facing
tip pose for the surgical task. MIRRT executed for 100 plans returns a plan with an
estimated probability of collision of 0.94%, while the ground truth is 0%. In Fig. 3c,
we illustrate the optimal plan found by our method.

7 Conclusion

We introduced a new integrated motion planning and control algorithm for robotic
manipulators that makes safety a priority by explicitly minimizing the probability
of unwanted collisions. Our approach quickly computes distances to obstacles in
the workspace and appropriately transforms this information into the configuration
space using a Newton method to estimate the most relevant collision points in con-
figuration space. We then presented a sampling-based motion planner that executes
multiple independent RRTs and returns a plan that, under reasonable assumptions,
asymptotically converges to a plan that minimizes the estimated collision probability.
We applied our approach in simulation to a 6-DOF manipulator and a tentacle-like
surgical robot. Our results show orders of magnitude speedup over Monte Carlo sim-
ulation for equivalent accuracy in estimating collision probability, and the ability of
our motion planner to return high quality plans with low probability of collision.

Our method assumes that the manipulator operates under the assumptions of
Gaussian motion and sensing uncertainty. Although the class of problems where
Gaussian distributions are appropriate is large (as shown by the widespread use of
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the extended Kalman filter for state estimation), the approximation is not acceptable
for some applications. In future work we plan to extend our method to non-Gaussian
uncertainty and integrate with local optimization methods in belief space to quickly
refine plans. We also will apply the method to meso-scale, flexible surgical robots to
improve device safety, effectiveness, and clinical potential.
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